JP2002175909A - Bonded magnetic having superior thermal stability, and its manufacturing method - Google Patents

Bonded magnetic having superior thermal stability, and its manufacturing method

Info

Publication number
JP2002175909A
JP2002175909A JP2000372491A JP2000372491A JP2002175909A JP 2002175909 A JP2002175909 A JP 2002175909A JP 2000372491 A JP2000372491 A JP 2000372491A JP 2000372491 A JP2000372491 A JP 2000372491A JP 2002175909 A JP2002175909 A JP 2002175909A
Authority
JP
Japan
Prior art keywords
magnet powder
powder
magnet
hddr
thermal stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000372491A
Other languages
Japanese (ja)
Inventor
Katsuhiko Mori
克彦 森
Muneaki Watanabe
宗明 渡辺
Koichiro Morimoto
耕一郎 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2000372491A priority Critical patent/JP2002175909A/en
Publication of JP2002175909A publication Critical patent/JP2002175909A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Abstract

PROBLEM TO BE SOLVED: To provide a bonded magnetic which uses HDDR magnetic powder and has superior thermal stability in its magnetic characteristics, and to provide a method of manufacturing the magnet. SOLUTION: The bonded magnet contains the HDDR magnet powder, having a mean particle diameter of 50-500 μm in an amount of 75-97 mass%, a ferrite magnet powder having a mean particle diameter of 0.1-2.0 μm in an amount of 2-24 mass%, and the reminder composed of a resin and has superior thermal stability in its magnetic characteristics. More than 60% of the surface of the HDDR magnet powder is coated with the ferrite magnet powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、磁気特性の熱的
安定性に優れたボンド磁石およびその製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bonded magnet excellent in thermal stability of magnetic properties and a method for manufacturing the same.

【0002】[0002]

【従来の技術】水素を吸蔵させたのち脱水素して得られ
たR−T−B系磁石粉末またはR−T−B−M系磁石粉
末[ただし、RはYを含む希土類元素、TはFeあるい
はFeの一部をCoで置換した成分、MはSi、Ga、
Zr、Nb、Mo、Hf、Ta、W、Al、Ti、Vの
うち1種または2種以上を示し、Bはボロン元素を示
す。以下同じ]は、一般に、HDDR磁石粉末として知
られている。
2. Description of the Related Art RTB-based magnet powder or RTBM-based magnet powder obtained by absorbing hydrogen and then dehydrogenating, wherein R is a rare earth element containing Y, and T is Fe or a component in which part of Fe is replaced by Co, M is Si, Ga,
One or more of Zr, Nb, Mo, Hf, Ta, W, Al, Ti, and V are shown, and B represents a boron element. The same applies hereinafter) is generally known as HDDR magnet powder.

【0003】このHDDR磁石粉末は、R−T−B系合
金原料またはR−T−B系合金にMを0.001〜5.
0原子%含有したR−T−B−M系合金原料をArガス
雰囲気中、温度:600〜1200℃に保持して均質化
処理しまたは均質化処理せずに室温から500℃までを
水素雰囲気、水素と不活性ガスの混合ガス雰囲気、真空
雰囲気あるいは不活性ガス雰囲気の内のいずれかの雰囲
気中に保持し、さらに500〜1000℃の範囲内の所
定温度までを水素雰囲気あるいは水素と不活性ガスの混
合ガス雰囲気中で昇温後保持することにより前記R−T
−B系合金原料またはR−T−B−M系合金原料に水素
を吸蔵させて相変態を促進し、引き続いて、500〜1
000℃の範囲内の所定の温度で1Torr以下の真空
雰囲気中に保持することにより、R−T−B系合金原料
またはR−T−B−M系合金原料から強制的に水素を放
出させて相変態を促し、ついで冷却し、粉砕することに
より製造する。
[0003] This HDDR magnet powder is prepared by adding M to an RTB-based alloy raw material or an RTB-based alloy in an amount of 0.001 to 5.
The RTBM alloy material containing 0 atomic% is homogenized in an Ar gas atmosphere at a temperature of 600 to 1200 ° C. or a hydrogen atmosphere from room temperature to 500 ° C. without homogenization. A gas atmosphere of a mixed gas of hydrogen and an inert gas, a vacuum atmosphere or an inert gas atmosphere, and further maintain a predetermined temperature within a range of 500 to 1000 ° C. in a hydrogen atmosphere or an inert gas of hydrogen. By maintaining the temperature after raising the temperature in a mixed gas atmosphere of the gas, the RT
Hydrogen is absorbed into the B-based alloy raw material or the RTBM-based alloy raw material to promote the phase transformation.
By maintaining a predetermined temperature within the range of 000 ° C. in a vacuum atmosphere of 1 Torr or less, hydrogen is forcibly released from the RTB-based alloy raw material or the RTBM-based alloy raw material. Produced by promoting phase transformation, then cooling and grinding.

【0004】このようにして得られたHDDR磁石粉末
の平均粒度は50〜500μmであり、このHDDR磁
石粉末の組織は微細なR214B型金属間化合物相が集
合してなる再結晶集合組織を有することが知られてい
る。
The average particle size of the HDDR magnet powder thus obtained is 50 to 500 μm, and the structure of the HDDR magnet powder is a recrystallized aggregate formed by assembling fine R 2 T 14 B type intermetallic compound phases. It is known to have an organization.

