JPH0417644A - Manufacture of magnetic alloy and magnet - Google Patents

Manufacture of magnetic alloy and magnet

Info

Publication number
JPH0417644A
JPH0417644A JP2118846A JP11884690A JPH0417644A JP H0417644 A JPH0417644 A JP H0417644A JP 2118846 A JP2118846 A JP 2118846A JP 11884690 A JP11884690 A JP 11884690A JP H0417644 A JPH0417644 A JP H0417644A
Authority
JP
Japan
Prior art keywords
magnet
rare earth
transition metal
magnetic alloy
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2118846A
Other languages
Japanese (ja)
Other versions
JP2648634B2 (en
Inventor
Shian Chung Ho
ホー シアン チュン
Chon Shun Chin
チン チョン シュン
Ken Too Rin
リン ケン トー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAIUNTINSHU KOFUN YUGENKOSHI
Original Assignee
HAIUNTINSHU KOFUN YUGENKOSHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAIUNTINSHU KOFUN YUGENKOSHI filed Critical HAIUNTINSHU KOFUN YUGENKOSHI
Priority to JP2118846A priority Critical patent/JP2648634B2/en
Publication of JPH0417644A publication Critical patent/JPH0417644A/en
Application granted granted Critical
Publication of JP2648634B2 publication Critical patent/JP2648634B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To provide a magnet high in the maximum energy product and enough in corrosion resistance by forming the magnet of prescribed suitable amounts of transition metal elements essentially consisting of Fe, rare earth elements essentially consisting of Nd, N and B.
CONSTITUTION: A magnet is formed of prescribed suitable amounts of transition metal elements essentially consisting of Fe, rare earth elements essentially consisting of Nd, N and B. In this way, the maximum energy product thereof is improved and its corrosion resistance is increased. Then, compacting and sintering treatment in the producing process are executed respectively in a nitrogen atmosphere, by which the environmental preservability of production activity can be improved. Moreover, since rare gas atmospheres of Ar, He or the like are not used at the sintering treatment, the production cost can be reduced.
COPYRIGHT: (C)1992,JPO

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁石合金及びその製法に関し、特に最大エネル
ギー積と防食性が高められた磁石合金と、窒素雰囲気の
下で加圧成型及び焼結されてなる磁石の製造方法に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic alloy and a method for manufacturing the same, and in particular to a magnetic alloy with improved maximum energy product and corrosion resistance, and a method for press forming and sintering in a nitrogen atmosphere. The present invention relates to a method of manufacturing a magnet.

〔従来の技術〕[Conventional technology]

1970年代から稀土類元素の磁石がモータ、音響器類
及びその他の儀器等に広(用いられているが、その最た
る原因はその最大エネルギー積が伝統の磁石例えばAl
−Ni−Co組成又はBa−酸化鉄組成等の凡そ3〜1
0倍にも達するからに他ならない。それから業界の稀土
類元素に対する関心が強まり、細心研究の結果、前後し
てSm−Co組成とNd −Fe −B組成の磁石合金
をそれぞれ開発するのであるが、その中で、Sm−Co
組成は防食性に優れるが最大エネルギー積が低く約16
30MGOeのみで、Nd −Fe −B組成は最大エ
ネルギー積が約25MGOeにも達するが防食性に劣り
、何れも一長一短の状態を示すのであり、これが又従来
使用されている稀土類元素で構成する磁石合金の最たる
欠点となっている。
Since the 1970s, rare earth element magnets have been widely used in motors, acoustic instruments, and other ceremonial instruments.
-Ni-Co composition or Ba-iron oxide composition, etc. approximately 3 to 1
This is only because it reaches 0 times. Then, interest in rare earth elements in the industry grew, and as a result of careful research, magnetic alloys with Sm-Co composition and Nd-Fe-B composition were developed, respectively. Among these, Sm-Co
The composition has excellent corrosion resistance, but the maximum energy product is low, about 16
With only 30MGOe, the Nd-Fe-B composition has a maximum energy product of about 25MGOe, but it has poor corrosion resistance, and each has its own advantages and disadvantages. This is the alloy's biggest drawback.

