JP2598558B2 - permanent magnet - Google Patents

permanent magnet

Info

Publication number
JP2598558B2
JP2598558B2 JP2215922A JP21592290A JP2598558B2 JP 2598558 B2 JP2598558 B2 JP 2598558B2 JP 2215922 A JP2215922 A JP 2215922A JP 21592290 A JP21592290 A JP 21592290A JP 2598558 B2 JP2598558 B2 JP 2598558B2
Authority
JP
Japan
Prior art keywords
permanent magnet
heat treatment
content
rare earth
ihc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2215922A
Other languages
Japanese (ja)
Other versions
JPH0498802A (en
Inventor
保敏 水野
一雄 松井
照夫 清宮
治洋 幸村
Original Assignee
富士電気化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電気化学株式会社 filed Critical 富士電気化学株式会社
Priority to JP2215922A priority Critical patent/JP2598558B2/en
Publication of JPH0498802A publication Critical patent/JPH0498802A/en
Application granted granted Critical
Publication of JP2598558B2 publication Critical patent/JP2598558B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 《産業上の利用分野》 本発明は希土類−鉄−ホウ素系(以下、「R−Fe−B
系」という)永久磁石に関し、特に希土類含有量の少な
くかつホウ素含有量の多い領域で遷移金属T(TはW,T
a,Nb,Mo,Ti,Zr,Hf,V,Cr,Mnの1種または2種以上)を含
有するR−Fe−B系永久磁石に関するものである。
DETAILED DESCRIPTION OF THE INVENTION << Industrial application >> The present invention relates to a rare earth-iron-boron system (hereinafter referred to as "R-Fe-B
System), particularly in the region where the rare earth content is low and the boron content is high, the transition metal T (T is W, T
a, Nb, Mo, Ti, Zr, Hf, V, Cr, Mn).

《従来の技術》 永久磁石としては、従来、Coを20〜30重量%含むアル
ニコ磁石、Feの酸化物を主成分とするハードフェライト
磁石、Coを50〜65重量%含み、かつ希土類元素(R)と
してSmを含む希土類コバルト磁石が代表的なものとして
知られている。
<< Conventional Technology >> As permanent magnets, conventionally, an alnico magnet containing 20 to 30% by weight of Co, a hard ferrite magnet mainly containing an oxide of Fe, a 50 to 65% by weight of Co, and a rare earth element (R Rare-earth cobalt magnets containing Sm are known as typical examples.

但し、アルニコ磁石や希土類コバルト磁石に使用され
るCoの原料事情が不安定化し、また希土類コバルト磁石
に使用されるSmは希土類鉱物中の含有量が少なく極めて
高価である等の理由により、ハードフェライト磁石が永
久磁石の主流を占めている。
However, the raw material situation of Co used in alnico magnets and rare earth cobalt magnets is unstable, and Sm used in rare earth cobalt magnets has a low content in rare earth minerals and is extremely expensive. Magnets dominate permanent magnets.

ところが、希土類コバルト磁石は、他の磁石に比べ、
磁気特性が格段に高く、主として小型で、付加価値の高
い磁気回路に必須の磁石とされている。
However, rare earth cobalt magnets, compared to other magnets,
Magnets with remarkably high magnetic properties are mainly used as small magnets and indispensable magnets for high value-added magnetic circuits.

そこで、CoやSmを含まない希土類磁石の開発が急務と
なり、これまで各種の希土類磁石の研究がなされてい
る。
Therefore, there is an urgent need to develop rare earth magnets that do not contain Co or Sm, and various rare earth magnets have been studied so far.

このような事情から、希土類磁石の開発が進み、最
近、CoやSmを含まず、Nd,Pr,Dy,Ho,Tbの希土類元素のう
ちの少なくとも一種8〜30at%と、B2〜28at%と、残部
実質的にFeとから成る磁気異方性焼結体の希土類永久磁
石、並びにNd,Pr,Dy,Ho,Tbの希土類元素のうちの少なく
とも一種と、La,Ce,Pm,Sm,Eu,Gd,Er,Tm,Yb,Lu,Yの希土
類元素のうちの少なくとも一種の合計8〜30at%と、B2
〜28at%と、残部実質的にFeとから成る磁気異方性焼結
体の希土類永久磁石が提案された(特公昭61−34242
号)。
Under these circumstances, the development of rare earth magnets has been progressing. A rare earth permanent magnet of magnetically anisotropic sintered body consisting essentially of Fe and Nd, Pr, Dy, Ho, at least one of the rare earth elements of Tb, La, Ce, Pm, Sm, Eu , Gd, Er, Tm, Yb, Lu, Y, at least one of the rare earth elements, a total of 8 to 30 at%, and B2
A rare earth permanent magnet of a magnetically anisotropic sintered body consisting of .about.28 at% and the balance substantially of Fe has been proposed (JP-B-61-34242).
issue).

