JPH07302725A - Manufacture of r-fe-m-n based bond magnet - Google Patents

Manufacture of r-fe-m-n based bond magnet

Info

Publication number
JPH07302725A
JPH07302725A JP6114521A JP11452194A JPH07302725A JP H07302725 A JPH07302725 A JP H07302725A JP 6114521 A JP6114521 A JP 6114521A JP 11452194 A JP11452194 A JP 11452194A JP H07302725 A JPH07302725 A JP H07302725A
Authority
JP
Japan
Prior art keywords
powder
phase
treatment
type structure
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6114521A
Other languages
Japanese (ja)
Other versions
JP3148514B2 (en
Inventor
Akira Makita
顕 槇田
Satoru Hirozawa
哲 広沢
Minoru Umemoto
実 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP11452194A priority Critical patent/JP3148514B2/en
Publication of JPH07302725A publication Critical patent/JPH07302725A/en
Application granted granted Critical
Publication of JP3148514B2 publication Critical patent/JP3148514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0596Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure

Abstract

PURPOSE:To obtain magnetic powder having a fine crystal grain diameter, and realize a bond magnet excellent in magnetic characteristics, by performing a heating diffusion process, after additional elements whose amount is less than or equal to a specified value is added to starting material and mechanical alloying is performed. CONSTITUTION:The following are mixed to obtain composition; 6-8at% of R (which is at least one kind of rare earth element containing Y and contains Sm of 50% or more), 75-92at% of Fe, and 1-15at% of M (one kind or two or more kinds out of Ti, V, Cr, Co, Ni, Nb, Mo, Ta, W, Al, Si, Ga, Zr, In, Sn and Hf). After the mixing, mechanical alloying is performed, and then a heating diffusion process is performed at 600-850 deg.C for l0min-12hr. Thereby powder having a specified average grain diameter whose main phase is the following is obtained; R2Fe17-xMx phase (X=0.2-3.5) having Th2Zn17 type structure or TbCu7 type structure, and Fe-M phase having bcc structure. Alloy powder obtained by nitriding the powder under a specified condition is bonded by using resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、各種モーター、アク
チュエーター等の磁気回路を構成する永久磁石に用いる
ことが可能なR−Fe−M−N系ボンド磁石の製造方法
に係り、所要組成に配合、混合した所要金属粉末または
合金粉末を特定雰囲気にてメカニカルアロイングし、拡
散処理にてTh2Zn17型構造またはTbCu7型構造を
有するR2Fe17-xx相(但し、x=0.2〜3.
5)、ならびにbcc構造を有するFe−M相の2相
が、各々微細結晶粒径を有し、互いに混合している集合
粉体となし、さらに窒化処理を行い、これを樹脂で結合
することにより、高保磁力を有するR−Fe−M−N系
ボンド磁石を得る製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an R-Fe-MN series bonded magnet which can be used for a permanent magnet constituting a magnetic circuit such as various motors and actuators, and has a required composition. Mechanically alloying the mixed required metal powder or alloy powder in a specific atmosphere, and diffusing the R 2 Fe 17-x M x phase having a Th 2 Zn 17 type structure or a TbCu 7 type structure (where x = 0.2-3.
5), and two Fe-M phases having a bcc structure each have a fine crystal grain size and are mixed with each other to form an aggregate powder, which is further subjected to a nitriding treatment and bonded with a resin. The present invention relates to a manufacturing method for obtaining an R-Fe-M-N based bonded magnet having a high coercive force.

【0002】[0002]

【従来の技術】ボンド磁石は寸法精度のよさ、他部材と
の一体成形によるコストダウンメリット、薄肉成形品で
の歩留りの良さ等の理由により多方面で使用されてお
り、その原料としてNd−Fe−B系粉末がある。Nd
−Fe−B系永久磁石用粉末としては、超急冷法などに
より得られた超微細組織を有する磁石粉末が用いられて
きた。
2. Description of the Related Art Bonded magnets are used in various fields for reasons such as good dimensional accuracy, cost reduction by integral molding with other members, and good yield in thin-walled molded products. -There is a B-based powder. Nd
As the —Fe—B-based permanent magnet powder, a magnet powder having an ultrafine structure obtained by a superquenching method or the like has been used.

【0003】前記Nd−Fe−B系永久磁石用粉末は、
キュリー点(Tc)が約300℃前後と低く、Br、i
Hcの温度係数が大きいため、ボンド磁石に用いた場合
の磁石特性の温度係数が大きいという問題がある。その
ためCo等の添加によりTcを上昇させてBrの温度係
数を改善することが可能であるが、Brの温度係数αは
せいぜい−0.08%/℃程度が限界であった。
The Nd-Fe-B system permanent magnet powder is
The Curie point (Tc) is low at around 300 ° C, and Br, i
Since the temperature coefficient of Hc is large, there is a problem that the temperature coefficient of the magnet characteristics is large when used in a bonded magnet. Therefore, it is possible to raise Tc by adding Co or the like to improve the temperature coefficient of Br, but the temperature coefficient α of Br is limited to about −0.08% / ° C. at most.

【0004】最近Th2Zn17型構造を持つSm2Fe17
化合物は、窒素を格子間に侵入させることによりTcが
絶対温度で2倍近く高くなり、Nd−Fe−B系のTc
よりも160℃も高く、Nd2Fe14Bを上回る異方性
磁界が得られることが報告されている(J.M.D.C
oey and H.Sun,J.Magn. Mag
n. Mat. 87 (1990)L251)。ま
た、ThMn12型構造を持つNd−Fe−M(M=T
i,V,Cr,Mo等)系化合物でも、窒素を格子間に
侵入せしめることによりTcが上昇し、Nd2Fe14
と同程度の異方性磁界が得られることが報告されている
(Ying−chang Yang et al.,S
olid State Commun.78(199
1)317.)。
Recently, Sm 2 Fe 17 having a Th 2 Zn 17 type structure
The compound has a Tc almost twice as high as an absolute temperature by allowing nitrogen to penetrate into the lattice, and the Tc of the Nd-Fe-B system is increased.
It is reported that an anisotropic magnetic field higher than that of Nd 2 Fe 14 B by 160 ° C. is obtained (JMDC).
oey and H.A. Sun, J. et al. Magn. Mag
n. Mat. 87 (1990) L251). Further, Nd-Fe-M (M = T having a ThMn 12 type structure)
(i, V, Cr, Mo, etc.)-based compounds also have an increase in Tc due to the intrusion of nitrogen into the interstitial lattice, and Nd 2 Fe 14 B
It has been reported that an anisotropic magnetic field similar to that of Ying-chang Yang et al., S is obtained.
solid State Commun. 78 (199
1) 317. ).