しかも、稀土類元素は比較的活性に富み、高温に於ける
際、容易に空気中の酸素又は窒素と反応を起し、その磁
性を破壊するので、従来の磁石合金は殆どと言っていい
程、不活性ガスの中の例えばアルゴン、又はヘリウム等
の稀有ガス雰囲気の中で焼結が行なわれる。しかし、自
然界に於ける前記不活性ガスの存在は至って少なく、価
格が頗る高いので上記二種類の稀土類元素で製造される
磁石合金のコストは高く付き、産業上、大量に製造する
場合に払われる費用は少なくない。
Moreover, rare earth elements are relatively active and easily react with oxygen or nitrogen in the air at high temperatures, destroying their magnetism, so almost all conventional magnetic alloys are The sintering is carried out in a rare gas atmosphere such as argon or helium in an inert gas. However, the existence of the above-mentioned inert gas in the natural world is very small, and the price is extremely high. Therefore, the cost of magnetic alloys manufactured with the above two types of rare earth elements is high, and it is difficult to pay for them when manufacturing them in large quantities industrially. The costs involved are considerable.

故に、米国特許第3970484号で、Sm−Co組成
の合金を水素ガス雰囲気で焼結し、上記諸欠点を避けて
永久磁石を製造していると披露しているが、空気中の水
素ガス含有量が一定の濃度に達すれば、爆発を生じ易い
恐れが高まり、しかも、焼結は相当の高温下で行なわれ
るもので、製造上否応なしに危険性が伴う環境で進める
ものとなり、保安の面でも芳しくない。
Therefore, although U.S. Patent No. 3,970,484 discloses that a permanent magnet is manufactured by sintering an alloy with a Sm-Co composition in a hydrogen gas atmosphere to avoid the above-mentioned drawbacks, If the amount reaches a certain concentration, there is a high risk of explosion.Moreover, sintering is carried out at considerably high temperatures, and the process is carried out in an environment that is unavoidably dangerous from a manufacturing standpoint, making it difficult to maintain safety. But it's not good.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この発明は、上記従来の磁石合金に関する諸欠点を解決
するもので、最大エネルギー積が大きい且つ防食性に富
む、製造コストが低廉な磁石合金と、安全性が高い磁石
の製法を提供することを目的とする。
This invention solves the various drawbacks of the conventional magnet alloys described above, and aims to provide a magnet alloy that has a large maximum energy product, is highly anticorrosive, and is inexpensive to manufacture, and a method for manufacturing highly safe magnets. purpose.

〔課題を解決するための手段〕[Means to solve the problem]

それ故、この発明は、その組成成分が鉄を主とする遷移
金属元素と、ネオジムを主とする稀土類元素と、窒素及
びホウ素のそれぞれの所定適量で磁石合金を形成し、そ
して磁石製造過程に於いて加圧成型及び焼結処理を、そ
れぞれ窒素雰囲気の中で進行させることにより目的を達
成するのであり、 上記組成成分の鉄の中に適量のコバルト、又は適量のア
ルミニウム若しくは両者とも適量に添加し、且つネオジ
ムの中に適量のジスプロシウム、又は適量のセリウム或
いは両者とも適量に添加して構成させれば、−層好まし
くなる。
Therefore, in the present invention, a magnet alloy is formed with a transition metal element mainly composed of iron, a rare earth element mainly composed of neodymium, and predetermined appropriate amounts of nitrogen and boron, and a magnet manufacturing process is performed. The purpose is achieved by performing pressure molding and sintering in a nitrogen atmosphere. If a suitable amount of dysprosium, a suitable amount of cerium, or both of them are added to neodymium, the -layer becomes preferable.

〔作 用〕[For production]

上記の如く、この発明は、その組成成分を鉄を主とする
遷移金属元素と、ネオジムを主とする稀土類元素と、窒
素及びホウ素のそれぞれ所定適量で磁石合金を形成した
ので、その最大エネルギー積が向上され、且つ、防食性
が増強されるのであり、そして、その製造過程に於ける
加圧成型と焼結処理を、それぞれ窒素雰囲気の中で行な
うことにより、生産活動の環境保安性を向上するのであ
る。
As described above, this invention forms a magnetic alloy with a transition metal element mainly composed of iron, a rare earth element mainly composed of neodymium, and predetermined appropriate amounts of nitrogen and boron, so that the maximum energy In addition, by performing pressure molding and sintering in a nitrogen atmosphere during the manufacturing process, the environmental safety of production activities is improved. It will improve.