また、液体急冷法を用いて、低希土類含有量で、高磁
石特性を有する永久磁石の製造方法も提案されている
(特開昭59−64739号)。
In addition, a method for producing a permanent magnet having a low rare earth content and high magnet properties by using a liquid quenching method has been proposed (Japanese Patent Application Laid-Open No. 59-64739).

《発明が解決しようとする課題》 希土類元素は高価であるため、できるだけ少ないこと
が望まれる。
<< Problems to be Solved by the Invention >> Since rare earth elements are expensive, it is desired that the rare earth elements be as small as possible.

しかし、前述した従来の永久磁石は、いずれも、或る
程度は希土類元素含有量の低減目的を達成しているもの
の、8at%以上の含有量は必要とされており、これより
少ないと充分な磁石特性を得ることができない。
However, the above-mentioned conventional permanent magnets all achieve the purpose of reducing the rare earth element content to some extent, but require a content of 8 at% or more. The magnet properties cannot be obtained.

従って、この分原料コスト高となっている。 Therefore, the raw material cost is increased accordingly.

本発明は以上の諸点に鑑みてなされたもので、その目
的とするところは、希土類含有量が8at%以下において
高保磁力、高エネルギー積を示す永久磁石を提供するこ
とにある。
The present invention has been made in view of the above points, and an object of the present invention is to provide a permanent magnet having a high coercive force and a high energy product when a rare earth content is 8 at% or less.

[課題を解決するための手段] 本発明に係る永久磁石は、上記目的を達成するため
に、2〜6at%のR(但し、RはYを含む希土類元素の
1種または2種以上)、17〜25at%のB、1〜18at%の
T(TはW,Ta,Nb,Mo,Ti,Zr,Hf,V,Cr,Mnの1種または2
種以上)、残部Feから成ることを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the permanent magnet according to the present invention has 2 to 6 at% of R (where R is one or more kinds of rare earth elements including Y), 17 to 25 at% of B, 1 to 18 at% of T (T is one or two of W, Ta, Nb, Mo, Ti, Zr, Hf, V, Cr, Mn
Species or more), and the balance is Fe.

本発明に係る永久磁石は、上記組成領域の溶融合金を
液体急冷性により急冷し、この後、必要に応じて500〜9
00℃で熱処理して得ることができる。
The permanent magnet according to the present invention, the molten alloy in the composition region is quenched by liquid quenching, and thereafter, if necessary, 500 to 9
It can be obtained by heat treatment at 00 ° C.

この場合、液体急冷法により組織の結晶粒を微細に析
出させることができ、上記の熱処理によりこの結晶粒の
粒径を適切な大きさに調整することができる。
In this case, the crystal grains of the structure can be finely precipitated by the liquid quenching method, and the particle size of the crystal grains can be adjusted to an appropriate size by the heat treatment.

熱処理温度は500℃未満では熱処理効果がなく、900℃
を超えるとiHc,Br,(BH)maxが低くなる。
If the heat treatment temperature is less than 500 ℃, there is no heat treatment effect, 900 ℃
When i exceeds 3, iHc, Br, (BH) max decreases.

なお、上記の液体急冷法における急冷条件を適切にす
れば、急冷体の結晶粒が最適となるため、上記の熱処理
は不要となる。
In addition, if the quenching conditions in the above-mentioned liquid quenching method are appropriate, the crystal grains of the quenched body will be optimal, so that the above-mentioned heat treatment becomes unnecessary.

《作用》 本発明に係る永久磁石(R−Fe−B系磁石)において
は、低R高B領域で保磁力(iHc)が発生する。
<< Operation >> In the permanent magnet (R-Fe-B based magnet) according to the present invention, a coercive force (iHc) is generated in a low R high B region.

このようなRの作用を確保するためには、少ないとも
2at%のR含有量とする必要がある。但し、Rの含有量
が多くなり過ぎると保磁力(iHc)、残留磁束密度(B
r)、最大エネルギー積((BH)max)が低下するため、6a
t%以下とすることが重要であり、好ましいR含有量は
2.5〜5at%である。
In order to ensure such an effect of R, at least
The R content must be 2 at%. However, if the R content becomes too large, the coercive force (iHc) and the residual magnetic flux density (B
r), the maximum energy product ((BH) max ) decreases,
It is important that the content is not more than t%, and a preferable R content is
2.5 to 5 at%.