【0005】[0005]

【発明が解決しようとする課題】発明者らは先に、上記
Nd−Fe−M系組成を持つ合金をメカニカルアロイン
グ法で得た後、加熱拡散処理によりThMn12型構造の
微細な結晶を析出させ、さらに窒化処理して得られる磁
石粉末を樹脂で結合するR−T−M−N系ボンド磁石の
製造方法を提案した(特開平5−234731号)。こ
の製造方法においては、添加元素MはThMn12構造を
安定化させる必須元素として7at%以上添加する必要
があるが、この非磁性元素の添加により磁化が低下する
という磁気特性上の問題点があった。
The inventors of the present invention first obtained an alloy having the above-mentioned Nd-Fe-M system composition by a mechanical alloying method, and then heat-diffusion treatment to form fine crystals of a ThMn 12 type structure. A method for producing an RTMN-N-based bonded magnet, in which magnet powder obtained by precipitation and further nitriding treatment is bonded with a resin, has been proposed (JP-A-5-234731). In this manufacturing method, the additional element M needs to be added at 7 at% or more as an essential element for stabilizing the ThMn 12 structure, but there is a problem in magnetic characteristics that the addition of this non-magnetic element lowers the magnetization. It was

【0006】一方、Sm2Fe17系窒化物は、資源的に
少ないSmを多く含有することから比較的高価になる問
題があり、資源的に豊富な元素を多く含有する永久磁石
粉末が求められている。その解決策として、SmとFe
の組成比をSm2Fe17の化学量論比よりもFeを多く
した組成比となるように配合、混合した原料をメカニカ
ルアロイングし、加熱拡散処理によりSm2Fe17相と
α−Fe相を微細に析出、混合させた後、窒化するSm
2Fe17x+α−Fe系2相磁石の製造方法が提示され
ている(例えば、J.Ding,P.G.McCorm
icandR.Street,J.Magn.Mag
n.Mat.124(1993),1)。しかし、この
方法によれば、Sm2Fe17x相およびα−Fe相の結
晶粒径を充分に微細することができず、高保磁力を得る
ことができない。
On the other hand, since the Sm 2 Fe 17 system nitride contains a large amount of Sm, which is a small amount of resources, there is a problem that it is relatively expensive, and a permanent magnet powder containing a large amount of abundant elements of resources is required. ing. As a solution, Sm and Fe
The composition ratio of Sm 2 Fe 17 was mixed so that Fe was larger than the stoichiometric ratio of Sm 2 Fe 17 , and the mixed raw materials were mechanically alloyed, and the Sm 2 Fe 17 phase and α-Fe phase were subjected to a heat diffusion treatment. Sm that is nitrided after finely depositing and mixing
A method of manufacturing a 2 Fe 17 N x + α-Fe two-phase magnet has been proposed (for example, J. Ding, PG McCorm).
ican dR. Street, J .; Magn. Mag
n. Mat. 124 (1993), 1). However, according to this method, the crystal grain sizes of the Sm 2 Fe 17 N x phase and the α-Fe phase cannot be made sufficiently fine and a high coercive force cannot be obtained.

【0007】この発明は、R2Fe17X+α−Fe系2
相磁石の製造、特にメカニカルアロイング法を用いた製
造方法において、微細な結晶粒径の磁石粉末を得て磁気
特性の高いボンド磁石を製造できるR−Fe−M−N系
ボンド磁石の製造方法の提供を目的としている。
The present invention relates to R 2 Fe 17 N X + α-Fe system 2
Method for producing a phase magnet, particularly a production method using a mechanical alloying method, for producing a bond magnet having high magnetic properties by obtaining magnet powder having a fine crystal grain size, and a method for producing an R-Fe-M-N bond magnet The purpose is to provide.

【0008】[0008]

【問題を解決するための手段】発明者らは、メカニカル
アロイング法を用いたSm2Fe17X+α−Fe系2相
磁石の製造方法において、磁気特性を向上させるため、
このタイプの磁石にとって理想的な組織、すなわち、窒
化後にハード相となるSm2Fe17と、ソフト相である
α−Feのそれぞれが、極めて微細に析出し、互いに混
合し合っているような組織を実現させる方法を鋭意検討
した結果、出発原料中に15at%以下の添加元素M
(M:Ti,V,Cr,Co,Ni,Nb,Mo,T
a,W,Al,Si,Ga,Zr,In,Sn,Hf,
のうち1種または2種以上)を加え、メカニカルアロイ
ングを行った後、適当な条件で加熱拡散処理を行うこと
により、上記の理想的組織が現出し、窒化処理後の磁気
特性が向上することを知見し、この発明を完成した。ま
た、発明者らは、上記加熱拡散処理と窒化処理の工程に
おいて、両工程を同一の炉内で連続的に行うことによ
り、それぞれ個別に実施する場合に比べて処理する粉末
中の酸素量が低減され、磁気特性が向上することを知見
し、この発明を完成した。
In order to improve the magnetic characteristics in the method of manufacturing an Sm 2 Fe 17 N X + α-Fe two-phase magnet using the mechanical alloying method, the inventors have
An ideal structure for this type of magnet, that is, a structure in which Sm 2 Fe 17 which is a hard phase after nitriding and α-Fe which is a soft phase are extremely finely precipitated and mixed with each other. As a result of earnestly studying the method for realizing the above, the additive element M of 15 at% or less in the starting material was added.
(M: Ti, V, Cr, Co, Ni, Nb, Mo, T
a, W, Al, Si, Ga, Zr, In, Sn, Hf,
One or two or more of them are added, mechanical alloying is performed, and then heat diffusion treatment is performed under appropriate conditions to reveal the above-mentioned ideal structure and improve magnetic properties after nitriding treatment. Based on this finding, the present invention has been completed. Further, in the steps of the heat diffusion treatment and the nitriding treatment, the inventors perform both steps continuously in the same furnace, so that the amount of oxygen in the powder to be treated is higher than that in the case where they are individually performed. It was found that the magnetic properties were reduced and the magnetic properties were improved, and the present invention was completed.

【0009】すなわち、この発明は、 1) R 6〜8at%、Fe 75〜92at%、M
1〜15at%、(但し、 R:Yを含む希土類元素
の少なくとも1種で、かつSmを50%以上含有、M:
Ti,V,Cr,Co,Ni,Nb,Mo,Ta,W,
Al,Si,Ga,Zr,In,Sn,Hfのうち一種
または2種以上)の配合組成となるように、所要の金属
粉末または合金粉末を配合、混合後、 2) 真空中あるいはArガス中にてメカニカルアロイ
ングし、 3) さらに真空中あるいはArガス中にて600〜8
50℃、10分〜12時間の加熱拡散処理を行い、Th
2Zn17型構造またはTbCu7型構造を有するR2Fe
17-xx相(但し、x=0.2〜3.5)、ならびにb
cc構造を有するFe−M相の2相が、各々平均粒径
0.05〜0.5μmを有して互いに混合している平均
粒度0.5〜500μmの粉末を得、 4) この粉末を0.5〜1000atmのN2ガス中
で300〜550℃に10分〜12時間保持する窒化処
理を行い、R 5〜7at%、Fe 75〜92at
%、M 1〜15at%、N 3〜12at%を含有す
る合金粉末を得、 5) これを樹脂で結合したことを特徴とする温度特性
にすぐれたR−Fe−M−N系ボンド磁石の製造方法で
ある。
That is, the present invention is: 1) R 6 to 8 at%, Fe 75 to 92 at%, M
1 to 15 at%, (provided that at least one kind of rare earth element including R: Y and containing 50% or more of Sm, M:
Ti, V, Cr, Co, Ni, Nb, Mo, Ta, W,
1 or more of Al, Si, Ga, Zr, In, Sn, Hf), and after mixing and mixing the required metal powder or alloy powder, 2) in vacuum or in Ar gas Mechanically alloying with 3), then 600 ~ 8 in vacuum or Ar gas.
Heat diffusion treatment at 50 ° C for 10 minutes to 12 hours is performed.
R 2 Fe having a 2 Zn 17 type structure or a TbCu 7 type structure
17-x M x phase (where x = 0.2 to 3.5), and b
2 phases of Fe-M phase having a cc structure each having an average particle size of 0.05 to 0.5 μm are mixed with each other to obtain a powder having an average particle size of 0.5 to 500 μm, 4) Nitriding treatment is carried out by holding at 300 to 550 ° C. for 10 minutes to 12 hours in 0.5 to 1000 atm of N 2 gas, R 5 to 7 at% and Fe 75 to 92 at.
%, M 1 to 15 at% and N 3 to 12 at% were obtained, and 5) an R-Fe-M-N based bonded magnet having excellent temperature characteristics, characterized by being bonded with a resin. It is a manufacturing method.

