JPS6156266A - Permanent magnet alloy - Google Patents

Permanent magnet alloy

Info

Publication number
JPS6156266A
JPS6156266A JP59176785A JP17678584A JPS6156266A JP S6156266 A JPS6156266 A JP S6156266A JP 59176785 A JP59176785 A JP 59176785A JP 17678584 A JP17678584 A JP 17678584A JP S6156266 A JPS6156266 A JP S6156266A
Authority
JP
Japan
Prior art keywords
alloy
permanent magnet
magnet
composition
curie point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59176785A
Other languages
Japanese (ja)
Inventor
Takeshi Anpo
安保 武志
Takashi Furuya
古谷 嵩司
Norio Yoshikawa
紀夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP59176785A priority Critical patent/JPS6156266A/en
Publication of JPS6156266A publication Critical patent/JPS6156266A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a permanent magnet alloy having superior magnet characteristics and a high Curie point by adding a specified metal combined optionally with a specified nonmetallic material to an Nd-Fe magnet material. CONSTITUTION:An alloy having a composition represented by formula 1 is refined. One or more among Co, Ni and Mn may be substituted for part of Fe in the composition by 0.01-0.15. The alloy is crushed, pulverized to about 3.1mum average particle size, and press-molded in a magnetic field. The molded body is sintered at 1,080 deg.C in an Ar atmosphere for 1hr, and the sintered body is quenched to room temp., heated to 650 deg.C in an Ar atmosphere, held at the temp. for 1hr, and quenched to room temp. to manufacture a permanent magnet.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は永久磁石合金に係り、より詳細には、Nd−F
e系合金の組成を特定のものにすることによって優れた
磁石特性を高キュリ一点の具備の下に実現し得る永久磁
石合金に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a permanent magnet alloy, and more specifically, to a permanent magnet alloy.
The present invention relates to a permanent magnet alloy that can achieve excellent magnetic properties with a high degree of curriness by making the composition of the e-based alloy specific.

(従来技術) 従来より、アルニコ、R−Co系磁石(R:希土類金属
)等のコバルトを多量に含む永久磁石材料に代替し得る
安価な磁石材料の研究開発が盛んに行われてきている。
(Prior Art) Research and development of inexpensive magnet materials that can be substituted for permanent magnet materials containing a large amount of cobalt, such as alnico and R-Co magnets (R: rare earth metal), have been actively conducted.

R−Fe系磁石もその−っであり、就中、原材料が比較
的豊富なNdを利用したNd−Fe系磁石の研究結果が
数多く発表されている(例えば、特開昭59−4.60
08.59−64733.59−64739.59−8
5844v59−85845参照)。 これらのNd−
Fe系磁石は比較的価れた磁石特性を有するものの、N
e−Fe系の代表的な磁石材料とされているNd−Fe
−Bの組成のものでさえもキュリ一点が300’C程度
であり、従来のR−Co系磁石のキュリ一点(約800
℃)に比らべてかなり低いものである。
R-Fe magnets are one such example, and in particular, many research results have been published on Nd-Fe magnets that use Nd, which is a relatively abundant raw material (for example, Japanese Patent Laid-Open No. 59-4-60
08.59-64733.59-64739.59-8
5844v59-85845). These Nd-
Although Fe-based magnets have relatively good magnetic properties, N
Nd-Fe is a typical e-Fe-based magnet material.
Even with -B composition, one curie point is about 300'C, and one curie point of conventional R-Co magnet (approximately 800'C).
This is considerably lower than ℃).

この欠点を解消するために、Nd−Fe系中のFeの一
部を高価なCo或いはNiで置換する試みがなされてい
るが(特開昭59−46008.59−64.733)
、期待する程の成果は得られておらず、R−Co系磁石
程度のキュリ一点を得るためにはかなりの量のCoを必
要とし、逆にCo量が増加するにつれてアHeが低下す
る問題がある。
In order to overcome this drawback, attempts have been made to replace part of the Fe in the Nd-Fe system with expensive Co or Ni (Japanese Patent Laid-Open No. 59-46008.59-64.733).
However, the expected results have not been achieved, and the problem is that a considerable amount of Co is required to obtain a single Curie point similar to that of an R-Co magnet, and conversely, as the amount of Co increases, the AHe decreases. There is.