更に、上記鉄分の中に適量のコバルト、又は適量のアル
ミニウム、若しくは両者共に適量添加し、上記ネオジム
の中に適量のジスプロシウム、又は適量のセリウム或い
は両者共に適量添加すれば、キニーリー温度を高められ
た、本質の保磁力が向上された、そして生産コストが低
減され得る磁石合金を製造することが出来る。
Furthermore, if an appropriate amount of cobalt, an appropriate amount of aluminum, or both are added to the above iron content, and an appropriate amount of dysprosium, an appropriate amount of cerium, or both are added to the neodymium, the Keneally temperature can be increased. , it is possible to produce a magnetic alloy whose intrinsic coercive force is improved and whose production costs can be reduced.

この発明の上記またはその他の目的、特徴および利点は
、以下の実施例の詳細な説明から一層あきらかとなろう
The above and other objects, features and advantages of the present invention will become more apparent from the detailed description of the following embodiments.

〔実施例〕〔Example〕

この発明の磁石合金の組成成分は、遷移金属元素と稀土
類元素と窒素及びホウ素よりなり、次の簡単な式で表示
することが出来る。即ちTm−Re−N−B であり、“Tm″°は遷移金属元素を表わし、“Re”
は稀土類元素を表わし、“N″は窒素を表示し、“B”
はホウ素を表示するもので、それぞれの成分含有率は;
Tm:60〜68%重量比Re :30〜38%重量比 N : 0.1〜1.5%重量比 B : 0.8〜1.5%重量比である。
The compositional components of the magnetic alloy of this invention consist of transition metal elements, rare earth elements, nitrogen, and boron, and can be expressed by the following simple formula. That is, Tm-Re-N-B, "Tm"° represents a transition metal element, and "Re"
represents a rare earth element, "N" represents nitrogen, and "B"
indicates boron, and the content of each component is;
Tm: 60-68% Weight ratio Re: 30-38% Weight ratio N: 0.1-1.5% Weight ratio B: 0.8-1.5% Weight ratio.

その内、Tmは鉄を主として使用するが、特殊な性能が
求められると、鉄の中にその他遷移金属元素を添加する
のであり、例えば、キューリー温度が高い磁石が必要と
される場合、鉄の中にコバルトを添加するのである。但
し、コバルトと鉄の総量はあくまでも全体の60〜68
%重量比に維持すべきもので、コバルトの添加量は最高
全体の15%重量比であり、若しコバルトの添加量が1
5%重量比だとすれば、鉄の含有量は全体の45〜53
%重量比に維持すべき事となる。そして、若し本質の保
磁力が高い磁石が求められるとすれば、鉄の中にアルミ
ニウムを添加すれば良い。
Among them, Tm mainly uses iron, but when special performance is required, other transition metal elements are added to iron. For example, when a magnet with a high Curie temperature is required, iron Cobalt is added inside. However, the total amount of cobalt and iron is only 60 to 68 of the total.
% by weight, the amount of cobalt added is at most 15% by weight of the total, or the amount of cobalt added is 15% by weight of the total.
If the weight ratio is 5%, the iron content is 45-53% of the total.
% weight ratio should be maintained. If a magnet with essentially high coercive force is required, aluminum may be added to iron.

Reは少なくとも必ず一種の稀土類元素を含み、主とし
てネオジムが使用されるが、必要な性能が要求されると
、ネオジムの中に他の稀土類元素を添加する、例えば、
本質の保磁力が高い磁石が必要だとすれば、ネオジムの
中にジスプロシウムを添加するのであり、添加後のジス
プロシウムとネオジムの総量は浩然全体重量比の30〜
38%に維持すべきもので、ジスプロシウムの添加量は
最高全体の重量比の5%であり、若し、ジスプロシウム
の添加量が全体重量比の5%だとすれば、ネオジムの含
有量は全体の25〜33%となる。そして、生産コスト
を低減したいとすれば、ネオジムの中にセリウムを添加
すればよいが、その最大添加量は全体重量比の10%で
ある。
Re always contains at least one kind of rare earth element, and neodymium is mainly used, but if the necessary performance is required, other rare earth elements may be added to neodymium, for example,
If a magnet with high intrinsic coercive force is required, dysprosium is added to neodymium, and the total amount of dysprosium and neodymium after addition is approximately 30 to 30% of the total weight ratio.
If the addition amount of dysprosium is 5% of the total weight ratio, then the neodymium content should be maintained at 38% of the total weight ratio. It becomes 25-33%. If it is desired to reduce production costs, cerium may be added to neodymium, but the maximum amount added is 10% of the total weight ratio.

