JPS62158854A - Permanaent magnet material - Google Patents

Permanaent magnet material

Info

Publication number
JPS62158854A
JPS62158854A JP60299232A JP29923285A JPS62158854A JP S62158854 A JPS62158854 A JP S62158854A JP 60299232 A JP60299232 A JP 60299232A JP 29923285 A JP29923285 A JP 29923285A JP S62158854 A JPS62158854 A JP S62158854A
Authority
JP
Japan
Prior art keywords
flux density
magnetic flux
coercive force
energy product
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60299232A
Other languages
Japanese (ja)
Inventor
Noboru Ichinose
昇 一ノ瀬
Hideetsu Suzuki
秀悦 鈴木
Mitsuyoshi Nishida
西田 光儀
Nobumasa Yoshida
吉田 伸昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S C M KK
Original Assignee
S C M KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S C M KK filed Critical S C M KK
Priority to JP60299232A priority Critical patent/JPS62158854A/en
Publication of JPS62158854A publication Critical patent/JPS62158854A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Abstract

PURPOSE:To improve residual magnetic flux density, coercive force, and maximum energy product by blending specific amounts of a group consisting Al, Cu, and Zn and N with rare earth element-Fe-Co-B. CONSTITUTION:A permanent magnet material has a composition satisfying a composition formula R1-x-y-z-alpha-betaFexCoyBzMalphaNbeta: where R represents a combination of 1 or >=2 kinds among rare earth elements including Y; M means one or more elements among Al, Cu, and Zn; and, as to the symbols 'x', 'y', 'z', 'alpha', and 'beta', 0.50<=x<=0.85, 0<=y<=0.20, 0.01<=z<=0.15, 0.01<=alpha<=0.10, and 0.015<=beta<=0.03. Owing to the above composition, magnetic properties such as residual magnetic flux density, coercive force, maximum energy product, etc., are improved and permanent magnets can be made highly efficient.

Description

【発明の詳細な説明】 発明の属する技術分野 本発明は希土類元素と鉄、硼素を主体とする新規な永久
磁石材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a novel permanent magnet material mainly containing rare earth elements, iron, and boron.

従来の技術 希土類元素(R)、鉄(Fe)及び硼素(B)を主成分
とする金属間化合物は大ぎな結晶磁気巽方性と高い飽和
磁束密度を示し、高保磁力、高エネルギー積を有する永
久磁石材料として注目されている。特に希土類−コバル
トから成る材料に比して廉価である点と高飽和磁束密度
である点で永久磁石として有望である。
Conventional technology Intermetallic compounds mainly composed of rare earth elements (R), iron (Fe), and boron (B) exhibit large crystal magnetism and high saturation magnetic flux density, and have high coercive force and high energy product. It is attracting attention as a permanent magnet material. It is particularly promising as a permanent magnet because it is cheaper than rare earth-cobalt materials and has a high saturation magnetic flux density.

更に、Feの一部をCOで置換するとキュリ一点が上昇
し、熱安定性も向上することも見出されている。
Furthermore, it has been found that replacing a portion of Fe with CO increases the Curie point and improves thermal stability.

が解決しようとする問題1、 本発明は、上述した希土類−鉄一硼素系、および希土類
−鉄一コバルト1素系の永久磁石材料において、残留磁
束密度、保磁力および最大エネルギー積で表わされる磁
気特性をさらに向上させることを目的とする。
Problem 1 to be solved by the present invention is the magnetic flux density expressed by residual magnetic flux density, coercive force, and maximum energy product in the above-mentioned rare earth-iron-boron system and rare earth-iron-cobalt monosystem permanent magnet materials. The purpose is to further improve the characteristics.

問題点を解決するための手段 本R明ノIi1石材n ハ、RI −X−V−1−a−
j3F eXCOVBZMαNβなる組成式で表わされ
る。上記組成式においてRはYを含む希土類元素即ちY
SLa、Ce 、Pr 、Nd 、Pm 、Sm SE
u 、Gd 。
Means for solving problems Book R Akino Ii 1 Stone n Ha, RI -X-V-1-a-
It is represented by the compositional formula j3F eXCOVBZMαNβ. In the above compositional formula, R is a rare earth element containing Y, that is, Y
SLa, Ce, Pr, Nd, Pm, Sm SE
u, Gd.

