JPS62188746A - Permanent magnet material made of alloy containing fluorine - Google Patents

Permanent magnet material made of alloy containing fluorine

Info

Publication number
JPS62188746A
JPS62188746A JP61029382A JP2938286A JPS62188746A JP S62188746 A JPS62188746 A JP S62188746A JP 61029382 A JP61029382 A JP 61029382A JP 2938286 A JP2938286 A JP 2938286A JP S62188746 A JPS62188746 A JP S62188746A
Authority
JP
Japan
Prior art keywords
permanent magnet
rare earth
magnet material
fluorine
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61029382A
Other languages
Japanese (ja)
Inventor
Noboru Ichinose
昇 一ノ瀬
Hideetsu Suzuki
秀悦 鈴木
Mitsuyoshi Nishida
西田 光儀
Nobumasa Yoshida
吉田 伸昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S C M KK
Original Assignee
S C M KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S C M KK filed Critical S C M KK
Priority to JP61029382A priority Critical patent/JPS62188746A/en
Publication of JPS62188746A publication Critical patent/JPS62188746A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the enhancement of the performance difficult to attain by the conventional technique and to improve the temp. characteristics by using a novel permanent magnet alloy contg. a rare earth element and iron as well as fluorine and represented by a specified chemical formula. CONSTITUTION:This permanent magnet material made of an alloy contg. fluorine is a novel permanent magnet alloy contg. a rare earth element and iron as well as fluorine and represented by the chemical formula. In the formula, R is one or more kinds of rare earth elements including Y, A is one or more among B, C, N, Si and P, alpha=0.01-0.3, gamma=4-16 and a=0-0.05.

Description

【発明の詳細な説明】 発明の属する技術分野 本発明は希土類元素と鉄を含有する新規な合金系永久磁
石に関するものである。特に従来の技術では困難であっ
た高性能化を容易にし、しかも従来の希土類−鉄一硼素
系で問題となっていた温度特性を改善したものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a novel alloy permanent magnet containing rare earth elements and iron. In particular, it facilitates high performance, which was difficult with conventional techniques, and also improves the temperature characteristics that were a problem with conventional rare earth-iron-boron systems.

従来の技術 希土類元素(R)と鉄(Fe )とから成る金属間化合
物は大きな結晶磁気異方性と高い飽和磁束密度を示し、
高保磁力、高エネルギー積を有する永久磁石材料として
注目されている。特に希土類−コバルトから成る材料に
比して廉価である点と高飽和磁束密度である点で永久磁
石として有望である。
Conventional technology Intermetallic compounds consisting of rare earth elements (R) and iron (Fe) exhibit large magnetocrystalline anisotropy and high saturation magnetic flux density.
It is attracting attention as a permanent magnet material with high coercive force and high energy product. It is particularly promising as a permanent magnet because it is cheaper than rare earth-cobalt materials and has a high saturation magnetic flux density.

更K、硼素(B)を添加したNd −Fe −B系やB
をC,N5Si 、P等の非金属元素で置換したもの、
又、Feの一部をCOで置換しキュリ一点を上昇させた
ものなど種々の材料が知られている。
Further, K, Nd-Fe-B system with added boron (B), and B
substituted with non-metallic elements such as C, N5Si, P, etc.
Various materials are also known, including those in which a portion of Fe is replaced with CO to increase the Curie point.

しかし、これまでの希土類−鉄系磁石は、永久磁石材料
として要求される諸特性が必ずしも充分満足できるほど
には得られていない。特K、Fe−Nd−B系磁石では
、−0,13%/℃程度の残留磁束密度の温度係数があ
り、実用上問題となっている。
However, conventional rare earth-iron magnets have not always been able to sufficiently satisfy the various properties required of permanent magnet materials. Special K, Fe-Nd-B magnets have a temperature coefficient of residual magnetic flux density of about -0.13%/°C, which poses a practical problem.

発明が解決しようとする問題点 本発明はこのような問題点を改善し、希土類−鉄系合金
において、高い飽和磁化、異方性磁場とともに改善され
た温度特性を有し、高性能化を実現できる永久磁石を提
供するものである。
Problems to be Solved by the Invention The present invention improves these problems and achieves high performance in rare earth-iron alloys with high saturation magnetization, an anisotropic magnetic field, and improved temperature characteristics. This provides permanent magnets that can

問題点を解決するための手段 本発明は、希土類−鉄系永久磁石材料K、XFで表わさ
れる弗化物を添加するものである。
Means for Solving the Problems In the present invention, fluorides represented by rare earth-iron permanent magnet materials K and XF are added.

