JP3047239B2 - Warm-worked magnet and manufacturing method thereof - Google Patents

Warm-worked magnet and manufacturing method thereof

Info

Publication number
JP3047239B2
JP3047239B2 JP1094493A JP9449389A JP3047239B2 JP 3047239 B2 JP3047239 B2 JP 3047239B2 JP 1094493 A JP1094493 A JP 1094493A JP 9449389 A JP9449389 A JP 9449389A JP 3047239 B2 JP3047239 B2 JP 3047239B2
Authority
JP
Japan
Prior art keywords
glass
warm
graphite
magnet
flake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1094493A
Other languages
Japanese (ja)
Other versions
JPH02272703A (en
Inventor
克典 岩崎
茂穂 谷川
雅亮 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP1094493A priority Critical patent/JP3047239B2/en
Priority to DE1989617906 priority patent/DE68917906T2/en
Priority to EP19890119269 priority patent/EP0392077B1/en
Publication of JPH02272703A publication Critical patent/JPH02272703A/en
Application granted granted Critical
Publication of JP3047239B2 publication Critical patent/JP3047239B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は希土類、遷移金属、硼素から実質的になる永
久磁石であって温間加工によって磁気異方性を付与する
温間加工磁石の改良に関し、特にグラファイトパウダー
と低融点ガラスを添加することによって加工性を向上し
て割れが無く且つ添加剤と磁性粉末間の化学反応を利用
して良好な磁気特性を実現する永久磁石に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a permanent magnet substantially consisting of a rare earth, a transition metal, and boron, and to an improvement of a warm-worked magnet imparting magnetic anisotropy by warm working. In particular, the present invention relates to a permanent magnet which improves workability by adding graphite powder and low melting point glass, has no cracks, and realizes good magnetic properties by utilizing a chemical reaction between the additive and magnetic powder.

[従来の技術] 希土類、遷移金属、硼素から実質的になる永久磁石
(以下R−T−B系永久磁石と呼ぶ)は安価で且つ高磁
気特性を有するものとして注目を集めている。
[Prior Art] Permanent magnets (hereinafter referred to as RTB-based permanent magnets) substantially made of rare earths, transition metals and boron have attracted attention as being inexpensive and having high magnetic properties.

然して、この系の磁石は焼結磁石と超急冷磁石に大別
される。いずれの製造方法を取る場合でも所要の形状に
成形することが必要であり、成形性が重要である。成形
性を向上するために潤滑剤を用いることは従来から行わ
れてきた。潤滑剤は被成形体とダイス面との間の摩擦係
数を減少するためにダイス面もしくは被成形体の表面に
塗布する外部潤滑剤と、被成形体を構成する粉体粒子の
相互的な摩擦係数を減少するために添加される粉末状、
液体状、固体状等の潤滑剤である内部潤滑剤に大別され
る。
However, this type of magnet is roughly divided into a sintered magnet and a super-quenched magnet. Whichever manufacturing method is used, it is necessary to mold into a required shape, and moldability is important. The use of a lubricant to improve the formability has been conventionally performed. The lubricant is an external lubricant applied to the die surface or the surface of the molded object to reduce the friction coefficient between the molded object and the die surface, and the mutual friction between the powder particles constituting the molded object. Powdery, added to reduce the coefficient
It is roughly divided into internal lubricants, which are liquid and solid lubricants.

しかし、焼結磁石において磁気的異方性を得ようとす
る場合は、磁場の中で成形するという面倒な工程が必須
であり形状に制約を受ける。
However, when trying to obtain magnetic anisotropy in a sintered magnet, a complicated step of molding in a magnetic field is essential, and the shape is restricted.