Tb 、Dy %Ho 、Er 、Tm SYb 、L
uから選ばれる1種又は2種以上の組み合わせであり、
MはAI 、Cu 、 Znから選ばれる1種又は2種
以上の組合せである。又、×、ylz、Lx、βはそれ
ぞれ0.50≦X≦0.85、O≦y≦0.20.0.
01≦z≦0.15.0.01≦α≦0.10 。
Tb, Dy %Ho, Er, Tm SYb, L
One type or a combination of two or more types selected from u,
M is one or a combination of two or more selected from AI, Cu, and Zn. Moreover, ×, ylz, Lx, and β are respectively 0.50≦X≦0.85, O≦y≦0.20.0.
01≦z≦0.15.0.01≦α≦0.10.

0.015≦β≦0.03であることを特徴とする。It is characterized in that 0.015≦β≦0.03.

本発明において、R,−Fe−X又はR−Fe−Go−
X系合金にAI、Cu、Znから選ばれる1種又は2種
以上と、N(窒素)を添加することにより、磁気特性、
特に残留磁束密度、保磁力と最大エネルギー積が向上す
る。
In the present invention, R, -Fe-X or R-Fe-Go-
By adding one or more selected from AI, Cu, and Zn and N (nitrogen) to the X-based alloy, magnetic properties,
In particular, the residual magnetic flux density, coercive force and maximum energy product are improved.

添加元素AI 、Cu 、 Znは保磁力、最大エネル
ギー積、残留磁束密度を改善する効果がある。
The additive elements AI, Cu, and Zn have the effect of improving coercive force, maximum energy product, and residual magnetic flux density.

αが0.01未満の場合改善効果が少なく、0.10よ
り大きい場合は最大エネルギー積の低下等磁気特性の劣
化がみられる。これらの元素は単独で添加しても、又2
種類以上を組合わせて使用してもよい。
When α is less than 0.01, there is little improvement effect, and when it is larger than 0.10, deterioration of magnetic properties such as a decrease in the maximum energy product is observed. These elements can be added singly or
More than one type may be used in combination.

一方添加元素Nは、Bと同じように、Feの格子を拡大
させる働きがあり、この効果が保磁力を高める要素とな
る。Bの一部をNで置換すると、BおよびN11独より
も磁気特性がさらに高められる。しかしながら、Nの量
が多すぎると窒化物が過剰に生成して磁気特性が減少し
、又Nlが少なすぎると効果が少ないため0.015≦
β≦0.03の範囲とした。
On the other hand, the additive element N, like B, has the function of expanding the Fe lattice, and this effect is a factor that increases the coercive force. When part of B is replaced with N, the magnetic properties are further enhanced compared to B and N11 alone. However, if the amount of N is too large, nitrides will be generated excessively and the magnetic properties will decrease, and if the amount of Nl is too small, the effect will be small, so 0.015≦
The range was β≦0.03.

尚、Feの闇が多すぎると残留磁束密度は向上するもの
の、保磁力および最大エネルギー積が低下する。一方、
少なすぎると残留磁束密度および最大エネルギー積が減
少するので、0.50≦x≦0.85の範囲とした。
Note that if there is too much Fe darkness, the residual magnetic flux density will improve, but the coercive force and the maximum energy product will decrease. on the other hand,
If it is too small, the residual magnetic flux density and the maximum energy product will decrease, so the range is set to 0.50≦x≦0.85.

Coの添加はキュリ一点の上昇、熱安定性の向上に効果
があるが、添加量yが0.20を越えると、保磁力の低
下がおこるので好ましくない。
Addition of Co is effective in raising the Curie point by one point and improving thermal stability, but if the amount y added exceeds 0.20, the coercive force decreases, which is not preferable.

Bの比率は、磁気特性の面から0.01≦z≦0.15
の範囲とした。
The ratio of B is 0.01≦z≦0.15 from the viewpoint of magnetic properties.
The range of

本発明による永久磁石は、従来公知の方法により各成分
を溶解して得た溶湯を金型等に鋳込んだり、又溶製合金
を粉砕し、粉末冶金法により磁場中で成形、焼結したり
して製造する。溶解は高周波溶解またはアーク溶解等で
不活性ガス中で行う。
The permanent magnet of the present invention can be produced by melting each component using a conventionally known method and casting the molten metal into a mold, etc., or by pulverizing the molten alloy, forming it in a magnetic field using powder metallurgy, and sintering it. Manufactured by Melting is performed in an inert gas using high frequency melting or arc melting.