また、Bの含有量が少なくなり過ぎると、iHc,Br,(B
H)maxが低下する。一方、Bの含有量が多くなり過ぎて
も、Br(BH)maxが減少してしまうため、Bは17〜25at%
とする。
On the other hand, if the B content is too low, iHc, Br, (B
H) max decreases. On the other hand, even if the content of B becomes too large, Br (BH) max decreases, so that B is 17 to 25 at%.
And

さらに、Tは1at%未満であるとiHc,Br,(BH)maxが小
さく、18at%を超えるとBr,(BH)maxが小さくなる。好ま
しくは2〜15at%である。
Further, when T is less than 1 at%, iHc, Br, (BH) max is small, and when T exceeds 18 at%, Br, (BH) max is small. Preferably it is 2 to 15 at%.

《実施例》 下記の第1工程(前工程)及び第2工程(熱処理)を
経て、Ndを1〜7at%の範囲内で第1表に示すように種
々変化させ、B:20at%,W:5at%,Fe:残部の組成を有する
本発明に係るR−Fe−B系永久磁石を調製した。
<< Example >> Through the following first step (pre-step) and second step (heat treatment), Nd was variously changed within the range of 1 to 7 at% as shown in Table 1, and B: 20 at%, W : 5 at%, Fe: R-Fe-B permanent magnet according to the present invention having the balance of the composition was prepared.

第1工程(前工程) 必要とする合金元素をアーク溶解炉で溶解し、液体急
冷装置(片ロール法)で周速度30m/sで合金を急冷し
た。
First step (previous step) The necessary alloy elements were melted in an arc melting furnace, and the alloy was quenched at a peripheral speed of 30 m / s by a liquid quenching device (single roll method).

第2工程(熱処理工程) 第1工程で得た急冷体を700℃で1時間の熱処理を行
った。
Second step (heat treatment step) The quenched body obtained in the first step was heat-treated at 700 ° C for 1 hour.

以上のようにして得られた本発明に係るR−Fe−B系
永久磁石のiHc,Br,(BH)maxを測定し、その結果をNd含有
量との対比で第1表に示した。
IHc, Br, (BH) max of the R-Fe-B permanent magnet according to the present invention obtained as described above were measured, and the results are shown in Table 1 in comparison with the Nd content.

第1表から明らかなように、Nd含有量が2at%未満で
はiHc,Br,(BH)maxが小さく,Nd含有量が6at%を超えても
iHc,Br,(BH)maxは小さくなってしまう。
As is clear from Table 1, when the Nd content is less than 2 at%, iHc, Br, (BH) max is small, and even when the Nd content exceeds 6 at%,
iHc, Br, (BH) max becomes small.

実施例2 下記の第1工程(前工程)及び第2工程(熱処理工
程)を経て、Bを8〜32at%の範囲内で第2表に示すよ
うに種々変化させ、Nd:4at%,W:5at%,Fe:残部の組成を
有する本発明に係るR−Fe−B系永久磁石を調製した。
Example 2 Through the following first step (pre-step) and second step (heat treatment step), B was variously changed within the range of 8 to 32 at% as shown in Table 2, and Nd: 4 at%, W : 5 at%, Fe: R-Fe-B permanent magnet according to the present invention having the balance of the composition was prepared.

第1工程(前工程) 実施例1に同じ。First Step (Previous Step) Same as Example 1.

第2工程(熱処理工程) 実施例1に同じ。Second Step (Heat Treatment Step) Same as Example 1.

このようにして得た本発明に係るR−Fe−B系永久磁
石のiHc,Br,(BH)maxを測定し、その結果をB含有量との
対比で第2表に示した。
The iHc, Br, (BH) max of the R-Fe-B-based permanent magnet according to the present invention thus obtained was measured, and the results are shown in Table 2 in comparison with the B content.

第2表から明らかなように、B含有量が17at%未満で
はiHc,Br,(BH)maxが小さくなり、B含有量が25at%を超
えるとBrが小さくなる。
As is apparent from Table 2, when the B content is less than 17 at%, iHc, Br, (BH) max decreases, and when the B content exceeds 25 at%, Br decreases.