Nは磁石合金の防食性を向上するもので、Nの含有量が
高ければその磁石の防食性が強狛られるが、Nの含有量
は全体重量比の1.5%を越してはならない。因に、N
の含有量が全体重量比の1.5%を越すと、明らかに磁
石の磁性が破壊されるのであり、通常、Nの含有量を全
体重量比の1.2〜1.3%に維持すれば、最も良い防
食性が得られ、且つ磁性が破壊されない。
N improves the corrosion resistance of the magnet alloy, and the higher the N content, the stronger the corrosion resistance of the magnet, but the N content must not exceed 1.5% of the total weight ratio. Incidentally, N
If the content of N exceeds 1.5% of the total weight ratio, the magnetism of the magnet will obviously be destroyed.Usually, the N content should be maintained at 1.2 to 1.3% of the total weight ratio. If so, the best corrosion protection can be obtained and the magnetism will not be destroyed.

そして、上記組成成分の磁石合金は次に述べる製造過程
で製作されるもので、先ず、この発明の合金組成成分を
真空誘導炉の中に入れ、真空中で、又は適量のアルゴン
或いは窒素を導入して1400℃迄加熱溶融し、完全溶
融の後、その合金液を水冷機構を備えている回転銅盤の
上に鋳込み、合金スラブを造り、更に、破砕して10m
m以下の合金粗粉にし、ボールミルに移すか、或いは6
絶対気圧の高圧のもとてジェット粉砕機で、0.2〜0
.6 mmの合金微粉に粉砕した後、窒素雰囲気保護の
もとで、磁場を具備している金属モールドの中に充填し
、加圧成型して粗成品を作りあげるのであり、この際の
加圧方向は磁場の方向と平行するようにさせるべきで、
磁場を8000〜15000エルステツド(Oe)の間
に、加圧圧力を1.5〜3 ton / cutの間に
制御するものである。そして、最後にその粗成品を真空
炉の中に入れ、炉内の圧力を10万分の1トル(Tor
r)以下迄に低めて、真空炉内の磁性に害ある酸素を除
去し、且つ、窒素を売人してその分圧を100分の1ト
ルの圧力に継続維持させて、真空炉内の温度を1000
〜1100℃に加熱して、1ないし数時間の焼結を行な
い、そして、必ずしも必要ではないが、この焼結の過程
で一度窒素を売人して窒素の分圧を100トル迄にあげ
て、窒素原子が粗成品の中に侵入して、稀土類元素及び
遷移金属元素と結合させるようにし、焼結処理を完成し
た後、更に、500〜900℃の温度範囲内で、等しく
ない温度の熱処理を1回以上行ない、磁石の保磁力や本
質の保磁力を増加させて、磁石合金を製造するのである
The magnetic alloy having the above-mentioned composition is manufactured by the following manufacturing process. First, the alloy composition of the present invention is placed in a vacuum induction furnace, and either in a vacuum or by introducing an appropriate amount of argon or nitrogen. After completely melting, the alloy liquid is cast onto a rotating copper plate equipped with a water cooling mechanism to create an alloy slab, which is then crushed to a height of 10 m.
Make the alloy coarse powder of less than m and transfer it to a ball mill, or
With a jet crusher under high absolute pressure, 0.2 to 0
.. After pulverizing into 6 mm fine alloy powder, it is filled into a metal mold equipped with a magnetic field under nitrogen atmosphere protection and pressurized to create a crude product. should be parallel to the direction of the magnetic field,
The magnetic field is controlled between 8,000 and 15,000 oersted (Oe), and the pressurizing pressure is controlled between 1.5 and 3 tons/cut. Finally, the crude product is placed in a vacuum furnace, and the pressure inside the furnace is reduced to 1/100,000 Torr (Tor).
r) Remove the oxygen that is harmful to the magnetism in the vacuum furnace by lowering it to the following level, and keep the partial pressure of nitrogen at 1/100 Torr continuously by selling nitrogen to the vacuum furnace. temperature 1000
Heat to ~1100°C, sinter for 1 to several hours, and, although not necessarily, increase the partial pressure of nitrogen to 100 torr by selling nitrogen once during the sintering process. , so that the nitrogen atoms penetrate into the crude product and combine with rare earth elements and transition metal elements, and after completing the sintering process, it is further heated at unequal temperatures within the temperature range of 500-900℃. The magnet alloy is manufactured by performing heat treatment one or more times to increase the coercive force or essential coercive force of the magnet.