(発明の目的) 本発明は、前述のNd−Fe系磁石材料が有する問題点
を解決し、磁石特性、特に?Hcの低下を招来すること
なく高いキュリ一点を具備し得るNd−Fe系永久磁石
合金を提供することを目的とするものである。
(Objective of the Invention) The present invention solves the problems of the above-mentioned Nd-Fe-based magnet materials, and improves the magnetic properties, especially? The object of the present invention is to provide a Nd-Fe-based permanent magnet alloy that can have a high Curie point without causing a decrease in Hc.

(発明の構成) か\る目的達成のため、本発明者等は、Nd−Fe系磁
石材料に添加する諸元素の如何について種々研究を重ね
たところ、まず、Sm2Coエフ型磁石の保磁力を高め
るのに有効な元素である遷移台−3= 属(TV a族、Va族、Wa族)を、B、C,N、S
j又はPと複合添加することにより、保磁力の向上とキ
ュリ一点の良好な上昇をもたらすことを見い出した。そ
して、この知見をベースとして、更に前記遷移金属と他
の元素との複合添加による意外性ある効果を見い出すべ
く検討した結果、ここに、外殻電子が5d”6S2とい
う構造をもち、磁性の担い手である4f電子がなく、そ
れ自身が非磁性であるLaを、貼味添加ではキュリ一点
の上昇はないにも拘わらず、遷移金属と共に添加するこ
とにより、Nd−Fe系磁石のキュリ一点を顕著に上昇
させ、しかも保磁力が低下するどころか向上させ得るこ
とを発見し、本発明をなしたものである。
(Structure of the Invention) In order to achieve the above object, the present inventors conducted various studies on various elements to be added to the Nd-Fe magnet material, and first, the coercive force of the Sm2Co F-type magnet was determined. Transition table-3 = elements that are effective for increasing the group (TV a group, Va group, Wa group), B, C, N, S
It has been found that by adding J or P in combination, the coercive force can be improved and the Curie point can be favorably increased. Based on this knowledge, we further investigated the unexpected effect of compound addition of the transition metal and other elements, and found that the outer shell electrons have a structure of 5d"6S2, which is responsible for magnetism. Although La, which has no 4f electrons and is itself non-magnetic, does not increase the Curi point by adding it together with a transition metal, the Curi point of the Nd-Fe magnet increases significantly. The present invention was made based on the discovery that the coercive force can be increased, and the coercive force can be improved rather than decreased.

すなわち、本発明の特徴とするところは、Nd−Fe系
磁石において、Ti、Zr、Hf%V、Nb。
That is, the feature of the present invention is that Ti, Zr, Hf%V, and Nb are used in the Nd-Fe based magnet.

Ta、Cr、Mo及びWの1種又は2種以上(M)を、
■、aと共に、更にはB、Sj、P、C及びNの1種又
は2種以−ヒ(X)と共に複合添加した特定組成Nd、
α−β−γ−δ Laα Feβ My  Xδを有す
る永久磁石合金であり、またこの特定組成中のFeの一
部を特定量のCo、、NiおよびMnの1種又は2種以
上で置換した特定組成の永久磁石合金である。
One or more of Ta, Cr, Mo and W (M),
(2) A specific composition of Nd added in combination with a and one or two of B, Sj, P, C and N (X);
It is a permanent magnetic alloy having α-β-γ-δ Laα Feβ My It is a permanent magnetic alloy of composition.

以下にこれらの組成について詳述する。These compositions will be explained in detail below.

前述のように、本発明においては、Nd−Fe系でNd
−Fe−Mを基本とし、これにLaとXを添加するもの
である。
As mentioned above, in the present invention, in the Nd-Fe system, Nd
It is based on -Fe-M, to which La and X are added.

まず、Fe量βを0.6≦β≦0.85とするのは、β
が0.85を超えると、Brは向上するものの、アHe
が減少するために優れた( B H)IIlaxが得ら
れなくなり、逆にβが0.6未満であると、Brが低く
なって(BH)waxが減少するためである。なお、こ
のFe量βの一部を0.01〜0.15のCo、Nj及
びMnの1種又は2種以上で置換することによってキュ
リ一点の上昇を図ることができる。0.01未満ではそ
の効果がなく、0.15を超えて置換すると、磁石特性
が低下したり或いは高価な磁石となるので、0.01〜
0.15の範囲で置換する。
First, setting the Fe amount β to 0.6≦β≦0.85 means that β
exceeds 0.85, Br improves, but AHe
This is because excellent (BH)IIlax cannot be obtained due to a decrease in Br, and conversely, when β is less than 0.6, Br decreases and (BH)wax decreases. Note that by substituting a part of this Fe amount β with one or more of Co, Nj, and Mn of 0.01 to 0.15, it is possible to increase the amount by one point. If it is less than 0.01, there will be no effect, and if it is replaced by more than 0.15, the magnetic properties will deteriorate or the magnet will become expensive.
Replace within the range of 0.15.