実施例3 下記の第1工程(前工程)及び第2工程(熱処理工
程)を経て、Wを0〜19at%の範囲内で第3表に示すよ
うに種々変化させ、Nd:4at%,B:20at%,Fe:残部の組成
を有する本発明に係るR−Fe−B系永久磁石を調製し
た。
Example 3 Through the following first step (pre-step) and second step (heat treatment step), W was variously changed within the range of 0 to 19 at% as shown in Table 3, and Nd: 4 at%, B : 20at%, Fe: The R-Fe-B permanent magnet according to the present invention having the balance of the composition was prepared.

第1工程(前工程) 実施例1に同じ。First Step (Previous Step) Same as Example 1.

第2工程(熱処理工程) 実施例1に同じ。Second Step (Heat Treatment Step) Same as Example 1.

このようにした得た本発明に係るR−Fe−B系永久磁
石のiHc,Br,(BH)maxを測定し、その結果をW含有量との
対比で第3表に示した。
IHc, Br, (BH) max of the R-Fe-B permanent magnet according to the present invention thus obtained was measured, and the results are shown in Table 3 in comparison with the W content.

第3表から明らかなように、W含有量が1at%未満で
はiHc,Br,(BH)maxが小さくなり、W含有量が18at%を超
えると、Br,(BH)maxが小さくなる。
As is clear from Table 3, when the W content is less than 1 at%, iHc, Br, (BH) max decreases, and when the W content exceeds 18 at%, Br, (BH) max decreases.

実施例4 下記の第1工程(前工程)及び第2工程(熱処理工
程)を経て、Ndを2〜4at%の範囲内、Ceを0〜2at%の
範囲内で、それぞれ第4表に示すように種々変化させ
(但し、Nd+Ce=4at%とした)、B:20at%,W:5at%,F
e:残部の組成を有する本発明に係るR−Fe−B系永久磁
石を調製した。
Example 4 Table 4 shows Nd in the range of 2 to 4 at% and Ce in the range of 0 to 2 at% through the following first step (pre-step) and second step (heat treatment step). B: 20 at%, W: 5 at%, F
e: An R-Fe-B permanent magnet according to the present invention having the balance of the composition was prepared.

第1工程(前工程) 実施例1に同じ。First Step (Previous Step) Same as Example 1.

第2工程(熱処理工程) 実施例1に同じ。Second Step (Heat Treatment Step) Same as Example 1.

このようにした得た本発明に係るR−Fe−B系永久磁
石のiHc,Br,(BH)maxを測定し、その結果をCe含有量との
対比で第4表に示した(なお、同表中のNd含有量は、上
記の式Nd+Ce=4at%を満足する量である)。
The iHc, Br, (BH) max of the R-Fe-B-based permanent magnet according to the present invention thus obtained was measured, and the results are shown in Table 4 in comparison with the Ce content. The Nd content in the table is an amount that satisfies the above formula Nd + Ce = 4 at%).

第4表から明らかなように、NdのCe置換量に応じて磁
気特性が変化するが、実用上充分な磁気特性が得られる
ことが判る。このことは、Nd以外のR(Yを含む)であ
っても有効であることを明示するものである。
As is evident from Table 4, the magnetic properties change according to the amount of Ce substituted by Nd, but it is found that practically sufficient magnetic properties can be obtained. This clearly indicates that R (including Y) other than Nd is effective.

実施例5 Tとして第5表に示すものを使用し、下記の第1工程
(前工程)及び第2工程(熱処処工程)を経て、Nd:4at
%,B:20at%,T:5at%,Fe:残部の組成を有する本発明に
係るR−Fe−B系永久磁石を調製した。
Example 5 N shown in Table 5 was used as T, and after passing through the following first step (previous step) and second step (heat treatment step), Nd: 4at
%, B: 20 at%, T: 5 at%, Fe: The R-Fe-B-based permanent magnet according to the present invention having a composition of the balance was prepared.

第1工程(前工程) 実施例1に同じ。First Step (Previous Step) Same as Example 1.

第2工程(熱処理工程) 実施例1に同じ。Second Step (Heat Treatment Step) Same as Example 1.

このようにして得た本発明に係るR−Fe−B系永久磁
石のiHc,Br,(BH)maxを測定し、その結果をTの種類との
対比で第5表に示した。
IHc, Br, (BH) max of the R—Fe—B permanent magnet according to the present invention thus obtained were measured, and the results are shown in Table 5 in comparison with the types of T.

第5表から明らかなように、Tの種類が変わると磁気
特性も変化するが、いずれの種類のTであっても実用上
充分な磁気特性が得られることが判る。
As is evident from Table 5, when the type of T changes, the magnetic characteristics also change, but it can be seen that practically sufficient magnetic characteristics can be obtained with any type of T.