【0010】また、この発明は、上記の構成において、
加熱拡散処理と窒化処理の工程において、両工程を同一
の炉内で連続的に行うことを特徴とするR−Fe−M−
N系ボンド磁石の製造方法を併せて提案する。
Further, according to the present invention, in the above structure,
R-Fe-M- characterized in that, in the heating diffusion process and the nitriding process, both processes are continuously performed in the same furnace.
We also propose a method for manufacturing N-based bonded magnets.

【0011】組成の限定理由 この発明の製造方法によるR−Fe−M−N系ボンド磁
石では、Fe−M相の存在が必須条件であり、この点が
従来のR−T−M−N系磁石と本質的に異なるところで
ある。この発明に使用する原料組成において、希土類元
素RはY,La,Pr,Nd,Sm,Gd,Tb,H
o,Er,Tm,Luが包含され、これらのうち少なく
とも1種以上で、SmをRの50at%以上含有する。
Rの50at%以上をSmとするのは、Smが50%以
下では十分な保磁力が得られないためである。また、R
として全量Smを使用してもよい。メカニカルアロイン
グ前のR組成は、6at%未満ではFe−M相に対する
2Fe17-xx相の体積比が小さすぎて、保磁力が低下
し、また、8at%を超えるとFe−M相が減少して磁
化が低下するため、6〜8at%とする。Rとして全量
Smを使用する場合のSmの組成範囲も、上記と同じ理
由で6〜8at%とする。より好ましいメカニカルアロ
イング前のRの範囲は、7〜8at%である。
Reason for Limiting Composition The presence of the Fe-M phase is an essential condition in the R-Fe-M-N based bonded magnet according to the manufacturing method of the present invention. This point is related to the conventional R-T-M-N system. It is essentially different from a magnet. In the raw material composition used in the present invention, the rare earth element R is Y, La, Pr, Nd, Sm, Gd, Tb, H.
O, Er, Tm, and Lu are included, and at least one of them contains Sm in an amount of 50 at% or more of R.
The reason why Sm is 50 at% or more of R is that sufficient coercive force cannot be obtained when Sm is 50% or less. Also, R
You may use the whole quantity Sm as. When the R composition before mechanical alloying is less than 6 at%, the volume ratio of the R 2 Fe 17-x M x phase to the Fe-M phase is too small, and the coercive force decreases, and when it exceeds 8 at%, Fe- Since the M phase decreases and the magnetization decreases, it is set to 6 to 8 at%. The composition range of Sm when the total amount of Sm is used as R is also set to 6 to 8 at% for the same reason as above. A more preferable range of R before mechanical alloying is 7 to 8 at%.

【0012】メカニカルアロイング後に加熱拡散処理を
経て、窒化処理した後のR組成は、Rがメカニカルアロ
イング中にミル内壁やボール表面に付着したり、あるい
は加熱拡散処理時に蒸発したりするため、メカニカルア
ロイング前に比べて減少する傾向にある。また、窒化処
理による窒素量の増加や製造プロセス上、不可避な粉末
の酸化による酸素料の増加のため、Rの組成は相対的に
減少する。Rが5at%未満ではFe−M相に対するR
2Fe17-xx相の体積比が小さすぎて、保磁力が低下
し、また、7at%を超えるとRがR2Fe17-xxの化
学量論組成を超えるためFe−M相が消滅し、RFe3
相などが析出して磁化が低下するため、窒化処理後のR
は5〜7at%とする。より好ましい窒化処理後のRの
範囲は6〜7at%である。
The R composition after nitriding after heat diffusion after mechanical alloying is because R adheres to the inner wall of the mill or the ball surface during mechanical alloying or evaporates during heat diffusion. It tends to decrease compared to before mechanical alloying. Further, the composition of R relatively decreases due to an increase in the amount of nitrogen due to the nitriding treatment and an increase in the oxygen content due to the oxidation of the powder which is unavoidable in the manufacturing process. When R is less than 5 at%, R for Fe-M phase
The volume ratio of the 2 Fe 17-x M x phase is too small, and the coercive force decreases, and when it exceeds 7 at%, R exceeds the stoichiometric composition of R 2 Fe 17-x M x. Phase disappears and RFe 3
Since the phase precipitates and the magnetization decreases, R after nitriding treatment
Is 5 to 7 at%. A more preferable range of R after nitriding treatment is 6 to 7 at%.

【0013】この発明の製造方法によるR−Fe−M−
N系ボンド磁石では、Fe−M相の存在が必須条件であ
るが、ThMn12型構造の化合物においては、Rの化学
量論組成は7.7at%と低く、この発明のRの組成範
囲においてFe−M相を存在させることは困難となる。
このため、この発明では加熱拡散処理後の粉末を構成す
る化合物をTh2Zn17型構造またはTbCc7型構造を
有するR2Fe17-xx相、ならびにbcc構造を有する
Fe−M相に限定する。Feは、75at%未満ではR
Fe3相などが析出して磁化が低下し、92at%を超
えるとFe−M相に対するR2Fe17-xx相の体積比が
小さすぎて保磁力が低下するため、75〜92at%と
する。より好ましいFeの範囲は80〜85at%であ
る。
R-Fe-M-by the manufacturing method of the present invention
In the N-based bonded magnet, the presence of the Fe-M phase is an essential condition, but in the compound having the ThMn 12 type structure, the stoichiometric composition of R is as low as 7.7 at%, and in the composition range of R of the present invention. The existence of the Fe-M phase becomes difficult.
Therefore, in the present invention, the compound constituting the powder after the heat diffusion treatment is converted into the R 2 Fe 17-x M x phase having the Th 2 Zn 17 type structure or the TbCc 7 type structure and the Fe-M phase having the bcc structure. limit. Fe is R when less than 75 at%
If the Fe 3 phase or the like precipitates and the magnetization decreases, and if it exceeds 92 at%, the volume ratio of the R 2 Fe 17-x M x phase to the Fe-M phase is too small, and the coercive force decreases, so that it is 75 to 92 at%. And A more preferable range of Fe is 80 to 85 at%.