第1表に本発明に従った種々の組成で造られた10種の
磁石合金を示す。
Table 1 shows ten magnetic alloys made with various compositions in accordance with the present invention.

第  1  表 第1表中の“−”は残部を意味し、数字はその成分が全
体重量の中で占める重量%である。例えば、サンプル1
のネオジムの重量比は31.4%、窒素の重量比は0.
43%、ホウ素の重量比は1.0%であり、従って、鉄
の占する重量比は100−31.40、43−1.0 
=67、17 %となる。
Table 1 In Table 1, "-" means the remainder, and the numbers indicate the percentage by weight of the component in the total weight. For example, sample 1
The weight ratio of neodymium is 31.4%, and the weight ratio of nitrogen is 0.
43%, the weight ratio of boron is 1.0%, therefore the weight ratio occupied by iron is 100-31.40, 43-1.0
=67.17%.

第1表の10個のサンプルの各種性能実験結果を第2表
に示す。
Table 2 shows the results of various performance experiments for the 10 samples shown in Table 1.

第2表 第2表の最大エネルギー積の欄から分かるように、この
発明の磁石合金の最大エネルギー積は凡そ25から30
MGOeの間にあり、前記のSm−Co組成磁石合金の
最大エネルギー積(16〜30MGOe)より優れ、N
d −Fe −B組成磁石合金の最大エネルギー積(2
50GOe以上)に相当する。その他、第1表と第2表
から窒素の含有量が1.5%重量比を越す(サンプル6
の如く)と磁性が破壊される事が分かり、その最大エネ
ルギー積及び本質保磁力等の性能が大幅に低下して、第
2表に記録され得ないものとなる。それ故、窒素の含有
量は1.5%重量比以下に限定してこそ、磁性に優れた
磁石を製造し得るのである。
As can be seen from the maximum energy product column in Table 2, the maximum energy product of the magnetic alloy of the present invention is approximately 25 to 30.
It is between MGOe and is superior to the maximum energy product (16 to 30MGOe) of the Sm-Co composition magnet alloy mentioned above, and N
Maximum energy product (2
50 GOe or more). In addition, from Tables 1 and 2, the nitrogen content exceeds 1.5% by weight (sample 6
), the magnetism is destroyed, and the performance such as maximum energy product and essential coercive force is significantly reduced and cannot be recorded in Table 2. Therefore, a magnet with excellent magnetic properties can only be produced by limiting the nitrogen content to 1.5% by weight or less.

次に、その防食性についてテストを行なったが、5%重
量比のHCI溶液の中に磁石合金を浸漬し、室温28℃
に30分間静置した後、更に、その重量損失を測定して
、3〜6度にわたって平均値を求めた結果を第3表に示
す。
Next, we conducted a test for its anticorrosion properties by immersing the magnetic alloy in a 5% by weight HCI solution at a room temperature of 28°C.
After being allowed to stand still for 30 minutes, the weight loss was further measured and the average value was calculated over 3 to 6 degrees.The results are shown in Table 3.

第3表 第3表から分かるように、Sm−Co組成磁石合金を3
0分間浸漬した後の重量損失は、Nd−Fe−B組成磁
石合金より少ない、即ち防食性が良いことを示すもので
、この発明のTm−Re−N−B組成磁石合金の重量損
失はSm−Co組成磁石合金とNd −Fe −B組成
磁石合金の間に介在するものであり、Nd −Fe −
B組成よりは良いがSm−Co組成に比べるとやや遜色
する。但し、この発明の磁石合金の最大エネルギー積は
Sm −Co組成磁石合金の遠く及ばない所であり、従
って、この発明の磁石合金は最大エネルギー積に於いて
も、防食性に於いてもかなり優れた性能を兼ね備えてい
る事が分かる。
Table 3 As can be seen from Table 3, the Sm-Co composition magnet alloy was
The weight loss after immersion for 0 minutes is smaller than that of the Nd-Fe-B composition magnet alloy, which indicates that the corrosion resistance is better. -Co composition magnet alloy and Nd -Fe -B composition magnet alloy, it is interposed between Nd -Fe -
Although it is better than the B composition, it is slightly inferior to the Sm-Co composition. However, the maximum energy product of the magnet alloy of this invention is far from that of the Sm-Co composition magnet alloy, and therefore, the magnet alloy of this invention is considerably superior in both maximum energy product and corrosion resistance. It can be seen that it has both excellent performance.