【0005】前記HDDR磁石粉末は焼結することによ
り優れた磁気特性を有する焼結部品を製造するが、通常
は、HDDR磁石粉末に樹脂を添加・混合してコンパウ
ンドを作製し、このコンパウンドを金型に充填し、プレ
ス成形して所定形状の成形体を作製し、その後この成形
体の樹脂硬化を行うことによりボンド磁石を製造してい
る。そして、前記樹脂は、ポリイミド樹脂、エポキシ樹
脂、ポリエステル樹脂、フェノール樹脂などが用いられ
ている。
[0005] The HDDR magnet powder is manufactured by sintering to produce a sintered part having excellent magnetic properties. Usually, a resin is added to and mixed with the HDDR magnet powder to prepare a compound. A bonded magnet is manufactured by filling a mold, press-molding to form a molded body having a predetermined shape, and thereafter curing the molded body with a resin. As the resin, a polyimide resin, an epoxy resin, a polyester resin, a phenol resin, or the like is used.

【0006】HDDR磁石粉末を使用したボンド磁石は
磁気特性に優れているところから、ステッピング・モー
タ、スピンドル・モータなどの部品として組み込まれ、
これらHDDR磁石粉末で作製したボンド磁石を組み込
んだモータはいろいろな場所で使用されており、例え
ば、自動車のエンジン周りなど高温に晒される過酷な環
境下においても使用されるようになってきた。
[0006] Bonded magnets using HDDR magnet powder have excellent magnetic properties and are therefore incorporated as components such as stepping motors and spindle motors.
Motors incorporating the bonded magnets made of these HDDR magnet powders are used in various places, for example, in harsh environments exposed to high temperatures such as around automobile engines.

【0007】[0007]

【発明が解決しようとする課題】前述のように、HDD
R磁石粉末を使用したボンド磁石は磁気特性に優れてい
るところから、このボンド磁石を組み込んだモータはい
ろいろな場所で各種駆動源として用いられている。しか
し、このボンド磁石は高温で長時間保持すると磁気特性
が低下するなど熱的に不安定であるという欠点があり、
かかる熱的に不安定性なボンド磁石を部品として組み込
んだモータを特に自動車のエンジン周りなど高温に晒さ
れる環境下で駆動源として長期間使用した場合、ボンド
磁石部品の磁気特性の低下によるモータの出力低下をも
たらすので好ましくない。
As described above, the HDD
Since a bonded magnet using R magnet powder has excellent magnetic properties, motors incorporating the bonded magnet are used as various driving sources in various places. However, this bonded magnet has the disadvantage that it is thermally unstable, such as its magnetic properties deteriorating when held at a high temperature for a long time.
When a motor incorporating such a thermally unstable bond magnet as a component is used as a drive source for a long period of time in an environment exposed to high temperatures, especially around an engine of an automobile, the output of the motor due to a decrease in the magnetic properties of the bond magnet component It is not preferable because it causes a decrease.

【0008】[0008]

【課題を解決するための手段】そこで、本発明者等は、
HDDR磁石粉末を用いて高温で長時間保持しても磁気
特性が低下することの少ない磁気特性の熱的安定性(以
下、熱的安定性という)に優れたボンド磁石を製造すべ
く研究を行った結果、(イ)HDDR磁石粉末:75〜
97質量%、フェライト磁石粉末:2〜24質量%を含
有し、残部が樹脂となる成分組成のコンパウンドを作製
し、このコンパウンドを金型に充填し、プレス成形して
所定形状の成形体を作製し、その後この成形体の樹脂硬
化を行うことにより得られたボンド磁石は、高温に長時
間保持しても磁気特性が低下することが少なく、熱的安
定性に優れたボンド磁石が得られる、(ロ)前記HDD
R磁石粉末は、通常の平均粒径:50〜500μmを有
するHDDR磁石粉末であるが、これに混合するフェラ
イト磁石粉末は微細な平均粒径:0.1〜2.0μmを
有するフェライト磁石粉末であることが好ましく、この
平均粒径:50〜500μmを有するHDDR磁石粉末
に微細な平均粒径:0.1〜2.0μmを有するフェラ
イト磁石粉末を添加し混合すると、HDDR磁石粉末の
表面に微細なフェライト磁石粉末が張り付いて、HDD
R磁石粉末の表面が微細なフェライト磁石粉末により被
覆された複合粉末が生成され、この複合粉末を含む混合
粉末に樹脂を添加し混合してコンパウンドを作製し、こ
のコンパウンドを成形して得られたボンド磁石は熱的安
定性が優れる、という研究結果が得られたのである。
Means for Solving the Problems Accordingly, the present inventors have
Research has been conducted using HDDR magnet powder to produce bonded magnets that have excellent thermal stability (hereinafter referred to as thermal stability) of magnetic properties that do not deteriorate even when held at high temperatures for a long time. As a result, (a) HDDR magnet powder: 75-
97% by mass, ferrite magnet powder: 2 to 24% by mass is prepared, a compound having a component composition in which the remainder is a resin is prepared, the compound is filled in a mold, and press-molded to form a molded article having a predetermined shape. Then, the bonded magnet obtained by performing the resin curing of the molded body, the magnetic properties are less likely to be reduced even when held at a high temperature for a long time, and a bonded magnet having excellent thermal stability can be obtained. (B) The HDD
The R magnet powder is a HDDR magnet powder having a normal average particle diameter of 50 to 500 μm, and the ferrite magnet powder mixed therewith is a ferrite magnet powder having a fine average particle diameter of 0.1 to 2.0 μm. When a ferrite magnet powder having a fine average particle size of 0.1 to 2.0 μm is added to and mixed with the HDDR magnet powder having an average particle size of 50 to 500 μm, a fine particle is formed on the surface of the HDDR magnet powder. HDD with ferrite magnet powder
A composite powder was produced in which the surface of the R magnet powder was coated with fine ferrite magnet powder, and a resin was added to and mixed with the mixed powder containing the composite powder to produce a compound, and the compound was obtained by molding. Research has shown that bonded magnets have excellent thermal stability.