粉砕はスタンプミル、ディスクミルおよび振動ミル、ボ
ールミル等組み合せて行われる。酸化防止のため、不活
性ガスや有機溶剤が用いられる。磁場成形は配向度向上
の目的から加圧力方向と磁場方向が垂直な横磁場で行わ
れることが望ましい。
Grinding is carried out using a combination of stamp mills, disc mills, vibration mills, ball mills, etc. Inert gas and organic solvents are used to prevent oxidation. For the purpose of improving the degree of orientation, magnetic field shaping is preferably performed in a transverse magnetic field in which the direction of the applied force and the direction of the magnetic field are perpendicular.

焼結は不活性ガス中で行い、焼結後は急冷するのがよい
。熱処理は500〜800℃で行うが、組成によって時
間をかえることが望ましい。
Sintering is preferably carried out in an inert gas, and after sintering, the material is rapidly cooled. The heat treatment is performed at 500 to 800°C, but it is desirable to vary the time depending on the composition.

実施例 実施例1 Nd o、+Rs −αFe o、eoco 0.13
 B 0.07Al aNO,015(但しα−0,0
1)なる組成の合金を、アーク)8解炉を用い、アルゴ
ン雰囲気中で溶製した。
Examples Example 1 Ndo, +Rs -αFe o, eoco 0.13
B 0.07Al aNO,015 (α-0,0
1) An alloy having the following composition was melted in an argon atmosphere using an arc)8 furnace.

次いで溶製合金をスタンプミルで粗粉砕し、振動ミルで
平均粒径3.2A1m程度まで粉砕した。この粉末を1
3KOeの磁場中で磁場方向に垂直に約1.2し′ci
の圧力をかけて型成形し、得られた成形体をアルゴン雰
囲気中、1200℃で2時間焼結し、次いで鉱物油中で
室温まで急冷し、更に750℃で熱処理を行って磁石を
製造した。
Next, the ingot alloy was coarsely ground with a stamp mill, and then ground with a vibration mill to an average particle size of about 3.2 A1 m. 1 of this powder
Approximately 1.2′ci perpendicular to the magnetic field direction in a magnetic field of 3KOe
The resulting molded body was sintered at 1200°C for 2 hours in an argon atmosphere, then rapidly cooled to room temperature in mineral oil, and further heat-treated at 750°C to produce a magnet. .

得られた磁石材料の残留磁束密度(Br ) 、保磁力
(tHc ) 、最大エネルギー積(B H) max
を調べたところ、表1に示す結果が得られた。
Residual magnetic flux density (Br), coercive force (tHc), maximum energy product (BH) max of the obtained magnet material
When investigated, the results shown in Table 1 were obtained.

実施例2.3 A1の比率αを表1のとおりとする以外は実施例1と同
様にして、それぞれ磁石を製造し、特性を表1に示した
Example 2.3 Magnets were manufactured in the same manner as in Example 1 except that the ratio α of A1 was as shown in Table 1, and the characteristics are shown in Table 1.

比較例1 AIを添加しない以外は実施例1と同様にして磁石を製
造し、特性を表1に示した。
Comparative Example 1 A magnet was manufactured in the same manner as in Example 1 except that no AI was added, and the characteristics are shown in Table 1.

比較例2.3 AIの比率αを表1のとおりとする以外は実施例1と同
様にして磁石を製造し、特性を表1に示した。
Comparative Example 2.3 A magnet was manufactured in the same manner as in Example 1 except that the ratio α of AI was as shown in Table 1, and the characteristics are shown in Table 1.