前記M (Ti、Zr、 Hf、 V、 Nb、 Ta
、 Cr、Mo及びWの1種または2種以上)の量γを
0.01≦γ≦0.1とするのは、γが0.01未満で
あるとBrの温度係数の向上が少なく、また0、1を超
えると、前記X(B、SL、P、C及びNの1種又は2
種以上)と形成する化合物(後述)の形成量が多くなり
すぎて磁石特性を劣化するためである。0.01≦γ≦
0.1の範囲でMを添加すると、Xの一部が硼化物、炭
化物、窒化物、珪化物、燐化物となり、アHeの向上及
びBrの温度係数の向上を図ることができ、また後述の
T、a添加の効果を発揮することもできる。
Said M (Ti, Zr, Hf, V, Nb, Ta
The reason why the amount γ of one or more of Cr, Mo, and W is set to 0.01≦γ≦0.1 is because if γ is less than 0.01, the improvement in the temperature coefficient of Br is small; In addition, if it exceeds 0 or 1, the above X (one or two of B, SL, P, C and N)
This is because the amount of a compound (described later) formed with the magnet (more than one species) becomes too large, degrading the magnetic properties. 0.01≦γ≦
When M is added in the range of 0.1, a part of X becomes a boride, carbide, nitride, silicide, or phosphide, and it is possible to improve AHe and the temperature coefficient of Br. It is also possible to exhibit the effects of adding T and a.

Xは前述のMとの複合添加効果をもたらすほか、キュリ
一点を常温程度から:300℃以−1−に昇温させる効
果させる効果をもたらすものであるが、Xの量δが0.
01以下であるとそのような効果がなく、0.15以上
であると、Hc及びBrが減少し、優れた(BH)ma
xが得られなくなるので、0.01くδ<0.15の範
囲で添加する。
X not only brings about the combined addition effect with the above-mentioned M, but also brings about the effect of raising the temperature of a cucumber from about room temperature to 300°C or more.However, when the amount δ of X is 0.
If it is 0.01 or less, there is no such effect, and if it is 0.15 or more, Hc and Br decrease, resulting in excellent (BH)ma.
Since x cannot be obtained, it is added within the range of 0.01 and δ<0.15.

↑ Laは、前述の添加量範囲のMとの複合添加により、キ
ュリ一点を顕著に向上し、R−co系磁石のキュリ一点
(約800℃)近傍まで上昇可能であり、しかも特に、
Heを向上させることができ、したがって(BH)ma
xの」〕昇をもたらす。Laの量αを0.01≦α≦0
.05とするのは、αが0.01未満ではキュリ一点上
昇の効果が小さく、またfHcが低下気味で(BH)m
axを減少させ、逆にαが0.05を超えるとキュリ一
点は大幅に昇温するものの1.TTcが低下気味となり
、Brが低くなって(RH)maxが減少するためであ
る。Mを添加せずにT、a単味添加の場合には、キュリ
一点−1ユ昇効果は殆ど期待できず、逆にLaの添加量
増加と共にRrの減少程度を大きくし、La添加の効果
にみるべきものがないことを確認したが、LaとMとの
複合添加による前述の如き顕著な効果をもたらす機構は
明確でない。
↑ By adding La in combination with M in the above-mentioned addition amount range, it is possible to significantly improve the Curie point and raise it to near the Curie point (approximately 800°C) of R-co magnets, and in particular,
He can be improved and therefore (BH)ma
bring about x's rise. The amount α of La is 0.01≦α≦0
.. The reason why it is set at 05 is that when α is less than 0.01, the effect of raising Curie by one point is small, and fHc tends to decrease (BH)m
If ax is decreased and α exceeds 0.05, the temperature at the Curie point will increase significantly, but 1. This is because TTc tends to decrease, Br decreases, and (RH)max decreases. In the case of the simple addition of T and a without the addition of M, the effect of increasing the cucumber by one point can hardly be expected; on the other hand, as the amount of La added increases, the degree of decrease in Rr increases, and the effect of adding La increases. However, the mechanism by which the combined addition of La and M produces the above-mentioned remarkable effect is not clear.