〔発明の効果〕〔Effect of the invention〕

上記のように、この発明の磁石合金は、その組成成分を
鉄を主とする遷移金属元素と、ネオジムを主とする稀土
類元素と、窒素及びホウ素のそれぞれの所定適量より形
成されるので、最大エネルギー積と防食性共に優れた性
能を兼ね備えるものとなる。そして、磁石の製造過程に
於いて、加圧成型及び焼結の段階を、窒素雰囲気の中で
進行させる事により、生産コストを低減し、且つ、安全
性の高い環境で生産活動を行なうことが出来、産業上の
大量生産に適するものとなる。
As mentioned above, the magnetic alloy of the present invention is composed of a transition metal element mainly composed of iron, a rare earth element mainly composed of neodymium, and predetermined appropriate amounts of each of nitrogen and boron. It has excellent performance in both maximum energy product and corrosion resistance. In the magnet manufacturing process, the pressure molding and sintering steps are performed in a nitrogen atmosphere, which reduces production costs and allows production activities to be carried out in a highly safe environment. This makes it suitable for industrial mass production.

更に、上記鉄の中に適量のコバルト、又は適量のアルミ
ニウム若しくは両方共に適量添加し、且つ、上記ネオジ
ムの中に適量のジスプロシウム、又は適量のセリウム或
いは両方共に適量添加することから、キニーリー温度が
高められた、本質の保磁力を向上された、生産コストが
比較的低廉な磁石合金を造り得る事となり、上記のよう
にして製造した磁石合金を、更に、所定の温度範囲内で
一回若しくは数回熱処理を施すことを、その製法の末尾
に付加すれば、 のとなる。
Furthermore, since an appropriate amount of cobalt, an appropriate amount of aluminum, or both are added to the above iron, and an appropriate amount of dysprosium, an appropriate amount of cerium, or both are added to the neodymium, the Keneally temperature is increased. It is now possible to produce a magnetic alloy with relatively low production costs, which has an improved intrinsic coercive force. If we add reheating treatment to the end of the manufacturing method, we get:

磁石の磁性が増強されるもAlthough the magnetism of the magnet is enhanced

Claims (4)

【特許請求の範囲】[Claims] 1.その大部分を鉄が占める遷移金属元素と、その大部
分をネオジムが占める稀土類元素と、窒素及びホウ素と
から成る磁石合金。
1. A magnetic alloy consisting of a transition metal element, the majority of which is iron, a rare earth element, which is mostly neodymium, and nitrogen and boron.
2.上記鉄の他の遷移金属元素を適量のコバルトとし、
および/または適量のアルミニウムを適量添加して成る
請求項1記載の磁石合金。
2. The other transition metal element of iron is an appropriate amount of cobalt,
The magnetic alloy according to claim 1, further comprising a suitable amount of aluminum added thereto.
3.上記ネオジムの他の稀土類元素を、適量のジスプロ
シウムと適量のセリウムまたはこれらのいずれかとした
請求項1または2記載の磁石合金。
3. 3. The magnetic alloy according to claim 1, wherein the rare earth element other than neodymium is an appropriate amount of dysprosium, an appropriate amount of cerium, or any of these.
4.少なくとも一種の遷移金属元素と、少なくとも一種
の稀土類元素及びホウ素を所定の重量比で溶融・冷却し
てなる合金スラブを粉砕し、得られた微粉を金属モール
ドの中に装入加圧成型した後、更に、焼結機に移して焼
結処理を施す磁石製造方法において、 上記粉砕微粉を金属モールドの中に装入加圧成型する過
程、及び焼結処理過程を、それぞれ所定圧の窒素雰囲気
のもとで行なう磁石の製造方法。
4. An alloy slab made by melting and cooling at least one transition metal element, at least one rare earth element, and boron in a predetermined weight ratio is pulverized, and the resulting fine powder is charged into a metal mold and press-molded. After that, in the magnet manufacturing method in which the pulverized fine powder is transferred to a sintering machine and subjected to sintering treatment, the process of charging the pulverized fine powder into a metal mold and pressure molding, and the sintering process are performed in a nitrogen atmosphere at a predetermined pressure. A method of manufacturing magnets under
JP2118846A 1990-05-10 1990-05-10 Manufacturing method of magnet Expired - Lifetime JP2648634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2118846A JP2648634B2 (en) 1990-05-10 1990-05-10 Manufacturing method of magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2118846A JP2648634B2 (en) 1990-05-10 1990-05-10 Manufacturing method of magnet