実施例4〜6 Nd Q、+87−aFe o、6oco o、+s 
B o、o5Cu txNO,013(但しαは表2の
とおりとする。)なる組成の合金を、高周波溶解炉を用
い、アルゴン雰囲気中で溶製した。次いで溶製合金をス
テンレス製乳鉢を用いて粗粉砕し、ボールミルで平均粒
径4.04程度まで粉砕した。この粉末を15KOeの
磁場巾約1.6t/Cdの圧力をかけて型成形し、得ら
れた成形体をアルゴン雰囲気中、1050℃で1時間焼
結し、次いで鉱物油中で室温まで急冷し、更に750℃
で熱処理を行って磁石を製造した。得られた磁石の特性
を表2に示した。
Examples 4-6 Nd Q, +87-aFe o, 6oco o, +s
An alloy having the composition B o,o5Cu txNO,013 (α is as shown in Table 2) was melted in an argon atmosphere using a high frequency melting furnace. Next, the molten alloy was coarsely ground using a stainless steel mortar and ground to an average particle size of about 4.04 using a ball mill. This powder was molded by applying a pressure of 15 KOe and a magnetic field width of about 1.6 t/Cd, and the resulting molded body was sintered at 1050°C for 1 hour in an argon atmosphere, and then rapidly cooled to room temperature in mineral oil. , further 750℃
A magnet was produced by heat treatment. Table 2 shows the properties of the obtained magnet.

比較例4〜6 Cuの比率αを表2のとおりとする以外は実施例4と同
様にして磁石を製造し、特性を表2に示した。
Comparative Examples 4 to 6 Magnets were manufactured in the same manner as in Example 4 except that the Cu ratio α was as shown in Table 2, and the characteristics are shown in Table 2.

表1 表2 実施例7〜9 pr  o、2118 −aFe  o、6o−aZn
  a B o、+o NO,0I2(但しαは表3の
とおりとする。)なる組成の合金磁石を実施例4と同様
の方法で製造し、特性を表3に示した。但し焼結温度は
950℃とした。
Table 1 Table 2 Examples 7 to 9 pro, 2118-aFe o, 6o-aZn
An alloy magnet having the composition a Bo, +o NO, 0I2 (α is as shown in Table 3) was manufactured in the same manner as in Example 4, and the characteristics are shown in Table 3. However, the sintering temperature was 950°C.

比較例7〜9 7−nの比率αを表3のとおりとする以外は実施例7と
間係にして磁石を製造し、特性を表3に示した。
Comparative Examples 7 to 9 Magnets were manufactured in the same manner as in Example 7 except that the ratio α of 7-n was as shown in Table 3, and the characteristics are shown in Table 3.

表3 実施例10〜18 Nd  o、+z=6F8 0.70B O,IOM 
0.03NI3 (但しMはAI 、Cu 、又はZn
であり、β=0.015〜0.03 )なる組成の合金
を、それぞれ高周波溶解炉を用いてアルゴン雰囲気中で
溶製した。次いで溶製合金をスタンプミルで粗粉砕し、
続いて振動ミルで平均粒径4.3.o程度まで粉砕した
。この粉末を15KOeの磁場巾約2.Ot/cシの圧
力をかけて型成形し、得られた成形体をアルゴン雰囲気
中、1000℃で1時間焼結し、次いで室温まで急冷し
、更に熱処理を行って磁石を製造した。得ら”れた磁石
の特性を表4に示した。
Table 3 Examples 10 to 18 Ndo, +z=6F8 0.70BO, IOM
0.03NI3 (However, M is AI, Cu, or Zn
and β=0.015 to 0.03) were respectively melted in an argon atmosphere using a high frequency melting furnace. Next, the molten alloy is coarsely ground in a stamp mill,
Subsequently, the average particle size was 4.3 mm using a vibration mill. It was crushed to about o. This powder has a magnetic field width of about 2.5 KOe. The molded body was molded under a pressure of Ot/c, and the resulting molded body was sintered at 1000° C. for 1 hour in an argon atmosphere, then rapidly cooled to room temperature, and further heat treated to produce a magnet. Table 4 shows the characteristics of the obtained magnet.

比較例10〜18 Nの添加mを表4のとおりとする以外は実施例10と同
様にして磁石を製造し、特性を表4に示した。
Comparative Examples 10 to 18 Magnets were manufactured in the same manner as in Example 10, except that the addition m of N was as shown in Table 4, and the characteristics are shown in Table 4.

表4 発明の効果 実IJII例からも明らかなように、本発明の永久磁石
材料は従来のR−Fe−X又はR−FB−C0−X系合
金にAI 、CLI 、 Znから選ばれる1種又は2
種以上及びNを添加することにより、残留。
Table 4 Effects of the Invention As is clear from the practical example, the permanent magnet material of the present invention is a conventional R-Fe-X or R-FB-C0-X alloy with one type selected from AI, CLI, and Zn. or 2
Remains by adding species or more and N.