【0014】添加元素Mは、加熱拡散処理で結晶化する
2Fe17相およびα−Fe相中に置換あるいは固溶し
て、両相の結晶粒径が0.5μm以上に粗大化するのを
防止し、結果として保磁力が低下するのを抑制する効果
を有する元素が望まれ、特に顕著な効果を持つものとし
て、Ti,V,Cr,Co,Ni,Nb,Mo,Ta,
Wがある。また、Mのうち、Al,Si,Ga,Zr,
In,Sn,Hfは、R2Fe17-xx相の結晶構造を安
定化し、窒化処理における同相の分解反応を抑制するの
に有用な元素である。従って、Mとしては、上記の元素
を目的に応じて組み合せて用いることが得策である。添
加量は、15at%を超えると強磁性でない第2相が析
出して磁化を低下することから、Mは15at%以下と
する。より好ましいMの範囲は1〜10at%である。
The additive element M is substituted or solid-solved in the R 2 Fe 17 phase and the α-Fe phase which are crystallized by the heat diffusion treatment, and the crystal grain size of both phases is coarsened to 0.5 μm or more. Is desired, and as a result the coercive force is prevented from lowering, an element having the effect of suppressing the decrease of coercive force is desired, and Ti, V, Cr, Co, Ni, Nb, Mo, Ta,
There is W. In addition, among M, Al, Si, Ga, Zr,
In, Sn, and Hf are elements useful for stabilizing the crystal structure of the R 2 Fe 17-x M x phase and suppressing the in-phase decomposition reaction in the nitriding treatment. Therefore, as M, it is advisable to use a combination of the above elements according to the purpose. When the addition amount exceeds 15 at%, the second phase that is not ferromagnetic precipitates and the magnetization decreases, so M is set to 15 at% or less. A more preferable range of M is 1 to 10 at%.

【0015】Nは、R2Fe17-xx相中に拡散し、一軸
異方性を持つ窒素侵入型化合物R2Fe17-xxyを形
成するが、Nが3at%未満だと一軸異方性が得られ
ず、また12at%を超えるとTh2Zn17型構造また
はTbCu7型構造が不安定となり、R2Fe17-xxy
相がRNとFe−Mに分解して好ましくないため、3〜
12at%とする。より好ましいNの範囲は7〜11a
t%である。
N diffuses into the R 2 Fe 17-x M x phase to form a nitrogen interstitial compound R 2 Fe 17-x M x N y having uniaxial anisotropy, but N is less than 3 at%. In that case, uniaxial anisotropy cannot be obtained, and if it exceeds 12 at%, the Th 2 Zn 17 type structure or the TbCu 7 type structure becomes unstable, and R 2 Fe 17-x M x N y
Since the phase decomposes into RN and Fe-M, which is not preferable,
12 at%. More preferable range of N is 7 to 11a.
t%.

【0016】製造条件の限定理由 この発明において、メカニカルアロイングとは、所要組
成に配合した金属粉末あるいは合金粉末を混合、調整し
た後、真空中またはArガス中で鋼球などの微粉砕媒体
を収容した微粉砕装置により、前記金属粉末あるいは合
金粉末を原子レベルまで混合することにより、常温で機
械的に合金化する工程である。メカニカルアロイングに
使用する装置は、容器内を不活性ガスで置換することが
可能なものであれば、ボールミル、振動ミル、遊星ボー
ルミル、アトライターなどが使用できるが、その性能な
どにより運転条件が異なるので、適宜選定する必要があ
る。メカニカルアロイング後の生成物は、R−Fe−M
系非晶質あるいはR−Fe−M系非晶質中にbcc−F
e、元素MおよびFe−Mのうちの1種、あるいは2種
以上が微細に分散した状態のいずれかであることが望ま
しい。
Reasons for limiting manufacturing conditions In the present invention, mechanical alloying means mixing and adjusting a metal powder or an alloy powder blended in a required composition, and then forming a fine grinding medium such as steel balls in a vacuum or Ar gas. This is a step of mechanically alloying at room temperature by mixing the metal powder or the alloy powder to the atomic level by the contained fine pulverizer. As a device used for mechanical alloying, a ball mill, a vibration mill, a planetary ball mill, an attritor or the like can be used as long as it can replace the inside of the container with an inert gas. Since it is different, it is necessary to select it appropriately. The product after mechanical alloying is R-Fe-M.
Bcc-F in R-Fe-M system amorphous or R-Fe-M system amorphous
It is desirable that one of e, the element M and Fe-M, or two or more of them be finely dispersed.

【0017】メカニカルアロイング後の加熱拡散処理条
件を600〜850℃、10分〜12時間に限定した理
由は以下のとおりである。加熱拡散処理温度が600℃
未満では、構成元素の拡散速度が遅いため、メカニカル
アロイング後に得られた構成元素が微視的オーダーで混
合した組成物から、Th2Zn17型構造あるいは多くの
積層欠陥を含んだ構造であるTbCu7型構造を有する
2Fe17-xx化合物が析出する速度が極めて遅くな
り、反応に長時間を要するため好ましくなく、また85
0℃を超えるとTh2Zn17型構造またはTbCu7型
構造を有するR2Fe17-xx化合物が速やかに析出する
が、粗大結晶となり保磁力が低下して好ましくない。よ
り好ましい温度範囲は650〜750℃である。加熱拡
散処理時間が10分未満では、粉末全体を均一な組織に
することが困難となり、また12時間を超えると粗大粒
成長による保磁力の低下、および熱処理中の粉末の酸化
により磁気特性に低下を招来し、また処理費用が高騰す
るため好ましくない。より好ましい加熱拡散処理時間は
30〜60分である。
The reason for limiting the heat diffusion treatment condition after mechanical alloying to 600 to 850 ° C. for 10 minutes to 12 hours is as follows. Heat diffusion treatment temperature is 600 ℃
If it is less than the above, the diffusion rate of the constituent elements is slow, so that the composition obtained by mechanically alloying and mixing the constituent elements in a microscopic order is a Th 2 Zn 17 type structure or a structure containing many stacking faults. The rate at which the R 2 Fe 17-x M x compound having the TbCu 7 type structure precipitates becomes extremely slow, and the reaction takes a long time, which is not preferable.
If the temperature exceeds 0 ° C., the R 2 Fe 17-x M x compound having the Th 2 Zn 17 type structure or the TbCu 7 type structure will be rapidly precipitated, but it will become coarse crystals and the coercive force will decrease, which is not preferable. A more preferable temperature range is 650 to 750 ° C. If the heat diffusion treatment time is less than 10 minutes, it will be difficult to make the entire powder into a uniform structure, and if it exceeds 12 hours, the coercive force will decrease due to the growth of coarse particles, and the magnetic properties will deteriorate due to the oxidation of the powder during heat treatment. And the treatment cost rises, which is not preferable. A more preferable heat diffusion treatment time is 30 to 60 minutes.

【0018】加熱拡散処理後の粉末の平均結晶粒度を
0.05〜0.5μmに限定した理由は、0.05μm
未満では事実上生成が困難であり、0.05μm未満の
結晶が得られたとしても特性上の利点はなく、また0.
5μmを超えると窒化処理後のR2Fe17-xxy相の
粒径が単磁区粒子臨界径よりも大きくなり、粉末の保磁
力が減少して、永久磁石用粉末として好ましくないため
である。より好ましい平均結晶粒度は0.1〜0.3μ
mである。本発明の磁石粉末を構成するR2Fe17-xx
Ny相およびFe−M相のいずれもが、上記の平均結晶
粒度範囲を維持し、しかも、両相が互いに結晶粒界を介
して混合していることが必要不可欠である。
The reason for limiting the average grain size of the powder after the heat diffusion treatment to 0.05 to 0.5 μm is 0.05 μm.
If it is less than 0.1, it is practically difficult to generate, and even if a crystal having a size of less than 0.05 μm is obtained, there is no advantage in terms of properties, and it is 0.
If it exceeds 5 μm, the grain size of the R 2 Fe 17-x M x N y phase after nitriding treatment becomes larger than the critical domain grain size, and the coercive force of the powder decreases, which is not preferable as a powder for permanent magnets. Is. More preferable average grain size is 0.1 to 0.3 μ
m. R 2 Fe 17-x M x constituting the magnet powder of the present invention
It is essential that both the Ny phase and the Fe-M phase maintain the above average grain size range, and that both phases are mixed with each other through the grain boundaries.