即チ第一の発明ハ(1−a ) R(AaFe + −
α)r−aXFなる組成式で表わされる含弗素合金系永
久磁石材料、第二の発明は、(1−a ) R(AaF
e +−α−βCOβ)r−aXFなる組成式で表わさ
れる含弗素合金系永久磁石材料である。但し、上記組成
式において、RはYを含む希土類元素、即ちY、La 
、Ce XPr 1Nd 、Pm 、Sm 。
That is, the first invention (1-a) R(AaFe + -
The second invention is a fluorine-containing alloy permanent magnet material represented by the compositional formula α) r-aXF, (1-a) R(AaF
It is a fluorine-containing alloy permanent magnet material represented by the composition formula e + -α-βCOβ)r-aXF. However, in the above compositional formula, R is a rare earth element containing Y, that is, Y, La
, Ce XPr 1Nd, Pm, Sm.

Eu 、Gd 、Tb 、Dy 、Ho 、Er 、T
m、Yb1Luから選ばれる1種または2種以上の組合
せであり、AはB、C,N、Si 、Pから選ばれる1
種又は2種以上の組合せである。又×はに1Na 、 
Liから選ばれる1種又は2種以上の組合せであり、か
つ0.01≦α≦0.3.0.01≦β≦0.5.4≦
T≦16、O<a≦0.05である。
Eu, Gd, Tb, Dy, Ho, Er, T
m, Yb1Lu, or a combination of two or more, and A is 1 selected from B, C, N, Si, and P.
species or a combination of two or more species. Also x hani 1Na,
One or a combination of two or more selected from Li, and 0.01≦α≦0.3.0.01≦β≦0.5.4≦
T≦16, O<a≦0.05.

作用 本発明の特徴は、R−Fe−A系又はR−Fe−Co−
A系合金磁石材料K、KF、Na F、LiFから選ば
れる1種又は2種以上の弗化物(以下XFという)を5
モル%以下添加することにある。XFの添加により異方
性磁場、飽和磁化が改善されるとともK、キュリ一温度
が改良されて温度特性が向上し、より優れた磁石材料と
なり得る。
Function The feature of the present invention is that R-Fe-A system or R-Fe-Co-
A-based alloy magnet material One or more fluorides (hereinafter referred to as XF) selected from K, KF, NaF, and LiF (hereinafter referred to as XF)
It is to be added in an amount of mol % or less. The addition of XF improves the anisotropic magnetic field and saturation magnetization, improves K and Curie temperature, improves temperature characteristics, and can become a more excellent magnetic material.

本発明の磁石材料は、各成分を高周波溶解、アーク溶解
等で溶解して得た溶湯を金型等に鋳込んだり、又溶解し
て得られた合金を粉砕し、粉末冶金法により磁場中で成
形、焼結したりして作成するもので、結晶質の合金であ
る。後者の製法においては、XFの添加により焼結温度
が低下する利点もある。
The magnet material of the present invention can be produced by melting each component by high-frequency melting, arc melting, etc., casting the molten metal into a mold, etc., or by pulverizing the alloy obtained by melting, and placing it in a magnetic field by powder metallurgy. It is made by molding and sintering, and is a crystalline alloy. The latter manufacturing method also has the advantage of lowering the sintering temperature by adding XF.

本発明において、XFは少量でも効果があるが、添加量
を5モル%以下部らO<a≦0.05と限定したのは、
5モル%を越えると飽和磁化の大きさが低下し、残留磁
束密度の温度係数の改善がみられなくなるためである。
In the present invention, XF is effective even in small amounts, but the reason why the amount added is limited to 5 mol% or less and O<a≦0.05 is because
This is because if it exceeds 5 mol %, the magnitude of saturation magnetization decreases and no improvement in the temperature coefficient of residual magnetic flux density is observed.

一方、組成式(1−a ) R(Aa Fe + −a
) r ・aXF、又ハ、(1a ) R(A a F
e + −α−5COβ)r−aXF中、Aのモル比α
が0,01より小さいと、異方性磁場及び保磁力が小さ
くなる。
On the other hand, the composition formula (1-a) R(Aa Fe + -a
) r ・aXF, (1a) R(A a F
molar ratio α of A in e + -α-5COβ)r-aXF
When is smaller than 0.01, the anisotropic magnetic field and coercive force become small.