従って、磁場中の成形が不要な急冷磁石、とりわけR
−T−B系の溶湯を超急冷法によって凝固し、薄帯又は
薄片を得て粉砕しホットプレス(高温処理)した後、温
間で塑性加工して磁気異方性を付与した永久磁石(以下
「温間加工磁石」と呼ぶ)が注目されている(特開昭60
−100402号公報参照)。超急冷法で得られた薄帯または
薄片は、更にその内部が無数の微細結晶粒からなってい
る。従って、超急冷法によって得られる薄帯又は薄片は
厚さ30μm程度で一変の長さが500μm以下の板状の不
定形をしているものの、その内部に含まれる結晶粒が焼
結磁石(例えば特公昭61−34242号参照)の1〜90μm
と比べて0.02〜1μmと微細であり、この系の磁石の単
磁区の臨界寸法約0.3μmに近く本質的に優れた磁気特
性が得られるからでもある。
Therefore, quenching magnets that do not require molding in a magnetic field, especially R
-T-B melt is solidified by a super-quenching method, a ribbon or a flake is obtained, pulverized, hot-pressed (high-temperature treatment), and then subjected to plastic working in a warm state to impart a magnetic anisotropy ( (Hereinafter referred to as "warm-processed magnet") has been attracting attention (Japanese Patent Application Laid-Open
-100402 publication). The inside of the ribbon or flake obtained by the ultra-quenching method further comprises countless fine crystal grains. Therefore, although the ribbon or flake obtained by the ultra-quenching method has a plate-like amorphous shape with a thickness of about 30 μm and a variable length of 500 μm or less, the crystal grains contained therein are sintered magnets (for example, 1-90μm of Japanese Patent Publication No. 61-34242)
This is because it is as fine as 0.02 to 1 μm, which is close to the critical dimension of about 0.3 μm of a single magnetic domain of the magnet of this system, and essentially excellent magnetic properties can be obtained.

温間加工磁石においては塑性流動とそれに直角な方向
の磁気的配列状態との密接な相関が重要である。塑性流
動を被加工物の全体に均一に充分に行わせることが磁気
特性に関係する配向度の向上に必要である。また、不均
一変形は塑性加工における被加工物のバルジ現象(端縁
部が樽型に変形する現象をいう。)によって端縁部に大
きなクラックを生じてしまう。このことは、製品として
磁石を得ようとする場合には大きな問題点である。
In a warm-worked magnet, a close correlation between the plastic flow and the magnetic arrangement in a direction perpendicular to the plastic flow is important. It is necessary to improve the degree of orientation related to the magnetic properties so that the plastic flow is uniformly and sufficiently applied to the entire workpiece. In addition, the non-uniform deformation causes a large crack at the edge due to a bulge phenomenon (a phenomenon in which the edge is deformed into a barrel shape) of the workpiece in the plastic working. This is a serious problem when trying to obtain a magnet as a product.

ここで、温間加工の際に印加される加工力の大部分は
塑性仕事に使われるが、一部摩擦仕事として浪費され
る。このことは、前記のバルジ現象を生起することにも
なっている。
Here, most of the working force applied at the time of warm working is used for plastic work, but is partially wasted as friction work. This also causes the above-mentioned bulge phenomenon.

従って、温間加工の加工性を向上させ、クラックのな
い温間加工磁石を得る為に、特開昭60−100402号公報に
は温間据込み加工に用いるダイス表面にグラファイトを
外部潤滑剤としてライニングした例が記載されている。
Therefore, in order to improve the workability of warm working and to obtain a crack-free warm working magnet, JP-A-60-100402 discloses that graphite is used as an external lubricant on a die surface used for warm upsetting. A lined example is described.

また、グラファイトとガラスを複合添加して外部潤滑
剤として使用する温間加工磁石の製造方法も知られてい
る(米国特許公報第4,780,226号公報参照)。この方法
は温間加工温度以下の低融点を有する低融点ガラスパウ
ダー、又は前記ガラスパウダーとグラファイトパウダー
の混合物を、加工パンチとダイスの表面にスプレーする
ものである。
There is also known a method of manufacturing a warm-worked magnet using graphite and glass as a composite additive as an external lubricant (see US Pat. No. 4,780,226). In this method, a low-melting glass powder having a low melting point equal to or lower than a warm working temperature, or a mixture of the glass powder and the graphite powder is sprayed on the surfaces of a working punch and a die.

[発明が解決しようとする問題点] 前記のグラファイト及び/又はガラスを外部潤滑剤と
してダイス表面にライニングする方法においては、単に
磁石体(ワーク)と工具(ダイス,パンチ)との間の摩
擦係数を減少するものである。
[Problems to be Solved by the Invention] In the above-described method of lining graphite and / or glass as an external lubricant on the surface of a die, the friction coefficient between a magnet body (work) and a tool (die, punch) is simply determined. Is to reduce.