【0009】この発明は、かかる研究結果に基づいてな
されたものであって、(1)HDDR磁石粉末:75〜
97質量%、フェライト磁石粉末:2〜24質量%を含
有し、残部が樹脂からなる熱的安定性に優れたボンド磁
石、(2)平均粒径:50〜500μmを有するHDD
R磁石粉末:75〜97質量%、平均粒径:0.1〜
2.0μmを有するフェライト磁石粉末:2〜24質量
%を含有し、残部が樹脂からなる熱的安定性に優れたボ
ンド磁石、に特徴を有するものである。
The present invention has been made based on the results of such research, and (1) HDDR magnet powder: 75 to
97% by mass, ferrite magnet powder: 2 to 24% by mass, the balance being a resin-bonded magnet with excellent thermal stability, (2) HDD having an average particle size of 50 to 500 μm
R magnet powder: 75 to 97% by mass, average particle size: 0.1 to
A ferrite magnet powder having 2.0 μm: a bonded magnet containing 2 to 24% by mass and the balance being a resin and having excellent thermal stability.

【0010】この発明のHDDR磁石粉末と微細なフェ
ライト磁石粉末との混合粉末を樹脂で固めて得られた熱
的安定性に優れたボンド磁石は、HDDR磁石粉末と微
細なフェライト磁石粉末を混合すると、微細なフェライ
ト磁石粉末がHDDR磁石粉末の表面に付着することに
よりHDDR磁石粉末の表面をフェライト磁石粉末で被
覆してなる複合粉末が形成され、この複合粉末を含む混
合粉末に樹脂を添加し成形して得られたボンド磁石は、
HDDR磁石粉末の表面がフェライト磁石粉末で被覆さ
れた複合粉末が樹脂の素地中に均一に分散した組織を有
する。そしてかかるHDDR磁石粉末の表面がフェライ
ト磁石粉末で被覆された複合粉末が素地中に多く分散す
るほど磁気特性の熱的安定性は向上する。
The bonded magnet of the present invention having excellent thermal stability obtained by solidifying a mixed powder of the HDDR magnet powder and the fine ferrite magnet powder with a resin can be obtained by mixing the HDDR magnet powder and the fine ferrite magnet powder. The fine powder of the ferrite magnet adheres to the surface of the HDDR magnet powder to form a composite powder in which the surface of the HDDR magnet powder is coated with the ferrite magnet powder, and a resin is added to the mixed powder containing the composite powder to be molded. The bond magnet obtained by
The structure has a structure in which the composite powder in which the surface of the HDDR magnet powder is coated with the ferrite magnet powder is uniformly dispersed in the resin matrix. The thermal stability of magnetic properties is improved as the composite powder in which the surface of the HDDR magnet powder is coated with the ferrite magnet powder is more dispersed in the base material.

【0011】そして、このボンド磁石の熱的安定性を一
層向上させるには、樹脂の素地中に分散するHDDR磁
石粉末の表面の60%以上がフェライト磁石粉末により
覆われていることが一層好ましく、100%覆われてい
ることが最も好ましい。したがって、この発明は、
(3)前記HDDR磁石粉末は、その表面が前記フェラ
イト磁石粉末に覆われている前記(1)または(2)記
載の熱的安定性に優れたボンド磁石、(4)前記HDD
R磁石粉末は、その表面の60%以上が前記フェライト
磁石粉末に覆われている前記(3)記載の熱的安定性に
優れたボンド磁石、に特徴を有するものである。
In order to further improve the thermal stability of the bonded magnet, it is more preferable that at least 60% of the surface of the HDDR magnet powder dispersed in the resin base is covered with the ferrite magnet powder. Most preferably, it is 100% covered. Therefore, the present invention
(3) The bonded magnet having excellent thermal stability according to (1) or (2), wherein the HDDR magnet powder has a surface covered with the ferrite magnet powder. (4) The HDD.
The R magnet powder is characterized in that the bonded magnet has excellent thermal stability as described in (3) above, wherein 60% or more of its surface is covered with the ferrite magnet powder.