【0019】この発明において、微細結晶粒径を有する
微粉末の平均粒度を0.5〜500μmに限定したの
は、0.5μm未満では粉末の酸化による磁気特性劣化
のおそれがあり、また、500μmを超えると窒化処理
に長時間を要して好ましくないためである。より好まし
い微粉末の平均粒度は1〜10μmである。
In the present invention, the reason for limiting the average particle size of the fine powder having a fine crystal grain size to 0.5 to 500 μm is that if the average particle size is less than 0.5 μm, the magnetic properties may be deteriorated due to the oxidation of the powder and 500 μm. This is because the nitriding treatment takes a long time and is not preferable when it exceeds. The more preferable average particle size of the fine powder is 1 to 10 μm.

【0020】窒化処理時のN2圧力を0.5〜1000
atmに限定した理由は、0.5atm未満では窒化反
応が遅く、圧力を上げると反応は速やかに進行するが、
1000atmを超えると処理設備が大きくなりすぎ、
工業生産コスト的に好ましくないためである。より好ま
しい圧力範囲は1〜50atmである。窒化処理時の温
度を300〜550℃に限定した理由は、300℃未満
では窒化が進行せず、550℃を超えるとR2Fe17-x
x化合物がRNとFe−Mに分解し、磁気特性の劣化
を招来するためである。より好ましい温度範囲は400
〜450℃である。また、窒化処理時の保持時間は、1
0分未満では充分な窒化が進行せず、また12時間を超
えると分解が起こり、磁気特性の劣化を招来るするた
め、10分〜12時間とする。より好ましい保持時間は
1〜5時間である。
The N 2 pressure during the nitriding treatment is 0.5 to 1000.
The reason for limiting to atm is that if it is less than 0.5 atm, the nitriding reaction is slow, and if the pressure is increased, the reaction proceeds rapidly,
If it exceeds 1000 atm, the processing equipment becomes too large,
This is because it is not preferable in terms of industrial production cost. A more preferable pressure range is 1 to 50 atm. The reason for limiting the temperature during the nitriding treatment to 300 to 550 ° C. is that nitriding does not proceed below 300 ° C. and R 2 Fe 17-x exceeds 550 ° C.
This is because the M x compound decomposes into RN and Fe-M, which causes deterioration of magnetic properties. A more preferable temperature range is 400
~ 450 ° C. The holding time during nitriding is 1
If it is less than 0 minutes, sufficient nitriding does not proceed, and if it exceeds 12 hours, decomposition occurs and deterioration of magnetic properties is caused, so that it is set to 10 minutes to 12 hours. A more preferable holding time is 1 to 5 hours.

【0021】この発明において、加熱拡散処理と窒化処
理の両工程を同一の炉内で連続的に行う方法としては、
バッチ式または連続式の炉のいずれを用いてもよく、後
者の場合は、加熱拡散処理室と窒化処理室の少なくとも
2室を備え、炉内の両室間で処理用原料の入った容器を
移動させる構造のものが好ましい。
In the present invention, as a method for continuously performing both the heat diffusion treatment and the nitriding treatment in the same furnace,
Either a batch type or a continuous type furnace may be used. In the latter case, at least two chambers of a heating diffusion treatment chamber and a nitriding treatment chamber are provided, and a container containing a processing raw material is provided between both chambers in the furnace. It is preferable that the structure be moved.

【0022】この発明におけるR−Fe−M−N系ボン
ド磁石は、以下に示す圧縮成形、射出成形、押し出し成
形、圧延成形、樹脂含浸法など、公知のいずれの製造方
法であってもよい。圧縮成形の場合は、磁石粉末に熱硬
化性樹脂、カップリング剤、滑剤などを添加混練した
後、圧縮成形後加熱し、樹脂を硬化して得られる。射出
成形、押し出し成形、圧延成形の場合は、磁石粉末に熱
可塑性樹脂、カップリング剤、滑剤などを添加混練した
後、射出成形、押し出し成形、圧延成形のいずれかの方
法で成形して得られる。樹脂含浸法においては、磁石粉
末を圧縮成形後、必要に応じて熱処理した後、熱硬化性
樹脂を含浸し、加熱して樹脂を硬化させて得る。あるい
は、磁石粉末を圧縮成形後、必要に応じて熱処理した
後、熱可塑性樹脂を含浸して得る。
The R-Fe-M-N bond magnet according to the present invention may be manufactured by any known manufacturing method such as compression molding, injection molding, extrusion molding, roll molding and resin impregnation method shown below. In the case of compression molding, it is obtained by adding and kneading a thermosetting resin, a coupling agent, a lubricant and the like to the magnet powder, followed by compression molding and heating to cure the resin. In the case of injection molding, extrusion molding, and roll molding, it can be obtained by adding thermoplastic resin, coupling agent, lubricant, etc. to the magnet powder and kneading it, and then molding by injection molding, extrusion molding, or roll molding. . In the resin impregnation method, the magnet powder is compression-molded, optionally heat-treated, then impregnated with a thermosetting resin, and heated to cure the resin. Alternatively, the magnet powder may be obtained by compression molding, heat treatment if necessary, and impregnation with a thermoplastic resin.

【0023】この発明において、ボンド磁石中の磁石粉
末の充填率は、前記製造方法により異なるが、70〜9
9.5wt%であり、残部0.5〜30wt%が樹脂そ
の他である。圧縮成形法の場合、磁石粉末の充填率は9
5〜99.5wt%、射出成形法の場合、90〜95w
t%、樹脂含浸法の場合、96〜99.5wt%が好ま
しい。この発明において、バインダーとして用いる合成
樹脂は熱硬化性、熱可塑性のいずれでも使用できるが、
熱的に安定な樹脂が好ましく、例えば、ポリアミド、ポ
リイミド、ポリエステル、フェノール樹脂、フッソ樹
脂、ケイ素樹脂、エポキシ樹脂などが適宜選択される。
In the present invention, the filling rate of the magnet powder in the bonded magnet depends on the manufacturing method, but is 70-9.
It is 9.5 wt% and the balance 0.5 to 30 wt% is resin or the like. In the case of compression molding, the filling rate of magnet powder is 9
5-99.5 wt%, 90-95w in the case of injection molding method
t%, and in the case of the resin impregnation method, 96 to 99.5 wt% is preferable. In the present invention, the synthetic resin used as the binder may be either thermosetting or thermoplastic,
A thermally stable resin is preferable, and for example, polyamide, polyimide, polyester, phenol resin, fluorine resin, silicon resin, epoxy resin or the like is appropriately selected.