薄帯または厚さ30μm程度で一辺の長さが500μm以
下の板状の不定形をした薄片には、ダイスに塗布された
黒鉛が一部に付着するにしても、主として工具面の摩擦
係数を低減するだけであって、ほとんどの薄片等には付
着せず、内部潤滑剤としての作用は全くない。従って、
従来の温間加工磁石ではクラックの発生が多いという問
題点があった。
Even if the graphite applied to the die adheres to a thin strip or a plate-shaped amorphous flake with a thickness of about 30 μm and a side length of 500 μm or less, the friction coefficient of the tool surface is mainly reduced. It only reduces it, does not adhere to most flakes, etc., and has no effect as an internal lubricant. Therefore,
The conventional warm-worked magnet has a problem that many cracks occur.

また、室温で成形が行われる粉末冶金法による焼結磁
石と異なり、温間加工の場合は通常600〜850℃の温間で
据込み加工を施すため、個々の薄片間に添加した添加剤
の役割が基本的に異なるものと考えられるが、従来発明
では何らその点が検討されていない。
Also, unlike sintered magnets by powder metallurgy, which are molded at room temperature, in the case of warm working, the upsetting is usually performed at a temperature of 600 to 850 ° C, so the additive added between the individual flakes Although it is considered that the roles are basically different, the conventional invention does not consider that point at all.

従って、本発明はR−TM−B系の温間加工磁石におい
て塑性加工を容易にして割れのないものを得るととも
に、添加剤の磁性粉末間の化学反応を利用して磁気特性
が良好なものを提供することを目的とする。
Accordingly, the present invention provides an R-TM-B based warm-worked magnet which facilitates plastic working to obtain a crack-free one and has good magnetic properties by utilizing a chemical reaction between magnetic powders of additives. The purpose is to provide.

[問題点を解決するための手段] 本発明は、R−T−B系合金(Rはイットリウムを含
む希土類元素の1種又は2種以上、Tは鉄を主体とする
遷移金属、Bは硼素)の溶湯を超急冷して薄帯又は薄片
を得て、この薄帯又は薄片を粉砕し、得られた粉砕粉に
対し軟化点が500〜800℃のガラスを0.5重量%以下(0
を含まず)とグラファイトを0.5重量%未満(0を含ま
ず)とを添加し混合後、混合粉を成形して高密度化し更
に600〜850℃で塑性加工することにより磁気異方性を付
与することを特徴とするR2T14Bで表される金属間化合物
を主相とする温間加工磁石の製造方法である。
[Means for Solving the Problems] The present invention provides an RTB-based alloy (R is one or more rare earth elements including yttrium, T is a transition metal mainly composed of iron, and B is boron. ) Is rapidly quenched to obtain a ribbon or flake, and the ribbon or flake is pulverized, and a glass having a softening point of 500 to 800 ° C. is 0.5% by weight or less (0%
) And less than 0.5% by weight of graphite (excluding 0), and after mixing, the mixed powder is molded and densified to give a magnetic anisotropy by plastic working at 600-850 ° C. This is a method for producing a warm-worked magnet having an intermetallic compound represented by R 2 T 14 B as a main phase.

また本発明は、R2T14B(Rはイットリウムを含む希土
類元素の1種又は2種以上、Tは鉄を主体とする遷移金
属、Bは硼素)で表される金属間化合物を主相とする温
間加工磁石であって、磁気異方性化された平均結晶粒径
が0.02〜1μmの微細な結晶粒を有し、炭素含有量が0.
5重量%以下、酸素含有量が0.3重量%以下であり、且つ
含有されるガラス成分およびグラファイト成分がフレー
ク境界に沿って分布していることを特徴とする温間加工
磁石である。
The present invention also relates to an intermetallic compound represented by R 2 T 14 B (R is one or more rare earth elements including yttrium, T is a transition metal mainly composed of iron, and B is boron). A warm-worked magnet having fine crystal grains having an average crystal grain size of 0.02 to 1 μm that is magnetically anisotropic, and having a carbon content of 0.2.
A warm-worked magnet characterized in that its content is 5% by weight or less, its oxygen content is 0.3% by weight or less, and the contained glass component and graphite component are distributed along flake boundaries.

本発明において低融点ガラスは、例えば水ガラス[K2
OnSi(OH)],PbO−B2O3−SiO2,あるいはTiの室温鋳
造・押出しに使用される商品名Deltaglazeと呼ばれるも
のである。なお、前記Deltaglaze(商品名)は、微粒子
ガラスをトリクレン中に混合して使用する。
In the present invention, the low melting glass is, for example, water glass [K 2
OnSi (OH) 2 ], PbO—B 2 O 3 —SiO 2 , or a product called Deltaglaze, which is a product name used for room temperature casting and extrusion of Ti. The Deltaglaze (trade name) is used by mixing particulate glass in trichlene.