【0012】この発明の熱的安定性に優れたボンド磁石
を製造する方法は、まず、HDDR磁石粉末と平均粒
径:0.1〜2.0μmのフェライト磁石粉末を混合し
て、HDDR磁石粉末の表面を平均粒径:0.1〜2.
0μmのフェライト磁石粉末で被覆した複合粉末を含む
混合粉末を作製し、この混合粉末に樹脂を添加してコン
パウンドを作製し、このコンパウンドを用いて成形す
る。したがって、この発明は、(5)平均粒径:50〜5
00μmのHDDR磁石粉末と平均粒径:0.1〜2.
0μmのフェライト磁石粉末を混合して混合粉末を作製
し、この混合粉末にさらに樹脂を添加・混合してHDD
R磁石粉末:75〜97質量%、フェライト磁石粉末:
2〜24質量%を含有し、残部が樹脂からなるコンパウ
ンドを作製し、このコンパウンドを金型に充填し、プレ
ス成形して所定形状の成形体を作製し、その後この成形
体の樹脂硬化を行う熱的安定性に優れたボンド磁石の製
造方法、に特徴を有するものである。
According to the method for producing a bonded magnet having excellent thermal stability of the present invention, first, HDDR magnet powder and ferrite magnet powder having an average particle size of 0.1 to 2.0 μm are mixed together. Average particle size: 0.1 to 2.
A mixed powder containing a composite powder coated with a ferrite magnet powder of 0 μm is prepared, a resin is added to the mixed powder to prepare a compound, and the compound is used for molding. Therefore, the present invention provides (5) an average particle size of 50 to 5
HDDR magnet powder of 00 μm and average particle size: 0.1 to 2.
0 μm ferrite magnet powder is mixed to prepare a mixed powder, and a resin is further added to and mixed with the mixed powder to form an HDD.
R magnet powder: 75 to 97% by mass, ferrite magnet powder:
A compound containing 2 to 24% by mass and a balance of resin is prepared, the compound is filled in a mold, and press-molded to form a molded body having a predetermined shape, and then the molded body is cured with a resin. The method is characterized by a method for producing a bonded magnet having excellent thermal stability.

【0013】この発明の熱的安定性に優れたボンド磁石
において使用するHDDR磁石粉末は、通常の平均粒
径:50〜500μmのHDDR磁石粉末を使用するこ
とができる。また、この発明の熱的安定性に優れたボン
ド磁石において使用するフェライト磁石粉末の平均粒径
は微細であるほどHDDR磁石粉末の表面に付着してH
DDR磁石粉末の表面を覆いやすくなるので好ましい
が、フェライト磁石粉末の平均粒径が2.0μmを越え
るとHDDR磁石粉末の表面を60面積%以上にわたっ
てフェライト磁石粉末により覆うことができなくなるの
で好ましくない。一方、フェライト磁石粉末の平均粒径
が0.1μmよりも微細になると粉末が凝集しやすくな
るなどしてその扱いが難しくなり、またフェライト磁石
粉末の平均粒径が微細になるほどボンド磁石の樹脂の強
度を弱めるので好ましくない。したがって、この発明の
熱的安定性に優れたボンド磁石において使用するフェラ
イト磁石粉末の平均粒径は0.1〜2.0μmに定め
た。
The HDDR magnet powder used in the bonded magnet having excellent thermal stability of the present invention may be an ordinary HDDR magnet powder having an average particle diameter of 50 to 500 μm. Further, the finer the average particle size of the ferrite magnet powder used in the bonded magnet having excellent thermal stability of the present invention, the smaller the average particle size of the ferrite magnet powder is,
It is preferable because the surface of the DDR magnet powder is easily covered. However, if the average particle diameter of the ferrite magnet powder exceeds 2.0 μm, the surface of the HDDR magnet powder cannot be covered with the ferrite magnet powder over 60 area% or more. . On the other hand, when the average particle size of the ferrite magnet powder is smaller than 0.1 μm, the powder becomes easily aggregated and the handling becomes difficult, and as the average particle size of the ferrite magnet powder becomes smaller, the resin of the bond magnet becomes smaller. It is not preferable because it weakens the strength. Therefore, the average particle size of the ferrite magnet powder used in the bonded magnet having excellent thermal stability of the present invention is set to 0.1 to 2.0 μm.

【0014】この発明の熱的安定性に優れたボンド磁石
に含まれるHDDR磁石粉末は75質量%未満では十分
な磁気特性が得られないので好ましくなく、一方、97質
量%を越えて含有するとフェライト磁石粉末および樹脂
の含有量が少なくなってボンド磁石の熱的安定性が低下
すると共に強度が低下するので好ましくない。したがっ
て、この発明の熱的安定性に優れたボンド磁石に含まれ
るHDDR磁石粉末は75〜97質量%に定めた。一層
好ましい範囲は83〜92質量%である。
The HDDR magnet powder contained in the thermally stable bonded magnet according to the present invention is not preferable because if it is less than 75% by mass, sufficient magnetic properties cannot be obtained. It is not preferable because the contents of the magnet powder and the resin are reduced, so that the thermal stability and the strength of the bonded magnet are reduced. Therefore, the amount of the HDDR magnet powder contained in the thermally stable bonded magnet of the present invention is set to 75 to 97% by mass. A more preferred range is 83 to 92% by mass.