【0024】[0024]

【作用】この発明は、Th2Zn17型構造またはTbC
7型構造のR2Fe17のFeを添加元素Mで置換するた
め、メカニカルアロイング後に行う加熱拡散処理で晶出
するTh2Zn17型結晶構造またはTbCu7型構造を有
するR2Fe17-xx化合物の粒径を0.5μm以下にす
ることができ、その結果、晶出した結晶粒径は単磁区粒
子径と同等以下となり、窒化処理の後、得られた磁石用
合金粉末はすぐれた保磁力を発現する。また、この発明
は、原子オーダーで混合された特定組成のR−Fe−M
系合金粉末をメカニカルアロイングにて作製した後、さ
らに600〜850℃で加熱拡散処理することにより、
Th2Zn17型構造またはTbCu7型構造のR2Fe
17-xx相およびbcc構造のFe−M相の2相を主相
とする特定平均結晶粒径を有する粉末を得ることがで
き、これを特定条件にてN2ガス中で窒化処理すること
により、3kOe以上の保磁力を有する所要のR−Fe
−M−N系合金粉末を製造でき、これを樹脂で結合する
ことにより、温度特性の優れたR−Fe−M−N系ボン
ド磁石を容易に製造できる。
The present invention is based on the Th 2 Zn 17 type structure or TbC.
to replace the Fe in the R 2 Fe 17 of u 7 type structure with additive element M, R 2 Fe 17 having a Th 2 Zn 17 type crystal structure or the TbCu 7 structure crystallizes in heat diffusion treatment performed after mechanical alloying -x M x compound particle size to be able to 0.5μm below, so that the crystal grain size of crystallized out becomes equal to or less than the single magnetic domain particle size, after the nitriding treatment, for obtaining magnet alloy powder Exhibits excellent coercive force. In addition, the present invention provides a specific composition of R-Fe-M mixed in atomic order.
After the alloy alloy powder is produced by mechanical alloying, it is further heat-diffused at 600 to 850 ° C.
R 2 Fe of Th 2 Zn 17 type structure or TbCu 7 type structure
It is possible to obtain a powder having a specific average crystal grain size with two main phases being the 17-x M x phase and the Fe-M phase of the bcc structure, and subjecting this to nitriding treatment in N 2 gas under specific conditions. The required R-Fe having a coercive force of 3 kOe or more.
An -MN alloy powder can be produced, and by bonding this with a resin, an R-Fe-MN bonded magnet having excellent temperature characteristics can be easily produced.

【0025】[0025]

【実施例】【Example】

実施例 原料金属粉末として粒度250μm以下のR粉末、粒度
150μm以下のFe粉末、および添加元素Mの粉末を
表1に示す組成に配合後、この配合原料の36gを直径
128mm×高さ132mm寸法のボールミル内に装入
し、さらに微粉砕媒体として直径9.8mmのステンレ
ス鋼球500gを装入し、このボールミル内をArガス
にて置換後、回転数95rpm、回転時間200時間の
条件にてメカニカルアロイング処理した。メカニカルア
ロイングの結果、実施例No.1〜9の原料は、平均粒
度1.5μmの微粉末となった。この粉末は、X線回折
によるとアモルファス相と結晶質のbcc構造を有する
Fe−M相の混合物であった。
Example As a raw material metal powder, R powder having a particle size of 250 μm or less, Fe powder having a particle size of 150 μm or less, and powder of the additional element M were mixed in the composition shown in Table 1, and 36 g of this compounded raw material was measured with a diameter of 128 mm × height of 132 mm Charge into the ball mill, and further charge 500 g of stainless steel balls with a diameter of 9.8 mm as a fine grinding medium. After replacing the inside of this ball mill with Ar gas, mechanically under the conditions of rotation speed of 95 rpm and rotation time of 200 hours. Alloyed. As a result of mechanical alloying, Example No. The raw materials 1 to 9 were fine powders having an average particle size of 1.5 μm. This powder was a mixture of an amorphous phase and a Fe-M phase having a crystalline bcc structure according to X-ray diffraction.

【0026】次にArガス中にて表2に示す加熱拡散処
理条件にて熱処理を行い、Th2Zn17型構造のR2Fe
17-xx相およびbcc構造のFe−M相の2相を主相
とする粉末を得た。粉末の平均結晶粒径ならびに平均粒
度はそれぞれ0.1μmおよび1.5μmであった。S
EM観察したところ、粉末粒度分布が大きく、さらに各
粉末は細かい粒子が凝集したように見えた。メカニカル
アロイング後の粉末を、新たにArガス中で表2に示す
加熱拡散処理条件にて熱処理を行い、さらに処理炉内の
雰囲気を圧力1atmのN2ガスで置換し、表2に示す
窒化条件にて窒化処理した後、冷却した。得られた合金
粉末の組成を表1に示し、また、実施例No.1〜3の
X線回折パターンを図1に示す。図1から明らかなよう
に、実施例の試料No.1,2,3の磁石粉末のX線回
折パターンは、いずれもSm2Fe17-xxy相とbc
c構造のFe−M相の回折ピークからなり、この発明の
磁石粉末がこれら2相からなっていることを示してい
る。
Next, heat treatment is performed in Ar gas under the heat diffusion treatment conditions shown in Table 2 to form R 2 Fe having a Th 2 Zn 17 type structure.
The two phases of the 17-x M x phase and the bcc structure Fe-M phase to obtain a powder as a main phase. The average crystal grain size and the average grain size of the powder were 0.1 μm and 1.5 μm, respectively. S
As a result of EM observation, the powder particle size distribution was large, and it appeared that each powder was agglomerated with fine particles. The powder after mechanical alloying was newly heat-treated in Ar gas under the heat diffusion treatment conditions shown in Table 2, and the atmosphere in the treatment furnace was replaced with N 2 gas at a pressure of 1 atm, and the nitridation shown in Table 2 was performed. After nitriding under the conditions, it was cooled. The composition of the obtained alloy powder is shown in Table 1, and the composition of Example No. The X-ray diffraction patterns of 1-3 are shown in FIG. As is clear from FIG. 1, the sample No. The X-ray diffraction patterns of the magnet powders 1, 2, and 3 are Sm 2 Fe 17-x M x N y phase and bc, respectively.
It consists of the diffraction peak of the Fe-M phase of the c structure, indicating that the magnet powder of the present invention consists of these two phases.

【0027】また、得られた合金粉末に2.0wt%の
エポキシ樹脂を混合し、3.0ton/cm2の圧力で
圧縮成形し、さらに温度150℃、1時間の条件で樹脂
を硬化させてボンド磁石を作製した。ボンド磁石の特性
を測定し表2に示し、また、試料No.1(実施例N
o.1)の減磁カーブを図2に示す。図2から明らかな
ように、減磁カーブは点線で示したマイナーループの傾
きが大きいことから、Sm2Fe17−xMxNy相とF
e−Co相とが、互いに磁気的な交換相互作用を及ぼし
合うのに充分なほど短い距離で混合し合っていることが
わかる。さらに、試料No.1(実施例No.1)のボ
ンド磁石の残留磁束密度と保磁力の、20〜140℃に
おける温度変化率を測定したところ、それぞれα=−
0.02%/℃、β=−0.28/℃であった。
Further, 2.0 wt% of an epoxy resin was mixed with the obtained alloy powder, the mixture was compression-molded at a pressure of 3.0 ton / cm 2 , and the resin was cured at a temperature of 150 ° C. for 1 hour. A bond magnet was produced. The properties of the bonded magnet were measured and are shown in Table 2. 1 (Example N
o. The demagnetization curve of 1) is shown in FIG. As is clear from FIG. 2, since the demagnetization curve has a large inclination of the minor loop shown by the dotted line, the Sm 2 Fe 17 -xMxNy phase and the F
It can be seen that the e-Co phase mixes with each other at a distance short enough to cause magnetic exchange interactions with each other. Further, the sample No. When the rate of temperature change of the residual magnetic flux density and the coercive force of the bonded magnet of Example 1 (Example No. 1) at 20 to 140 ° C. was measured, α = −
It was 0.02% / ° C and β = -0.28 / ° C.