次に本発明におけるガラスの役割について述べる。 Next, the role of glass in the present invention will be described.

グラファイト単独使用の場合、黒い球状の塊が随所に
見られる。この黒い球状の物体が全てフレークかまたは
グラファイトパウダーの凝集か判断できないものの、添
加量とともに多くなり、しかも粗大化してゆく過程は事
実である。この事実は、とりもなおさずグラファイトパ
ウダーが局部的に集中していることを意味する。これに
対し同じグラファイト量添加でも、ガラスを併用するこ
とによってこの“かたまり”は見受けられない。
In the case of using graphite alone, black spherical lumps are found everywhere. Although it is not possible to judge whether all of the black spherical objects are flakes or agglomerates of graphite powder, it is a fact that the process increases with the amount of addition and becomes coarse. This fact means that the graphite powder is concentrated locally. On the other hand, even when the same amount of graphite is added, the use of glass also does not cause this "lump".

したがってガラスが据込み時の熱で軟化し、グラファ
イトパウダーの均一分散に寄与しているものと考えられ
る。
Therefore, it is considered that the glass is softened by the heat at the time of upsetting and contributes to the uniform dispersion of the graphite powder.

ちなみに、磁気特性からガラス単独、グラファイト単
独、ガラス+グラファイト複合の3通りで比較すると、 ガラス+グラファイト複合>グラファイト単独>ガラス
単独の順位になる。
By the way, from the magnetic properties, when comparing three types of glass alone, graphite alone, and glass + graphite composite, the order is glass + graphite composite> graphite alone> glass alone.

すなわち、複合添加による相乗効果によって適度のグ
ラファイト添加で十分に磁気特性を向上する効果があ
る。組織観察の結果は、複合添加によって粒子の流れが
顕著に改善され、据込み方向に対してきれいに垂直方向
に流れていることがわかった。
In other words, there is an effect that the magnetic properties are sufficiently improved by adding a suitable amount of graphite due to the synergistic effect of the composite addition. The result of the structure observation showed that the flow of the particles was significantly improved by the composite addition, and the particles flowed in a direction perpendicular to the upsetting direction.

また、ガラスは内部潤滑剤として加工性の向上にも寄
与している。このことは従来のガラスを外部潤滑剤とし
て用いる温間加工磁石にはなかった機械的特性の向上効
果をもたらす。
Glass also contributes to the improvement of workability as an internal lubricant. This brings about an effect of improving mechanical properties which has not been obtained in a warm-worked magnet using a conventional glass as an external lubricant.

なお、低融点ガラスとグラファイトパウダー間の化学
反応については現状では明確になっていないものの、前
記の複合効果を考慮するとき、何らかの触媒作用的なも
のが介在しているとも考えられる。
Although the chemical reaction between the low-melting glass and the graphite powder has not been clarified at present, it is considered that some catalytic action is present when considering the above-mentioned combined effect.

またガラスの軟化点は若干高めの方が磁気特性と加工
性が優れたものを得ることができるようである。前記よ
り、本発明に用いるガラスの軟化点は500〜800℃が好ま
しい。
It seems that a slightly higher softening point of the glass can provide a glass having better magnetic properties and workability. From the above, the softening point of the glass used in the present invention is preferably from 500 to 800C.

本発明において、グラファイトパウダーは据込み加工
後の残留磁束密度を決定する。しかし、グラファイトを
パウダー状で原料薄片間に添加した後、温間加工を施す
方法では添加量とともに保磁力が著しく低下する減少が
認められる。更に添加量を増加するに従い塊が生成、成
長し、各薄片内の微細結晶粒の塑性変化を阻害する。
In the present invention, the graphite powder determines the residual magnetic flux density after upsetting. However, in a method in which graphite is added between raw material flakes in powder form and then subjected to warm working, a decrease in coercive force is remarkably reduced with the addition amount. As the addition amount is further increased, lumps are formed and grown, and the plastic change of the fine crystal grains in each flake is inhibited.

従って本発明において、ガラスとグラファイトの添加
量には上限がある。それについては(実施例3)で詳述
するように、好ましい磁気特性を得るための最適な残留
酸素量、C量を決定するように調整する必要がある。
Therefore, in the present invention, the amounts of glass and graphite added have an upper limit. As described in detail in (Embodiment 3), it is necessary to make adjustments so as to determine optimal amounts of residual oxygen and C for obtaining preferable magnetic characteristics.