実施例6 下記の第1工程(前工程)及び第2工程(熱処理工
程)を経て、Nd:4at%,B:20at%,W:5at%,Fe:残部の組
成を有する本発明に係るR−Fe−B系永久磁石を調製し
た。
Example 6 After the following first step (previous step) and second step (heat treatment step), Nd: 4 at%, B: 20 at%, W: 5 at%, Fe: R according to the present invention having a composition of the balance -An Fe-B permanent magnet was prepared.

第1工程(前工程) 必要とする合金をアーク炉で溶解し、液体急冷装置
(片ロール法)で周速度を10〜40m/sの範囲内で第6表
に示すように種々変化させて合金を急冷した。
First step (previous step) The required alloy is melted in an arc furnace, and the peripheral speed is varied in the range of 10 to 40 m / s by a liquid quenching device (single roll method) as shown in Table 6. The alloy was quenched.

第2工程(熱処理工程) 実施例1と同じ。Second Step (Heat Treatment Step) Same as Example 1.

このようにした得た本発明に係るR−Fe−B系永久磁
石のiHc,Br,(BH)maxを測定し、その結果を急冷時の周速
度との対比で第6表に示した。
The iHc, Br, (BH) max of the R-Fe-B-based permanent magnet according to the present invention thus obtained was measured, and the results are shown in Table 6 in comparison with the peripheral speed during quenching.

第5表から明らかなように、周速度の変化に応じて磁
気特性が変化するが、いずれの周速度でも実用上充分な
磁気特性が得られることが判る。
As is evident from Table 5, the magnetic characteristics change in accordance with the change in the peripheral speed. It can be seen that practically sufficient magnetic characteristics can be obtained with any of the peripheral speeds.

実施例7 下記の第1工程(前工程)及び第2工程(熱処理工
程)を経て、Nd:4at%,B:20at%,W:5at%,Fe:残部の組
成を有する本発明に係るR−Fe−B系永久磁石を調製し
た。
Example 7 Through the following first step (pre-step) and second step (heat treatment step), R according to the present invention having a composition of Nd: 4 at%, B: 20 at%, W: 5 at%, and Fe: balance -An Fe-B permanent magnet was prepared.

第1工程(前工程) 実施例1に同じ。First Step (Previous Step) Same as Example 1.

第2工程(熱処理工程) 第1工程で得た急冷体を400〜1000℃の範囲内で第7
表に示すように種々変化させ、1時間の熱処理を行っ
た。
Second step (heat treatment step) The quenched body obtained in the first step is subjected to a seventh step within a range of 400 to 1000 ° C.
Various changes were made as shown in the table, and heat treatment was performed for one hour.

このようにした得た本発明に係るR−Fe−B系永久磁
石のiHc,Br,(BH)maxを測定し、その結果を熱処理温度と
の対比で第7表に示した。
The iHc, Br, (BH) max of the R-Fe-B-based permanent magnet according to the present invention thus obtained was measured, and the results are shown in Table 7 in comparison with the heat treatment temperature.

なお、同表には、熱処理工程前の磁気特性をもあわせ
て示した。
The table also shows the magnetic properties before the heat treatment step.

第7表から明らかなように、熱処理温度が500℃未満
では熱処理の効果がなく、熱処理温度が900℃を超える
とiHc,Br,(BH)maxが小さくなる。
As is clear from Table 7, when the heat treatment temperature is lower than 500 ° C., there is no effect of the heat treatment, and when the heat treatment temperature exceeds 900 ° C., iHc, Br, (BH) max decreases.

《発明の効果》 以上詳述したように、本発明に係るR−Fe−B系永久
磁石によれば、R含有量を前述の先提案のものに比して
大幅に少なくても、RとBとTの相乗効果により、高iH
cを確保することができる。
<< Effects of the Invention >> As described in detail above, according to the R-Fe-B-based permanent magnet according to the present invention, even if the R content is much smaller than that of the above-mentioned previously proposed, R and High iH due to the synergistic effect of B and T
c can be secured.

この結果、Rが2〜6at%という少ない領域でも高iHc
の永久磁石を得ることができる。
As a result, high iHc is obtained even in a region where R is as small as 2 to 6 at%.
Permanent magnet can be obtained.