またαが0.3を越えると飽和磁化の大きさが低下する
Moreover, when α exceeds 0.3, the magnitude of saturation magnetization decreases.

rの範囲を4≦T≦16とするのは、4より小さくなる
と飽和磁化の強さが低下し、16を越えると異方性1i
ii場の大きざが低下するためである。
The reason why the range of r is 4≦T≦16 is that when it becomes smaller than 4, the strength of saturation magnetization decreases, and when it exceeds 16, the anisotropy 1i
This is because the magnitude difference of the ii field decreases.

又第二の発明においては、COを添加することによりキ
ュリー湿度が上昇し、温度特性の改善に相乗効果として
効いてくるので好ましい。モル比が0.01以上、特に
0.05以上で良好な結果が得られる。βが0.5を越
えると飽和磁化の大きさが低下するため、βの範囲は0
.01≦β≦0.5と限定した。
Further, in the second invention, the addition of CO increases the Curie humidity, which has a synergistic effect on improving the temperature characteristics, which is preferable. Good results are obtained when the molar ratio is 0.01 or more, particularly 0.05 or more. When β exceeds 0.5, the magnitude of saturation magnetization decreases, so the range of β is 0.
.. It was limited to 01≦β≦0.5.

実施例 実施例1 Nd  (B O,07Fe  O,53) s 98
.5モル%とKFo、5モル%とからなる組成の合金を
、高周波炉を用い、アルゴン雰囲気中で溶製した。次い
でこの溶製合金をスタンプミルで粗粉砕し、ポットミル
で平均粒径3)a程度まで粉砕した。この混合粉末を1
01(Qeの磁場中で約1.5t/(シの圧力をかけて
型成形し、得られた成形体をアルゴン雰囲気中、105
0℃で1時間焼結した。次いで室温まで急冷し、更に6
00℃で1時間熱処理を行って磁石を製造した。
Examples Example 1 Nd (B O,07Fe O,53) s 98
.. An alloy having a composition of 5 mol % and 5 mol % of KFo was melted in an argon atmosphere using a high frequency furnace. Next, this melted alloy was coarsely ground using a stamp mill, and then ground to an average particle size of about 3)a using a pot mill. 1 of this mixed powder
The molded body was molded under a pressure of about 1.5 t/(shi) in a magnetic field of 01 (Qe), and the obtained molded body was molded in an argon atmosphere with a
Sintering was performed at 0°C for 1 hour. Then, it was rapidly cooled to room temperature, and further 6
A magnet was manufactured by performing heat treatment at 00° C. for 1 hour.

得られた磁石について異方性11場、飽和磁化及び残留
磁束密度の温度係数を測定し、結果を表1に示した。
The temperature coefficient of anisotropy 11 field, saturation magnetization, and residual magnetic flux density of the obtained magnet was measured, and the results are shown in Table 1.

実施例2〜7、比較例1〜3 表1の組成の合金磁石を実施例1と同様な方法で作成し
、特性を調べて表1に示した。
Examples 2 to 7, Comparative Examples 1 to 3 Alloy magnets having the compositions shown in Table 1 were made in the same manner as in Example 1, and the characteristics were investigated and shown in Table 1.

表1より、XFを添加したものは添加しないものに比べ
て温度係数が改善されており、併せて大きな異方性磁場
及び高い飽和磁化を有していることがわかる。
From Table 1, it can be seen that the material to which XF is added has an improved temperature coefficient compared to the material to which it is not added, and also has a large anisotropic magnetic field and high saturation magnetization.

実施例8 Nd  (B O,12Fe  a、a4Co  Q、
04 )  y 97.8モル%と、LiF2,2モル
%とからなる組成の合金磁石を実施例1と同様にして作
成し、特性を表2に示した。
Example 8 Nd (BO, 12Fe a, a4Co Q,
04) An alloy magnet having a composition of 97.8 mol% y and 2 mol% LiF was prepared in the same manner as in Example 1, and the properties are shown in Table 2.

実施例9、比較例4〜5 表2の組成の合金磁石を実施例8と同様な方法で作成し
、特性を調べて表2に示した。
Example 9, Comparative Examples 4 to 5 Alloy magnets having the compositions shown in Table 2 were prepared in the same manner as in Example 8, and their properties were investigated and shown in Table 2.

発明の効果 以上の実施例からもわかるようK、XFを添加した本発
明の合金系磁石材料は磁気特性面、温度特性面で顕著な
改善がなされ、極めて優れた高性能磁石材料である。
Effects of the Invention As can be seen from the above examples, the alloy magnet material of the present invention to which K and XF are added has remarkable improvements in magnetic properties and temperature properties, and is an extremely excellent high-performance magnet material.