次に本発明の実施例並びに比較例を示す。Next, examples of the present invention and comparative examples will be shown.

(実施例1) Ndo*+++ X Lax Feo*v5T”D+0
2BO*11?なる合金組成においてT、aの量X を
種々変化させた合金をボタン溶解炉により製造し、次い
で一48メツシ二程度に粗粉砕後、窒素ガスによるジェ
ットミルにより平均粒径約3.1μmに微粉砕した。
(Example 1) Ndo*+++ X Lax Feo*v5T"D+0
2BO*11? Alloys having the following alloy composition with varying amounts of T and a, X, were produced in a button melting furnace, then coarsely ground to about 148 mesh, and then finely ground to an average particle size of about 3.1 μm using a jet mill using nitrogen gas. Shattered.

次に上記粉末を約15KOeの磁界中、約1ton/c
+#の圧力でプレス成形した。その後、各成形体につい
てAr雰囲気中で1080 ℃X ]、hrの焼結を行
い、室温まで急冷した。更に、Ar雰囲気中で650℃
X]、hr保持した後、室温まで急冷した。
Next, the above powder was applied to about 1 ton/c in a magnetic field of about 15 KOe.
Press molding was performed at +# pressure. Thereafter, each molded body was sintered in an Ar atmosphere at 1080°C for hr, and then rapidly cooled to room temperature. Furthermore, at 650°C in an Ar atmosphere.
X], hr, and then rapidly cooled to room temperature.

得られた永久磁石のキュリ一点及びBr、TlIc、(
BFT)max を第1図に示す。
Curie point of the obtained permanent magnet and Br, TlIc, (
BFT)max is shown in FIG.

同図かられかるように、Laの添加量が増すにつれてキ
ュリ一点Tcが比例的に−に昇し1.Heけほぼx=0
.03近傍まで高くなって以降ゆるやかに減少している
。一方、Brは順々に減少する傾向を示し、したがって
、(BH)maxは0.01〜0.02の添加範囲で最
大値を示している。キュリ一点の上昇を、 Hcの増加
と共にもたらす本発明の効果が顕著であることがわかる
As can be seen from the figure, as the amount of La added increases, the Curie point Tc increases proportionally to -1. Hehe almost x=0
.. It rose to around 03 and then gradually decreased. On the other hand, Br shows a tendency to gradually decrease, and therefore (BH)max shows a maximum value in the addition range of 0.01 to 0.02. It can be seen that the effect of the present invention, which brings about a one-point increase in Curie as well as an increase in Hc, is remarkable.

(実施例2) 8一 実施例1の合金につきFeの一部をCOで置換し、更に
Ti、、Hの一部も置換したNdo、□6−xLaxF
e11.70 Coo、。5’rj、、。1Cro、。
(Example 2) Ndo, □6-xLaxF in which a part of Fe was replaced with CO and a part of Ti, H was also replaced in the alloy of 81 Example 1.
e11.70 Coo. 5'rj... 1 Cro.

、B 11 * 06 P [+ + 111なる組成
の合金を、実施例1と同様にして製造、処理し、永久磁
石を得た。同様の諸地区性を第2図に示す。
, B 11 * 06 P [+ + 111] was produced and treated in the same manner as in Example 1 to obtain a permanent magnet. Similar regional characteristics are shown in Figure 2.

同図に示す結果を実施例1の第1図と比らべると、Fe
の一部を置換してCoを添加したため、キュリ一点がよ
り高くなることがわかる。
Comparing the results shown in the figure with Figure 1 of Example 1, it is found that Fe
It can be seen that the Curie point becomes higher because Co is added by replacing a part of the .

(比較例1) 比較例として、遷移金属を含まないNdo、□6−XL
ax Fco、17110.[17なる組成の合金を、
実施例1と同様にして製造、処理し、永久磁石を得た。
(Comparative Example 1) As a comparative example, Ndo, □6-XL which does not contain transition metal
ax Fco, 17110. [An alloy with a composition of 17,
A permanent magnet was obtained by manufacturing and processing in the same manner as in Example 1.