そして、Rの含有量が前述の先提案のものより少ない
ため、原料コストの大幅な低減を図ることができる。
And, since the content of R is smaller than that of the above-mentioned prior proposal, the raw material cost can be significantly reduced.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 幸村 治洋 東京都港区新橋5丁目36番11号 富士電 気化学株式会社内 (56)参考文献 特開 昭64−703(JP,A) 特開 昭63−190138(JP,A) 特開 昭63−62842(JP,A) 特開 昭63−111602(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Haruhiro Yukimura 5-36-11 Shimbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd. (56) References JP-A-64-703 (JP, A) JP-A-63-190138 (JP, A) JP-A-63-62842 (JP, A) JP-A-63-111602 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】2〜6at%のR(但し、RはYを含む希土
類元素の1種または2種以上)、17〜25at%のB、1〜
18at%のT(TはW,Ta,Nb,Mo,Ti,Zr,Hf,V,Cr,Mnの1種
または2種以上)、残部Feから成ることを特徴とする永
久磁石。
1 to 6 at% of R (where R is one or more kinds of rare earth elements including Y), 17 to 25 at% of B, 1 to
A permanent magnet comprising 18 at% of T (T is one or more of W, Ta, Nb, Mo, Ti, Zr, Hf, V, Cr, and Mn) and the balance Fe.
JP2215922A 1990-08-17 1990-08-17 permanent magnet Expired - Lifetime JP2598558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2215922A JP2598558B2 (en) 1990-08-17 1990-08-17 permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2215922A JP2598558B2 (en) 1990-08-17 1990-08-17 permanent magnet

Publications (2)

Publication Number Publication Date
JPH0498802A JPH0498802A (en) 1992-03-31
JP2598558B2 true JP2598558B2 (en) 1997-04-09

Family

ID=16680486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2215922A Expired - Lifetime JP2598558B2 (en) 1990-08-17 1990-08-17 permanent magnet

Country Status (1)

Country Link
JP (1) JP2598558B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69423305T2 (en) * 1993-12-10 2000-11-30 Sumitomo Spec Metals Permanent magnet alloy powder based on iron for resin-bonded magnets and magnets made from them
US6004407A (en) * 1995-09-22 1999-12-21 Alps Electric Co., Ltd. Hard magnetic materials and method of producing the same
EP1414050B1 (en) 2001-07-31 2006-10-25 Neomax Co., Ltd. Method for producing nanocomposite magnet using atomizing method
US6979409B2 (en) * 2003-02-06 2005-12-27 Magnequench, Inc. Highly quenchable Fe-based rare earth materials for ferrite replacement

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2727505B2 (en) * 1986-04-15 1998-03-11 ティーディーケイ株式会社 Permanent magnet and manufacturing method thereof
JPS6362842A (en) * 1986-09-04 1988-03-19 Tdk Corp Permanent magnet material containing rare earth element
JPS63190138A (en) * 1986-09-29 1988-08-05 Tdk Corp Rare-earth permanent magnet material
JPS63111602A (en) * 1986-10-30 1988-05-16 Tdk Corp High performance rare earth cast magnet

Also Published As

Publication number Publication date
JPH0498802A (en) 1992-03-31

Similar Documents

Publication Publication Date Title
EP0242187B1 (en) Permanent magnet and method of producing same
EP0134304B1 (en) Permanent magnets
JP2021533557A (en) Ce-containing sintered rare earth permanent magnet with high durability and high coercive force, and its preparation method
JP4371188B2 (en) High specific electric resistance rare earth magnet and method for manufacturing the same
US4891078A (en) Rare earth-containing magnets
JP3121824B2 (en) Sintered permanent magnet
JP2598558B2 (en) permanent magnet
JPH11251125A (en) Rare-earth-iron-boron sintered magnet and its manufacture
JPH0561345B2 (en)
JPH06231926A (en) Rare earth permanent magnet
JPS60144908A (en) Permanent magnet material
JPH0146575B2 (en)
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JPH0536495B2 (en)
JP3086334B2 (en) Anisotropic rare earth alloy powder for permanent magnet
JP2951006B2 (en) Permanent magnet material, manufacturing method thereof, and bonded magnet
JPH04143221A (en) Production of permanent magnet
JPH0562815A (en) Permanent magnet and manufacturing method thereof
JPH03148803A (en) Permanent magnet
KR930008824B1 (en) Rhenium meterials of permanent magnet and making method thereof
JPS62136553A (en) Permanent magnet material
JP2648422B2 (en) permanent magnet
JPS62158854A (en) Permanaent magnet material
JPH02138707A (en) Rare-earth magnet powder annealing method
JPS62158852A (en) Permanent magnet material