【0028】実施例No.1と同一の組成に配合後、前
述のメカニカルアロイング処理を施し、得られた粉末に
Arガス中650℃で30分間保持する加熱拡散処理を
行った。この粉末を冷却後、一旦大気中に取り出し、さ
らに窒化処理炉内に装入し、圧力1atmのN2ガス中
400℃で2時間の窒化処理を行い、磁石用粉末(実施
例No.10)を得た。得られた合金粉末の組成を表1
に、上記の実施例No.1と同様の方法で樹脂結合後の
ボンド磁石の磁気特性を表2に示す。
Example No. After blending in the same composition as in Example 1, the above mechanical alloying treatment was performed, and the obtained powder was subjected to a heat diffusion treatment in which it was kept in Ar gas at 650 ° C. for 30 minutes. After cooling this powder, it was once taken out into the atmosphere, charged into a nitriding furnace, and subjected to a nitriding treatment at 400 ° C. for 2 hours in N 2 gas at a pressure of 1 atm for magnet powder (Example No. 10). Got The composition of the obtained alloy powder is shown in Table 1.
In the above example No. Table 2 shows the magnetic characteristics of the bonded magnet after resin bonding in the same manner as in No. 1.

【0029】比較例1 実施例と同一の原料粉末を用いて、表1に示す組成に配
合後、実施例と同一のメカニカルアロイング処理を施
し、得られた粉末Arガス中で表2に示す加熱拡散処理
条件にて熱処理を行い、さらに処理炉内の雰囲気を圧力
1atmのN2ガスで置換し、表2に示す窒化条件にて
窒化処理し、磁石用粉末(比較例No.1)を得た。得
られた合金粉末の組成を表1に、実施例と同様の方法で
樹脂結合後のボンド磁石の磁気特性を表2に示す。
Comparative Example 1 Using the same raw material powder as in Example, the composition shown in Table 1 was added, and then the same mechanical alloying treatment as in Example was applied, and the obtained powder Ar gas is shown in Table 2. Heat treatment was performed under heat diffusion treatment conditions, the atmosphere in the treatment furnace was replaced with N 2 gas at a pressure of 1 atm, and nitriding treatment was performed under the nitriding conditions shown in Table 2 to obtain magnet powder (Comparative Example No. 1). Obtained. The composition of the obtained alloy powder is shown in Table 1, and the magnetic characteristics of the bonded magnet after resin bonding in the same manner as in the examples are shown in Table 2.

【0030】比較例2 実施例No.1と同一の組成に配合後、実施例と同一の
メカニカルアロイング処理を施し、得られた粉末をAr
ガス中300℃で15分間保持する加熱拡散処理を行
い、さらに処理炉内の雰囲気を圧力1atmのN2ガス
で置換し、表2に示す窒化条件にて窒化処理し、磁石用
粉末(比較例No.2)を得た。得られた合金粉末の組
成を表1に、実施例と同様の方法で樹脂結合後のボンド
磁石の磁気特性を表2に示す。
Comparative Example 2 Example No. After blending in the same composition as 1 and subjected to the same mechanical alloying treatment as in the example, the obtained powder was Ar.
A heat diffusion treatment was carried out in which the gas was kept at 300 ° C. for 15 minutes, and the atmosphere in the treatment furnace was replaced with N 2 gas at a pressure of 1 atm. No. 2) was obtained. The composition of the obtained alloy powder is shown in Table 1, and the magnetic characteristics of the bonded magnet after resin bonding in the same manner as in the examples are shown in Table 2.

【0031】比較例3 実施例No.2と同一の組成に配合後、実施例と同一の
メカニカルアロイング処理を施し、得られた粉末をAr
ガス中で表2に示す熱拡散処理条件で熱処理を行い、さ
らに処理炉内の雰囲気を圧力1atmのN2ガスで置換
し、900℃で2時間保持する窒化処理を行い、磁石用
粉末(比較例No.3)を得た。得られた合金粉末の組
成を表1に、実施例と同様の方法で樹脂結合後のボンド
磁石の磁気特性を表2に示す。
Comparative Example 3 Example No. After blending in the same composition as 2 and subjected to the same mechanical alloying treatment as in the example, the obtained powder is Ar.
Heat treatment was performed in a gas under the thermal diffusion treatment conditions shown in Table 2, the atmosphere in the treatment furnace was replaced with N 2 gas at a pressure of 1 atm, and nitriding treatment was performed at 900 ° C. for 2 hours to obtain magnet powder (comparative). Example No. 3) was obtained. The composition of the obtained alloy powder is shown in Table 1, and the magnetic characteristics of the bonded magnet after resin bonding in the same manner as in the examples are shown in Table 2.

【0032】比較例4 実施例と同一の原料粉末を用いて、表1に示す組成に配
合後、実施例と同一のメカニカルアロイング処理を施
し、得られた粉末Arガス中で表2に示す加熱拡散処理
条件にて熱処理を行い、さらに処理炉内の雰囲気を圧力
1atmのN2ガスで置換し、表2に示す窒化条件にて
窒化処理し、ThMn12型構造を有するNdFe12-x
xy相を主相とする磁石用粉末(比較例No.4)を得
た。得られた合金粉末の組成を表1に、実施例と同様の
方法で樹脂結合後のボンド磁石の磁気特性を表2に示
す。
Comparative Example 4 Using the same raw material powder as in Example, the composition shown in Table 1 was added, and then the same mechanical alloying treatment as in Example was applied, and in the obtained powder Ar gas, shown in Table 2. NdFe 12-x V having a ThMn 12 type structure is obtained by performing heat treatment under heat diffusion treatment conditions, further replacing the atmosphere in the treatment furnace with N 2 gas at a pressure of 1 atm, and nitriding treatment under the nitriding conditions shown in Table 2.
x N y phase to obtain a powder for a magnet of a main phase (Comparative Example No.4). The composition of the obtained alloy powder is shown in Table 1, and the magnetic characteristics of the bonded magnet after resin bonding in the same manner as in the examples are shown in Table 2.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【発明の効果】この発明によれば、Th2Zn17型構造
またはTbCu7型構造の安定化元素MとしてTi,
V,Cr,Co,Ni,Nb,Mo,Ta,W,Al,
Si,Ga,Zr,In,Sn,Hfの少なくとも1種
を15at%以下含有する特定組成のR−Fe−M系合
金粉末を作製することにより、メカニカルアロイング後
の加熱拡散処理温度を600〜850℃と比較的低い温
度とすることができ、この加熱拡散処理により容易にT
2Zn17型構造またはTbCu7型構造のR2Fe17-x
x相およびbcc構造のFe−M相の2相を主相とす
る特定平均結晶粒径を有する粉末を得ることができ、こ
れを特定条件でのN2ガス中窒化処理することにより、
3kOe以上の保磁力を有する所要のR−Fe−M−N
系合金粉末を製造でき、これを樹脂で結合することによ
り、温度特性に優れたR−Fe−M−N系ボンド磁石を
容易に製造できる。
According to the present invention, as the stabilizing element M of the Th 2 Zn 17 type structure or the TbCu 7 type structure, Ti,
V, Cr, Co, Ni, Nb, Mo, Ta, W, Al,
By producing an R-Fe-M alloy powder having a specific composition containing at least one kind of Si, Ga, Zr, In, Sn, and Hf at 15 at% or less, the heat diffusion treatment temperature after mechanical alloying is 600 to The temperature can be set to a relatively low temperature of 850 ° C., and this heat diffusion treatment facilitates T
R 2 Fe 17-x having h 2 Zn 17 type structure or TbCu 7 type structure
It is possible to obtain a powder having a specific average crystal grain size having two phases of the M x phase and the Fe-M phase of the bcc structure as main phases, and subjecting this to nitriding treatment in N 2 gas under specific conditions,
Required R-Fe-MN having coercive force of 3 kOe or more
A system alloy powder can be produced, and by bonding this with a resin, an R—Fe—M—N system bonded magnet having excellent temperature characteristics can be easily produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の試料No.1,2,3の磁石粉末のX
線回折パターンを示すグラフである。
1 is a sample No. of an example. X of 1,2,3 magnet powder
It is a graph which shows a line diffraction pattern.