【0015】この発明の熱的安定性に優れたボンド磁石
に含まれるフェライト磁石粉末の含有量は、2質量%未
満では少なすぎてHDDR磁石粉末の表面をフェライト
磁石粉末により60面積%以上被覆することが出来ず、
したがって磁気特性の十分な熱的安定性が得られないの
で好ましくない。一方、フェライト磁石粉末を24質量
%を越えて含有すると磁気特性が低下するので好ましく
ない。したがって、この発明の熱的安定性に優れたボン
ド磁石に含まれるフェライト磁石粉末は2〜24質量%
に定めた。一層好ましい範囲は6〜14質量%である。
The content of the ferrite magnet powder contained in the bonded magnet excellent in thermal stability of the present invention is less than 2% by mass, and the surface of the HDDR magnet powder is coated with the ferrite magnet powder by 60% by area or more. Can not do,
Therefore, sufficient thermal stability of magnetic properties cannot be obtained, which is not preferable. On the other hand, if the ferrite magnet powder is contained in an amount exceeding 24% by mass, the magnetic properties deteriorate, which is not preferable. Therefore, the ferrite magnet powder contained in the bonded magnet having excellent thermal stability of the present invention is 2 to 24% by mass.
Determined. A more preferred range is from 6 to 14% by mass.

【0016】なお、樹脂バインダーにはエポキシ樹脂や
ビスマレイミドトリアジン樹脂を使用することが好まし
いが、特にこれら樹脂に限定されるものではなく、ポリ
イミド樹脂、ポリエステル樹脂、フェノール樹脂なども
用いることができる。
It is preferable to use an epoxy resin or a bismaleimide triazine resin as the resin binder. However, the resin binder is not particularly limited to these resins, and a polyimide resin, a polyester resin, a phenol resin and the like can also be used.

【0017】[0017]

【発明の実施の形態】実施例1 原子%で、Nd:12.5%、Co:5.0%、B:
6.0%、Fe:残部からなる組成の合金塊を加熱炉に
装入し、加熱炉内を760Torrの水素ガス雰囲気に
保持したのち、加熱炉内の温度を室温から850℃に昇
温し、引き続いて850℃に3時間保持して水素吸蔵処
理したのち、真空雰囲気中、温度:850℃に1時間保
持して脱水素処理し、さらに真空度:1×10-5Tor
rになるまで排気冷却し、その後、粉砕して平均粒径:
200μmの多角形状のHDDR磁石粉末を作製した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Example 1 Atomic%, Nd: 12.5%, Co: 5.0%, B:
An alloy lump having a composition of 6.0% Fe: balance is charged into a heating furnace, and the inside of the heating furnace is maintained in a hydrogen gas atmosphere of 760 Torr. Then, the temperature in the heating furnace is increased from room temperature to 850 ° C. Subsequently, after holding at 850 ° C. for 3 hours to perform a hydrogen absorbing treatment, dehydrogenating at a temperature of 850 ° C. for 1 hour in a vacuum atmosphere, and further performing a degree of vacuum: 1 × 10 −5 Torr.
r, and then crushed to obtain an average particle size:
A 200 μm polygonal HDDR magnet powder was produced.

【0018】さらに、α−Fe23粉末とSrCO3
末を1:5.8のモル比となるように配合し、得られた
配合粉末をボールミルで十分に混合して混合粉末を作製
し、得られた混合粉末を直径1cmの円柱体に成形し、こ
れを1100℃で焼成したのち、ボールミルで粉砕する
ことにより平均粒径が0.5μm、0,75μm、1.
0μm、2.0μmおよび3.0μmを有するSrフェ
ライト磁石粉末を作製した。
Further, α-Fe 2 O 3 powder and SrCO 3 powder are blended in a molar ratio of 1: 5.8, and the obtained blended powder is sufficiently mixed by a ball mill to produce a mixed powder. The obtained mixed powder was formed into a cylindrical body having a diameter of 1 cm, which was fired at 1100 ° C., and then pulverized with a ball mill to have an average particle diameter of 0.5 μm, 0.75 μm, and 1.
Sr ferrite magnet powders having 0 μm, 2.0 μm and 3.0 μm were prepared.

【0019】また、樹脂バインダーとして二液性固形エ
ポキシ樹脂を用意した。
A two-part solid epoxy resin was prepared as a resin binder.