Publications (2)

Publication Number Publication Date
JPH0417644A true JPH0417644A (en) 1992-01-22
JP2648634B2 JP2648634B2 (en) 1997-09-03

Family

ID=14746600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2118846A Expired - Lifetime JP2648634B2 (en) 1990-05-10 1990-05-10 Manufacturing method of magnet

Country Status (1)

Country Link
JP (1) JP2648634B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04142703A (en) * 1990-09-25 1992-05-15 Natl Sci Council Permanent magnet alloy of rare earth element-transition metal-nitrogen-borone and manufacture thereof
US8741011B2 (en) 2009-04-03 2014-06-03 Sandvik Intellectual Property Ab Coated cutting tool for metal cutting applications generating high temperatures

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156266A (en) * 1984-08-27 1986-03-20 Daido Steel Co Ltd Permanent magnet alloy
JPS62158854A (en) * 1985-12-28 1987-07-14 S C M:Kk Permanaent magnet material
JPS62177147A (en) * 1986-01-29 1987-08-04 Daido Steel Co Ltd Manufacture of permanent magnet material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156266A (en) * 1984-08-27 1986-03-20 Daido Steel Co Ltd Permanent magnet alloy
JPS62158854A (en) * 1985-12-28 1987-07-14 S C M:Kk Permanaent magnet material
JPS62177147A (en) * 1986-01-29 1987-08-04 Daido Steel Co Ltd Manufacture of permanent magnet material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04142703A (en) * 1990-09-25 1992-05-15 Natl Sci Council Permanent magnet alloy of rare earth element-transition metal-nitrogen-borone and manufacture thereof
US8741011B2 (en) 2009-04-03 2014-06-03 Sandvik Intellectual Property Ab Coated cutting tool for metal cutting applications generating high temperatures

Also Published As

Publication number Publication date
JP2648634B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
EP2650886B1 (en) Preparation method for high-corrosion resistant sintered ndfeb magnet
JP4609339B2 (en) Powder for powder magnetic core and method for producing powder magnetic core
CN106128676B (en) A kind of sintering method of neodymium iron boron magnetic body
JPS60162750A (en) Rare earth magnet and its production
JP4700578B2 (en) Method for producing high resistance rare earth permanent magnet
JPH0366105A (en) Rare earth anisotropic powder and magnet, and manufacture thereof
US2864734A (en) Magnetic flake core and method of
JPH0424401B2 (en)
CN112582121A (en) Preparation method of ultrahigh-performance sintered samarium-cobalt magnet
CN111091945B (en) R-T-B series permanent magnetic material, raw material composition, preparation method and application
CN103600070A (en) Production method for rare earth alloy magnetic powder forming body and rare-earth magnet
JPH0417644A (en) Manufacture of magnetic alloy and magnet
JPH05247601A (en) Alloy for corrosion resistant permanent magnet and method for producing permanent magnet therefrom
JPS61295342A (en) Manufacture of permanent magnet alloy
JPS6320411A (en) Production of material for permanent magnet
JPH0146574B2 (en)
JPS6077961A (en) Permanent magnet material and its manufacture
JPS6037602B2 (en) Permanent magnet material and its manufacturing method
JPH0568841B2 (en)
JPS61208809A (en) Manufacture of sintered magnet
JPS6263645A (en) Production of permanent magnet material
CN113517125A (en) High-stability sintered neodymium-iron-boron magnet and preparation method thereof
JPS62119903A (en) Manufacture of rare earth permanent magnet
JPS5823462B2 (en) Fe-Cr-Co spinodal decomposition type sintered magnetic material with high density
JPS59154004A (en) Manufacture of permanent magnet