その結果を第3図に示すが、同図かられかるように、遷
移金属が含まれずにT、 a、jli味添加では、キュ
リ一点が若干−に昇するものの殆ど効果がなく、逆にL
a量が増すにつれてBrが単調に減少し、その程度も実
施例1.2よりも大きい。遷移金属が含まれていたため
に工IIcが減少している。
The results are shown in Figure 3, and as can be seen from the figure, when T, a, and jli tastes are added without containing transition metals, although the Curie point slightly rises to -, there is almost no effect, and on the contrary, L
As the amount of a increases, Br decreases monotonically, and the degree of decrease is also greater than in Example 1.2. Because transition metals were included, the concentration of IIc decreased.

(比較例2) 比較例1の合金について特にFeの一部をCOで置換し
た N do、、3 L an 、02 F eo17
!I X Cox B a +ocPo、。1なる合金
を、COの添加量を種々変化させ、実施例1と同様にし
て製造、処理し、永久磁石を得た。その結果は、第4図
しこ示すように、比較例1に比らべ、CO添加によりキ
ュリ一点Tcは」―昇するが1.He、BrともにQi
調に減少し、(RTT)maxも低い・ これらの実験例が示すように、本発明におけろT−aと
遷移金属との複合添加による効果は、キュリ一点の−1
−昇を磁石特性の低下どころか向上のドに実現し、CO
添加によるキュリ一点−I−昇のjlを純効果よりも格
段に優れていることが明らかである。
(Comparative Example 2) Regarding the alloy of Comparative Example 1, a part of Fe was particularly replaced with CO.
! I X Cox B a +ocPo,. The alloy No. 1 was produced and treated in the same manner as in Example 1, with various amounts of CO added, to obtain permanent magnets. As a result, as shown in FIG. 4, compared to Comparative Example 1, the Curie point Tc increases by 1.5% due to the addition of CO. Both He and Br are Qi
As shown by these experimental examples, the effect of the combined addition of T-a and transition metal in the present invention is as low as -1 of Curie point.
-The CO
It is clear that the effect of addition is much better than the pure effect.

(発明の効果) 以」二詳述したことから明らかなように、本発明によれ
ば、従来のNd−Fe系永久磁石の有する欠点を完全に
解消でき、諸磁石特性の低下を招来することなく、むし
ろ向上しつつキュリ一点の顕著°4−1□□13オ6〜
工ゎイい。、アよぉ。ア、斯界における技術的、経済的
面で多大なる貢献をもたらし、需要を拡大せしめ、工業
上の効果が非常に大きい。
(Effects of the Invention) As is clear from what has been described in detail below, according to the present invention, the drawbacks of conventional Nd-Fe permanent magnets can be completely eliminated, and the drawbacks that lead to deterioration of various magnetic properties can be avoided. Rather, it has improved and one point is noticeable ° 4-1 □□ 13 o 6 ~
The work is good. , Ah yo. A. It has made a great contribution in terms of technology and economics in this field, expanded demand, and had a great industrial effect.

【図面の簡単な説明】[Brief explanation of drawings]

各図は永久磁石合金の諸特性と含有成分量との関係を示
す図であって、第1図及び第2図は本発明の実施例に係
る永久磁石合金の場合を示し、第3図及び第4図は比較
例の永久磁石の場合を示している。
Each figure shows the relationship between various properties of a permanent magnet alloy and the amount of contained components, and FIGS. 1 and 2 show the case of a permanent magnet alloy according to an embodiment of the present invention, and FIGS. FIG. 4 shows the case of a permanent magnet as a comparative example.