【0020】前記HDDR磁石粉末およびSrフェライ
ト磁石粉末を混合して混合粉末を作製し、この混合粉末
にさらに二液性固形エポキシ樹脂を混合して表1に示さ
れる組成のコンパウンドを作製し、このコンパウンドを
金型に充填して圧力:6ton/cm2 で圧縮成形すること
により外径:10mm、高さ:7mmの寸法を有する円柱状
成形体を作製し、ついでこの円柱状成形体を大気中、温
度:150℃、1時間保持の加熱を行って本発明円柱状
ボンド磁石(以下、本発明ボンド磁石という)1〜1
0、比較円柱状ボンド磁石(以下、比較ボンド磁石とい
う)1〜3および従来円柱状ボンド磁石(以下、従来ボ
ンド磁石という)を作製した。
The HDDR magnet powder and the Sr ferrite magnet powder are mixed to prepare a mixed powder, and a two-part solid epoxy resin is further mixed with the mixed powder to prepare a compound having a composition shown in Table 1. The compound is filled in a mold and compression-molded at a pressure of 6 ton / cm 2 to produce a columnar molded body having an outer diameter of 10 mm and a height of 7 mm, and then this cylindrical molded body is exposed to the air. Temperature: 150 ° C., heating for 1 hour is carried out, and the columnar bonded magnet of the present invention (hereinafter referred to as the bonded magnet of the present invention) 1-1.
0, comparative columnar bonded magnets (hereinafter referred to as comparative bonded magnets) 1 to 3 and conventional cylindrical bonded magnets (hereinafter referred to as conventional bonded magnets) were produced.

【0021】さらに、得られた本発明ボンド磁石1〜1
0、比較ボンド磁石1〜3および従来ボンド磁石につい
て、引張り強さを測定し、さらにボンド磁石の素地中に
おいてHDDR磁石粉末がSrフェライト磁石粉末によ
り被覆されている割合(以下、被覆率という)を走査電子
顕微鏡観察により被覆されている部分の面積比を実測す
ることにより測定し、その結果を表1に示した。さら
に、これらボンド磁石を70KOeのパルス磁界で着磁
した後、80℃に保持したオーブンに1000時間放置
して3時間、100時間、1000時間経過後の熱減磁
率を測定し、その結果も表1に示して熱的安定性を評価
した。ここで、熱減磁率とは、熱減磁率(%)={(所
定時間暴露後の全磁束−暴露前の全磁束)/暴露前の全
磁束}×100で求められる値である。
Further, the obtained bonded magnets 1 to 1 of the present invention are obtained.
0, the tensile strength was measured for the comparative bonded magnets 1 to 3 and the conventional bonded magnet, and the ratio of the HDDR magnet powder being coated with the Sr ferrite magnet powder in the base material of the bonded magnet (hereinafter referred to as the coating ratio) It was measured by actually measuring the area ratio of the coated part by scanning electron microscope observation, and the results are shown in Table 1. Furthermore, after these bond magnets were magnetized with a pulse magnetic field of 70 KOe, they were left in an oven maintained at 80 ° C. for 1000 hours, and after 3 hours, 100 hours, and 1000 hours, the thermal demagnetization rates were measured. 1 and the thermal stability was evaluated. Here, the thermal demagnetization rate is a value determined by thermal demagnetization rate (%) = {(total magnetic flux after exposure for predetermined time−total magnetic flux before exposure) / total magnetic flux before exposure} × 100.

【0022】[0022]

【表1】 [Table 1]

【0023】表1に示される結果から、HDDR磁石粉
末およびSrフェライト磁石粉末を共に含む本発明磁石
1〜10は、Srフェライト磁石粉末を含まない従来磁
石に比べていずれも熱減磁率の絶対値が小さいことから
熱的安定性に優れていることがわかる。しかし、この発
明の条件から外れたSrフェライト粉末の平均粒径が大
きい比較磁石1は熱減磁率の絶対値が大きくなり、熱的
安定性が劣るので好ましくないことがわかる。またこの
発明の条件から外れたSrフェライト粉末の多い比較磁
石2は引張り強さが小さくなって機械的強度が劣るので
好ましくないことがわかる。
From the results shown in Table 1, the magnets 1 to 10 of the present invention containing both the HDDR magnet powder and the Sr ferrite magnet powder all had absolute values of the thermal demagnetization rate as compared with the conventional magnet not containing the Sr ferrite magnet powder. Shows that the thermal stability is excellent. However, the comparative magnet 1 having a large average particle diameter of the Sr ferrite powder deviating from the conditions of the present invention is not preferable because the absolute value of the thermal demagnetization rate is large and the thermal stability is poor. Further, it can be seen that the comparative magnet 2 containing a large amount of Sr ferrite powder out of the conditions of the present invention is not preferable because the tensile strength is small and the mechanical strength is inferior.

【0024】実施例2 いずれも平均粒径:200μmを有し表2〜3に示され
るM(Si、Ga、Zr、Nb、Mo、Hf、Ta、
W、Al、Ti、Vのうち1種または2種以上)を含む
HDDR磁石粉末を用意し、これらを含むMHDDR磁
石粉末:87%に対して実施例1で用意した平均粒径:
0.75μを有するSrフェライト磁石粉末を10%添
加し混合して混合粉末を作製し、この混合粉末にさらに
二液性固形エポキシ樹脂:3%を混合して表2〜3に示
される組成のコンパウンドを作製し、このコンパウンド
を金型に充填して実施例1と同じ条件で本発明ボンド磁
石11〜26を作製した。
Example 2 Each of them had an average particle diameter of 200 μm and had M (Si, Ga, Zr, Nb, Mo, Hf, Ta,
HDDR magnet powder containing one or more of W, Al, Ti, and V) is prepared, and the average particle diameter prepared in Example 1 for MHDDR magnet powder containing these: 87%:
10% of Sr ferrite magnet powder having 0.75μ is added and mixed to prepare a mixed powder, and further mixed with the mixed powder, two-part solid epoxy resin: 3% to obtain a composition shown in Tables 2 and 3. A compound was prepared, and the compound was filled in a mold to prepare bonded magnets 11 to 26 of the present invention under the same conditions as in Example 1.