【図2】実施例の試料No.1のボンド磁石の減磁カー
ブを示すグラフである。
2 is a sample No. of the example. It is a graph which shows the demagnetization curve of the bonded magnet of No. 1.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/06 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display area H01F 1/06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 R(R:Yを含む希土類元素の少なくと
も1種で、かつSmを50%以上含有)6〜8at%、
Fe 75〜92at%、M(M:Ti,V,Cr,C
o,Ni,Nb,Mo,Ta,W,Al,Si,Ga,
Zr,In,Sn,Hfのうち一種または2種以上)1
〜15at%の配合組成となるように、所要の金属粉末
または合金粉末を配合、混合後、真空中あるいはArガ
ス中にてメカニカルアロイングし、さらに真空中あるい
はArガス中にて600〜850℃、10分〜12時間
の加熱拡散処理を行い、Th2Zn17型構造またはTb
Cu7型構造を有するR2Fe17-xx相(但し、x=
0.2〜3.5)、ならびにbcc構造を有するFe−
M相の2相が、各々平均粒径0.05〜0.5μmを有
して互いに混合している平均粒度0.5〜500μmの
粉末を得、この粉末を0.5〜1000atmのN2
ス中で300〜550℃に10分〜12時間保持する窒
化処理を行い、R 5〜7at%、Fe 75〜92a
t%、M 1〜15at%、N 3〜12at%を含有
する合金粉末を得、これを樹脂で結合したことを特徴と
する温度特性にすぐれたR−Fe−M−N系ボンド磁石
の製造方法。
1. R (6: 8 at% of at least one kind of rare earth element containing R: Y and containing 50% or more of Sm)
Fe 75 to 92 at%, M (M: Ti, V, Cr, C
o, Ni, Nb, Mo, Ta, W, Al, Si, Ga,
One or more of Zr, In, Sn and Hf) 1
After mixing and mixing the required metal powder or alloy powder so as to obtain a blend composition of ˜15 at%, mechanical alloying is performed in vacuum or in Ar gas, and further 600 to 850 ° C. in vacuum or in Ar gas. The heat diffusion treatment is performed for 10 minutes to 12 hours to obtain a Th 2 Zn 17 type structure or Tb.
R 2 Fe 17-x M x phase having a Cu 7 type structure (where x =
0.2-3.5), and Fe- having a bcc structure
Two phases, M phase, each having an average particle size of 0.05 to 0.5 μm are mixed with each other to obtain a powder having an average particle size of 0.5 to 500 μm, and the powder is mixed with 0.5 to 1000 atm of N 2 Nitriding treatment is carried out by holding in gas at 300 to 550 ° C. for 10 minutes to 12 hours, R 5 to 7 at%, Fe 75 to 92 a
An alloy powder containing t%, M 1 to 15 at% and N 3 to 12 at% was obtained, and this was bonded with a resin to produce an R-Fe-M-N bond magnet having excellent temperature characteristics. Method.
【請求項2】 加熱拡散処理と窒化処理の工程におい
て、両工程を同一の炉内で連続的に行うことを特徴とす
る請求項1に記載のR−Fe−M−N系ボンド磁石の製
造方法。
2. The process of heating diffusion process and nitriding process, both steps are continuously performed in the same furnace, and the production of the R—Fe—M—N based bonded magnet according to claim 1. Method.
JP11452194A 1994-04-28 1994-04-28 Method for producing R-Fe-M-N bonded magnet Expired - Lifetime JP3148514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11452194A JP3148514B2 (en) 1994-04-28 1994-04-28 Method for producing R-Fe-M-N bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11452194A JP3148514B2 (en) 1994-04-28 1994-04-28 Method for producing R-Fe-M-N bonded magnet

Publications (2)

Publication Number Publication Date
JPH07302725A true JPH07302725A (en) 1995-11-14
JP3148514B2 JP3148514B2 (en) 2001-03-19

Family

ID=14639841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11452194A Expired - Lifetime JP3148514B2 (en) 1994-04-28 1994-04-28 Method for producing R-Fe-M-N bonded magnet

Country Status (1)

Country Link
JP (1) JP3148514B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316018A (en) * 1994-07-12 1996-11-29 Tdk Corp Magnet and bonded magnet
JP2000012316A (en) * 1998-06-24 2000-01-14 Sumitomo Metal Mining Co Ltd Rare earth bond magnet, and magnetic powder and composition therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316018A (en) * 1994-07-12 1996-11-29 Tdk Corp Magnet and bonded magnet
JP2000012316A (en) * 1998-06-24 2000-01-14 Sumitomo Metal Mining Co Ltd Rare earth bond magnet, and magnetic powder and composition therefor

Also Published As

Publication number Publication date
JP3148514B2 (en) 2001-03-19

Similar Documents

Publication Publication Date Title
JP3741597B2 (en) Multi-element rare earth-iron lattice intrusion-type permanent magnet material, permanent magnet comprising the same, and method for producing them
JPH0974006A (en) Magnetic material and bonded magnet
USRE37666E1 (en) Iron-based permanent magnets and their fabrication as well as iron-based permanent magnet alloy powders for permanent bonded magnets and iron-based bonded magnets
US5480495A (en) Magnetic material
US6338761B1 (en) Iron-based permanent magnets and their fabrication as well as iron-based permanent magnet alloy powders for permanent bonded magnets and iron-based bonded magnets
JPH1041116A (en) R-t-m-n permanent magnetic powder and manufacture of anisotropic bond magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JP3135665B2 (en) Magnetic materials and bonded magnets
JP3247508B2 (en) permanent magnet
JPH04241402A (en) Permanent magnet
JP3504735B2 (en) Method for producing RTMN based anisotropic bonded magnet
JPH06207204A (en) Production of rare earth permanent magnet
JP3148514B2 (en) Method for producing R-Fe-M-N bonded magnet
JP3615177B2 (en) Magnet material and method of manufacturing bonded magnet using the same
JPH045739B2 (en)
JPH0669010A (en) Manufacture method of r-t-m-n based bonded magnet
JP2927987B2 (en) Manufacturing method of permanent magnet powder
JP3157659B2 (en) Manufacturing method of permanent magnet powder
JPH045738B2 (en)
JP2001313206A (en) R-t-n anisotropic magnetic powder, its manufacturing method, and r-t-n anisotropic bonded magnet
JP3713326B2 (en) Permanent magnet material
JP3795694B2 (en) Magnetic materials and bonded magnets
JPH06342706A (en) Magnetic material
JP3209292B2 (en) Magnetic material and its manufacturing method
JP3703903B2 (en) Anisotropic bonded magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080112

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 13

EXPY Cancellation because of completion of term