磁束密度、保磁力および最大エネルギー積が改善され高
性能化が実現できたもので、実用上極めて優れた磁石材
料である。
It has improved magnetic flux density, coercive force, and maximum energy product, and has achieved high performance, making it an extremely excellent magnetic material for practical use.

Claims (1)

【特許請求の範囲】 1 R_1_−_x_−_y_−_z_−_α_−_β
Fe_xCo_yB_zM_αN_βなる組成式で表わ
され、上記組成式においてRはYを含む希土類元素の1
種または2種以上の組合せであり、MはAl、Cu、Z
nから選ばれる1種又は2種以上の組合せであり、 0.50≦x≦0.85、0≦y≦0.20、0.01
≦z≦0.15、0.01≦α≦0.10、0.015
≦β≦0.03 であることを特徴とする永久磁石材料。
[Claims] 1 R_1_-_x_-_y_-_z_-_α_-_β
It is represented by the composition formula Fe_xCo_yB_zM_αN_β, and in the above composition formula, R is 1 of a rare earth element containing Y.
species or a combination of two or more species, M is Al, Cu, Z
One or a combination of two or more selected from n, 0.50≦x≦0.85, 0≦y≦0.20, 0.01
≦z≦0.15, 0.01≦α≦0.10, 0.015
A permanent magnetic material characterized in that ≦β≦0.03.
JP60299232A 1985-12-28 1985-12-28 Permanaent magnet material Pending JPS62158854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60299232A JPS62158854A (en) 1985-12-28 1985-12-28 Permanaent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60299232A JPS62158854A (en) 1985-12-28 1985-12-28 Permanaent magnet material

Publications (1)

Publication Number Publication Date
JPS62158854A true JPS62158854A (en) 1987-07-14

Family

ID=17869851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60299232A Pending JPS62158854A (en) 1985-12-28 1985-12-28 Permanaent magnet material

Country Status (1)

Country Link
JP (1) JPS62158854A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417644A (en) * 1990-05-10 1992-01-22 Haiuntinshu Kofun Yugenkoshi Manufacture of magnetic alloy and magnet
US5186766A (en) * 1988-09-14 1993-02-16 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic materials containing rare earth element iron nitrogen and hydrogen
JP5477282B2 (en) * 2008-03-31 2014-04-23 日立金属株式会社 R-T-B system sintered magnet and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186766A (en) * 1988-09-14 1993-02-16 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic materials containing rare earth element iron nitrogen and hydrogen
JPH0417644A (en) * 1990-05-10 1992-01-22 Haiuntinshu Kofun Yugenkoshi Manufacture of magnetic alloy and magnet
JP5477282B2 (en) * 2008-03-31 2014-04-23 日立金属株式会社 R-T-B system sintered magnet and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP1014393B1 (en) Rare earth/iron/boron-based permanent magnet and method for the preparation thereof
JPH07105289B2 (en) Rare earth permanent magnet manufacturing method
JPH03236202A (en) Sintered permanent magnet
JPH01219143A (en) Sintered permanent magnet material and its production
AU608309B2 (en) Multiphase permanent magnet of the fe-b-mm type
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPS62158854A (en) Permanaent magnet material
JPH0146575B2 (en)
JPS60144908A (en) Permanent magnet material
JPS60144907A (en) Permanent magnet material
JPS62241304A (en) Rare earth permanent magnet
JPH06338407A (en) Raw material of rare-earth permanent magnet
JP3053187B2 (en) Manufacturing method of permanent magnet
JPS62158852A (en) Permanent magnet material
JP2598558B2 (en) permanent magnet
JPH0660367B2 (en) Method of manufacturing permanent magnet material
JP2966169B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JPH0146574B2 (en)
JPS62116756A (en) Permanent magnet alloy
JP2002124407A (en) Anisotropic sintered rare-earth manget and its manufacturing method
JP2000235909A (en) Rare earth/iron/boron magnet and manufacture thereof
JP2002285276A (en) R-t-b-c based sintered magnet and production method therefor
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JPH0142338B2 (en)
JPS62188747A (en) Permanent magnet material made of alloy containing fluorine