Claims (1)

【特許請求の範囲】 1 (1−a)R(A_αFe_1_−_α)_r・a
XFなる組成式で表わされ、上記組成式において、Rは
Yを含む希土類元素の1種または2種以上の組合せであ
り、AはB、C、N、Si、Pから選ばれる1種又は2
種以上の組合せであり、又XはK、Na、Liから選ば
れる1種又は2種以上の組合せであり、かつ0.01≦
α≦0.3、4≦r≦16、0<a≦0.05である含
弗素合金系永久磁石材料。 2 (1−a)R(A_αFe_1_−_α_−_βC
o_β)_r・aXFなる組成式で表わされ、上記組成
式において、RはYを含む希土類元素の1種または2種
以上の組合せであり、AはB、C、N、Si、Pから選
ばれる1種又は2種以上の組合せであり、又XはK、N
a、Liから選ばれる1種又は2種以上の組合せであり
、かつ0.01≦α≦0.3、0.01≦β≦0.5、
4≦r≦16、0<a≦0.05である含弗素合金系永
久磁石材料。
[Claims] 1 (1-a) R(A_αFe_1_-_α)_r・a
It is represented by the composition formula XF, and in the above composition formula, R is one type or a combination of two or more rare earth elements including Y, and A is one type selected from B, C, N, Si, and P or 2
is a combination of two or more species, and X is one or a combination of two or more selected from K, Na, and Li, and 0.01≦
A fluorine-containing alloy permanent magnet material satisfying α≦0.3, 4≦r≦16, and 0<a≦0.05. 2 (1-a)R(A_αFe_1_-_α_-_βC
o_β)_r・aXF In the above composition formula, R is one or a combination of two or more rare earth elements including Y, and A is selected from B, C, N, Si, and P. one type or a combination of two or more types, and X is K, N
one or a combination of two or more selected from a, Li, and 0.01≦α≦0.3, 0.01≦β≦0.5,
A fluorine-containing alloy permanent magnet material satisfying 4≦r≦16 and 0<a≦0.05.
JP61029382A 1986-02-13 1986-02-13 Permanent magnet material made of alloy containing fluorine Pending JPS62188746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61029382A JPS62188746A (en) 1986-02-13 1986-02-13 Permanent magnet material made of alloy containing fluorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61029382A JPS62188746A (en) 1986-02-13 1986-02-13 Permanent magnet material made of alloy containing fluorine

Publications (1)

Publication Number Publication Date
JPS62188746A true JPS62188746A (en) 1987-08-18

Family

ID=12274586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61029382A Pending JPS62188746A (en) 1986-02-13 1986-02-13 Permanent magnet material made of alloy containing fluorine

Country Status (1)

Country Link
JP (1) JPS62188746A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188241A (en) * 1989-12-15 1991-08-16 Sumitomo Special Metals Co Ltd Sintered permanent magnet material and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188241A (en) * 1989-12-15 1991-08-16 Sumitomo Special Metals Co Ltd Sintered permanent magnet material and its manufacture

Similar Documents

Publication Publication Date Title
JPH0531807B2 (en)
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JPS60144909A (en) Manufacture of permanent magnet material
JPH03236202A (en) Sintered permanent magnet
JPS60144906A (en) Permanent magnet material
Burzo et al. Magnetic properties of Nd2Fe14− x− yCoxAlyB alloys
EP0386286B1 (en) Rare earth iron-based permanent magnet
JP3222482B2 (en) Manufacturing method of permanent magnet
JPS62136551A (en) Permanent magnet material
JPS61195954A (en) Permanent magnet alloy
US4954186A (en) Rear earth-iron-boron permanent magnets containing aluminum
JPS60144908A (en) Permanent magnet material
JPS62241304A (en) Rare earth permanent magnet
JPS60144907A (en) Permanent magnet material
JPH0146575B2 (en)
JPS62188746A (en) Permanent magnet material made of alloy containing fluorine
JPH0660367B2 (en) Method of manufacturing permanent magnet material
JPH0536495B2 (en)
JPS63128606A (en) Permanent magnet
JPS62188747A (en) Permanent magnet material made of alloy containing fluorine
JPS62158852A (en) Permanent magnet material
JP2002285276A (en) R-t-b-c based sintered magnet and production method therefor
JPS62281403A (en) Permanent magnet
JPS62188757A (en) Fluorine-containing alloy-type permanent magnet material
JPS62158854A (en) Permanaent magnet material