【0025】さらに、得られた本発明ボンド磁石11〜
26について、実施例1と同様にして引張り強さおよび
被覆率を測定し、さらに70KOeのパルス磁界で着磁
した後、80℃に保持したオーブンに1000時間放置
して3時間、100時間、1000時間経過後の熱減磁
率を測定し、その結果を表2〜3に示して熱的安定性を
評価した。
Further, the obtained bonded magnets 11 to 11 of the present invention are obtained.
For 26, the tensile strength and the coverage were measured in the same manner as in Example 1, and after being magnetized with a pulse magnetic field of 70 KOe, it was left in an oven maintained at 80 ° C. for 1000 hours, and then for 3 hours, 100 hours, and 1000 hours. After the lapse of time, the thermal demagnetization rate was measured, and the results were shown in Tables 2 and 3 to evaluate the thermal stability.

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】表2〜3に示される結果から、HDDR磁
石粉末およびSrフェライト磁石粉末を共に含む本発明
磁石11〜26は、いずれも熱的安定性に優れているこ
とが分かる。
From the results shown in Tables 2 and 3, it can be seen that all of the magnets 11 to 26 of the present invention containing both the HDDR magnet powder and the Sr ferrite magnet powder have excellent thermal stability.

【0029】[0029]

【発明の効果】上述のように、この発明によると、熱的
安定性に優れたボンド磁石を提供することができ、電気
・電子産業上すぐれた効果をもたらすものである。
As described above, according to the present invention, it is possible to provide a bonded magnet having excellent thermal stability and to provide an excellent effect in the electric and electronic industries.

フロントページの続き (72)発明者 森本 耕一郎 埼玉県大宮市北袋町1−297 三菱マテリ アル株式会社総合研究所内 Fターム(参考) 5E040 AA04 AA19 AB03 BB03 CA01 HB17 NN01 5E062 CC05 CD02 CD05 CE04 Continuing from the front page (72) Inventor Koichiro Morimoto 1-297 Kitabukuro-cho, Omiya-shi, Saitama F-term in Mitsubishi Materia Real Research Laboratories (reference) 5E040 AA04 AA19 AB03 BB03 CA01 HB17 NN01 5E062 CC05 CD02 CD05 CE04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】RをYを含む希土類元素、TをFeあるい
はFeの一部をCoで置換した成分、MをSi、Ga、
Zr、Nb、Mo、Hf、Ta、W、Al、Ti、Vの
うち1種または2種以上とすると、 水素を吸蔵させたのち脱水素して得られたR−T−B系
またはR−T−B−M系磁石粉末(以下、HDDR磁石
粉末という):75〜97質量%、 フェライト磁石粉末:2〜24質量%、を含有し、残部
が樹脂からなることを特徴とする熱的安定性に優れたボ
ンド磁石。
1. R is a rare earth element containing Y, T is Fe or a component obtained by partially substituting Fe with Co, M is Si, Ga,
When one or more of Zr, Nb, Mo, Hf, Ta, W, Al, Ti, and V are used, the R-T-B or R-B system obtained by absorbing hydrogen and then dehydrogenating it is obtained. Thermal stability characterized by containing TBM-based magnet powder (hereinafter referred to as HDDR magnet powder): 75 to 97% by mass, ferrite magnet powder: 2 to 24% by mass, and the balance being resin. Bond magnet with excellent properties.
【請求項2】前記HDDR磁石粉末は平均粒径:50〜
500μmを有し、前記フェライト磁石粉末は平均粒
径:0.1〜2.0μmを有することを特徴とする請求
項1記載の熱的安定性に優れたボンド磁石。
2. The HDDR magnet powder has an average particle size of 50 to 50.
2. The bonded magnet with excellent thermal stability according to claim 1, wherein the ferrite magnet powder has a mean particle diameter of 0.1 to 2.0 [mu] m.
【請求項3】前記HDDR磁石粉末は、その表面が前記
フェライト磁石粉末に覆われていることを特徴とする請
求項1または2記載の熱的安定性に優れたボンド磁石。
3. The bonded magnet according to claim 1, wherein the surface of the HDDR magnet powder is covered with the ferrite magnet powder.
【請求項4】前記HDDR磁石粉末は、その表面の60
%以上が前記フェライト磁石粉末に覆われていることを
特徴とする請求項3記載の熱的安定性に優れたボンド磁
石。
4. The HDDR magnet powder has 60
The bonded magnet having excellent thermal stability according to claim 3, wherein at least% of the bonded magnet is covered with the ferrite magnet powder.
【請求項5】平均粒径:50〜500μmのHDDR磁
石粉末と平均粒径:0.1〜2.0μmのフェライト磁
石粉末を混合して混合粉末を作製し、この混合粉末にさ
らに樹脂を添加・混合してHDDR磁石粉末:75〜9
7質量%、フェライト磁石粉末:2〜24質量%を含有
し、残部が樹脂からなるコンパウンドを作製し、このコ
ンパウンドを金型に充填し、プレス成形して所定形状の
成形体を作製し、その後この成形体の樹脂硬化を行うこ
とを特徴とする熱的安定性に優れたボンド磁石の製造方
法。
5. A mixed powder is prepared by mixing an HDDR magnet powder having an average particle size of 50 to 500 μm and a ferrite magnet powder having an average particle size of 0.1 to 2.0 μm, and further adding a resin to the mixed powder.・ Mix to HDDR magnet powder: 75-9
A compound containing 7% by mass and ferrite magnet powder: 2 to 24% by mass, the remainder being made of resin, filling the compound into a mold, press-molding to form a molded body having a predetermined shape, and thereafter A method for producing a bonded magnet having excellent thermal stability, wherein the molded body is cured with a resin.
JP2000372491A 2000-12-07 2000-12-07 Bonded magnetic having superior thermal stability, and its manufacturing method Withdrawn JP2002175909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000372491A JP2002175909A (en) 2000-12-07 2000-12-07 Bonded magnetic having superior thermal stability, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000372491A JP2002175909A (en) 2000-12-07 2000-12-07 Bonded magnetic having superior thermal stability, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002175909A true JP2002175909A (en) 2002-06-21