Claims (1)

【特許請求の範囲】 1 Nd−Fe系合金であって、下記式の組成からなる
ことを特徴とする永久磁石合金。 記 Nd_1__α__β__γ__δ Laα Feβ 
Mγ Xδ但し、M:Ti、Zr、Hf、V、Nb、T
a、Cr、Mo及びWのうちの1種又は2種以 上の元素 X:B、Si、P、C及びNのうちの1 種又は2種以上の元素 α:0.01≦α≦0.05 β:0.6≦β≦0.85 γ:0.01≦γ≦0.1 δ:0.01<δ<0.15 2 Nd−Fe系合金であって、下記式の組成からなる
ものにおいて、Feの一部を0.01〜0.15のCo
、Ni及びMnの1種又は2種以上で置換してなる組成
を有することを特徴とする永久磁石合金。 記 Nd_1__α__β__γ__δ Laα Feβ 
Mγ Xδ但し、M:Ti、Zr、Hf、V、Nb、T
a、Cr、Mo及びWのうちの1種又は2種以 上の元素 X:B、Si、P、C及びNのうちの1 種又は2種以上の元素 α:0.01≦α≦0.05 β:0.6≦β≦0.85 γ:0.01≦γ≦0.1 δ:0.01<δ<0.15
[Scope of Claims] 1. A permanent magnet alloy that is an Nd-Fe based alloy and has a composition represented by the following formula. Nd_1__α__β__γ__δ Laα Feβ
Mγ Xδ However, M: Ti, Zr, Hf, V, Nb, T
One or more elements X from a, Cr, Mo, and W: One or more elements from B, Si, P, C, and N α: 0.01≦α≦0. 05 β: 0.6≦β≦0.85 γ: 0.01≦γ≦0.1 δ: 0.01<δ<0.15 2 Nd-Fe alloy having the composition of the following formula In some cases, a part of Fe is replaced with 0.01 to 0.15 Co.
A permanent magnet alloy characterized by having a composition in which one or more of Ni and Mn are substituted. Nd_1__α__β__γ__δ Laα Feβ
Mγ Xδ However, M: Ti, Zr, Hf, V, Nb, T
One or more elements X from a, Cr, Mo, and W: One or more elements from B, Si, P, C, and N α: 0.01≦α≦0. 05 β: 0.6≦β≦0.85 γ:0.01≦γ≦0.1 δ:0.01<δ<0.15
JP59176785A 1984-08-27 1984-08-27 Permanent magnet alloy Pending JPS6156266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59176785A JPS6156266A (en) 1984-08-27 1984-08-27 Permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59176785A JPS6156266A (en) 1984-08-27 1984-08-27 Permanent magnet alloy

Publications (1)

Publication Number Publication Date
JPS6156266A true JPS6156266A (en) 1986-03-20

Family

ID=16019801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59176785A Pending JPS6156266A (en) 1984-08-27 1984-08-27 Permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS6156266A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417644A (en) * 1990-05-10 1992-01-22 Haiuntinshu Kofun Yugenkoshi Manufacture of magnetic alloy and magnet
JP2010258270A (en) * 2009-04-27 2010-11-11 Hitachi Metals Ltd Rare-earth permanent magnet, and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417644A (en) * 1990-05-10 1992-01-22 Haiuntinshu Kofun Yugenkoshi Manufacture of magnetic alloy and magnet
JP2010258270A (en) * 2009-04-27 2010-11-11 Hitachi Metals Ltd Rare-earth permanent magnet, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JPH01219143A (en) Sintered permanent magnet material and its production
JP3296507B2 (en) Rare earth permanent magnet
JPS6156266A (en) Permanent magnet alloy
US5057165A (en) Rare earth permanent magnet and a method for manufacture thereof
JPH0831626A (en) Rare earth magnetic powder, permanent magnet thereof, and manufacture of them
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPH02102501A (en) Permanent magnet
JP2002124407A (en) Anisotropic sintered rare-earth manget and its manufacturing method
JP2019169560A (en) Manufacturing method of r-t-b-based sintered magnet
JPS59163803A (en) Permanent magnet
JPH1097907A (en) Manufacture of r-tm-b based permanent magnet
JPS61143553A (en) Production of material for permanent magnet
JPS61147504A (en) Rare earth magnet
JPS6144155A (en) Permanent magnet alloy
JPS6052555A (en) Permanent magnet material and its production
JPS62170455A (en) Permanent magnet alloy
JPS6077961A (en) Permanent magnet material and its manufacture
JP2648422B2 (en) permanent magnet
JPS62136553A (en) Permanent magnet material
JPH01127643A (en) Manufacture of rare earth magnetic material
JPH08181010A (en) Rare earth sintered magnet
JPS6221858B2 (en)
JPS5852405A (en) Production of permanent magnet containing rare earths
JPS58157938A (en) Permanent magnet alloy
JPS60182105A (en) Permanent magnet material and manufacture thereof