Family

ID=18842029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000372491A Withdrawn JP2002175909A (en) 2000-12-07 2000-12-07 Bonded magnetic having superior thermal stability, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002175909A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205435A (en) * 2007-01-24 2008-09-04 Fujikura Ltd Magnetic impedance effect element
WO2016021842A1 (en) * 2014-08-07 2016-02-11 주식회사 아워홈 Fermented food packaging pouch and packaging method using same
CN111029073A (en) * 2019-12-27 2020-04-17 成都银河磁体股份有限公司 High-resistance magnetic powder, bonded magnet and preparation method thereof
WO2021200517A1 (en) * 2020-03-31 2021-10-07 愛知製鋼株式会社 Compressed bonded magnet, manufacturing method therefor, and field coil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205435A (en) * 2007-01-24 2008-09-04 Fujikura Ltd Magnetic impedance effect element
WO2016021842A1 (en) * 2014-08-07 2016-02-11 주식회사 아워홈 Fermented food packaging pouch and packaging method using same
CN111029073A (en) * 2019-12-27 2020-04-17 成都银河磁体股份有限公司 High-resistance magnetic powder, bonded magnet and preparation method thereof
WO2021200517A1 (en) * 2020-03-31 2021-10-07 愛知製鋼株式会社 Compressed bonded magnet, manufacturing method therefor, and field coil

Similar Documents

Publication Publication Date Title
WO2005001856A1 (en) R-t-b based rare earth permanent magnet and method for production thereof
EP0657899B1 (en) Iron-based permanent magnet alloy powders for resin bonded magnets and magnets made therefrom
CN1033899A (en) Corrosion resisting rare-earth metal magnet
WO2003085684A1 (en) Composite rare earth anisotropic bonded magnet, compound for composite rare earth anisotropic bonded magnet, and method for production thereof
US6338761B1 (en) Iron-based permanent magnets and their fabrication as well as iron-based permanent magnet alloy powders for permanent bonded magnets and iron-based bonded magnets
JP2014132599A (en) Rare earth magnet powder, method for manufacturing the same, compound thereof, and bond magnet thereof
AU609669B2 (en) Method of manufacturing a permanent magnet
JPS6393841A (en) Rare-earth permanent magnet alloy
JP2018174314A (en) R-T-B based sintered magnet
JPS6017905A (en) Permanent magnet alloy powder
JP2002175909A (en) Bonded magnetic having superior thermal stability, and its manufacturing method
JPH04241402A (en) Permanent magnet
JPH05335120A (en) Anisotropic bonded manget manufacturing magnet powder coated with solid resin binder and manufacture thereof
JP6513623B2 (en) Method of manufacturing isotropic bulk magnet
JPH0660367B2 (en) Method of manufacturing permanent magnet material
JP3037917B2 (en) Radial anisotropic bonded magnet
JP3652751B2 (en) Anisotropic bonded magnet
JP3652752B2 (en) Anisotropic bonded magnet
JP2925840B2 (en) Fe-BR bonded magnet
JPH0669010A (en) Manufacture method of r-t-m-n based bonded magnet
JP3703903B2 (en) Anisotropic bonded magnet
JP2726991B2 (en) Rare earth composite magnet material
JPH08203714A (en) Iron-based permanent magnet, manufacture thereof and iron-based permanent magnet alloy powder for bonded magnet and iron-based bonded magnet
JP3736830B2 (en) Rare earth-Fe-Co-B magnet powder and bonded magnet excellent in squareness and thermal stability
JPH07302725A (en) Manufacture of r-fe-m-n based bond magnet

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060124

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060214

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304