組織観察の結果は以下のことを示している。 The results of the tissue observation indicate the following.

ガラスを段階的に添加した場合の据込み磁石断面組織
観察結果によると、添加量0.3wt%までは変化が殆ど認
められないものの0.5wt%添加時において、据え込方向
に対し垂直に帯状の層が生じた。
According to the observation results of the cross-section structure of the upsetting magnet when glass was added stepwise, little change was observed up to the addition amount of 0.3 wt%, but when 0.5 wt% was added, a band-shaped layer perpendicular to the upsetting direction was added. Occurred.

一方、ガラスを0.1wt%と一定とし、グラファイトを
段階的に添加した場合の据込み磁石断面観察によると、
無添加材ではフレーク境界が殆ど判断できない状態であ
るが、添加量とともに境界が明確に現れてきた。しかし
添加量0.3wt%以上ではフレーク境界に層が生成し、特
に0.5wt%添加においては顕著になってくる。更に0.5wt
%添加では、所々にフレーク流れにうねりが生じた。
On the other hand, according to the observation of the cross section of the upsetting magnet when the glass was fixed at 0.1 wt% and graphite was added stepwise,
In the case of the non-added material, the flake boundary could hardly be determined, but the boundary clearly appeared with the added amount. However, when the addition amount is 0.3 wt% or more, a layer is formed at the boundary of the flakes, and particularly when 0.5 wt% is added, it becomes remarkable. Further 0.5wt
The% addition resulted in undulations in the flake stream in some places.

また、グラファイトを0.3wt%と一定とし、ガラスを
0.1〜0.5wt%まで投入した時の観察結果によると、各フ
レーク境界はいずれもグラファイト無添加より明確であ
るが、フレークの流れに若干差が生じていることが分か
る。つまりガラス0.1wt%と0.3wt%の比較では0.3wt%
添加時の方がフレークの流れが一様である。しかし0.5w
t%添加では所々に流れを阻げる層の生成により必ずし
も据込み方向に対し垂直に流れていない場所があった。
In addition, graphite is fixed at 0.3 wt% and glass is
According to the observation results at the time of charging up to 0.1 to 0.5 wt%, the boundaries of the flakes are all clearer than without graphite, but it can be seen that there is a slight difference in the flake flow. That is, 0.3wt% of glass 0.1wt% and 0.3wt%
The flake flow is more uniform during the addition. But 0.5w
With the addition of t%, there were places where the flow did not always flow perpendicularly to the upsetting direction due to the formation of layers that obstructed the flow.

以上、組織観察は電子顕微鏡によって行った。その一
例を第6図と第7図に示す。第6図には温間加工の圧縮
方向と垂直方向から観察した破断面の金属組織を示し、
第7図には温間加工の圧縮方向と平行方向から観察した
破断面の金属組織を示す。各々、上段は倍率が2000倍、
下段は倍率が30,000倍である。
As described above, the structure observation was performed using an electron microscope. One example is shown in FIG. 6 and FIG. FIG. 6 shows the metal structure of the fractured surface observed from the compression direction and the vertical direction of the warm working,
FIG. 7 shows a fractured metal structure observed from a direction parallel to the compression direction of the warm working. In each case, the upper row has a magnification of 2000x
The lower row has a magnification of 30,000 times.

ガラス0.3wt%とグラファイト0.3wt%を複合添加した
場合(図中(b))には、無添加の場合(図中(a))
に比べて均一組織の得られることがわかる。反面、図中
(c)に示すように、グラファイトを0.5wt%と過剰添
加したときには粗大な塊が見られることがある。
When 0.3wt% of glass and 0.3wt% of graphite are added together ((b) in the figure), when they are not added ((a) in the figure)
It can be seen that a uniform structure can be obtained as compared with. On the other hand, as shown in (c) in the figure, when graphite is excessively added in an amount of 0.5 wt%, coarse lumps may be observed.

[作用] 本発明の温間加工磁石が加工性のみならず優れた磁気
特性を示す理由は含有酸素量、C(炭素)量の影響が大
きい。
[Action] The reason why the warm-worked magnet of the present invention exhibits excellent magnetic properties as well as workability is largely influenced by the oxygen content and the C (carbon) content.

第4図にガラスとグラファイトの複合添加における残
存C量、酸素量の変化を示す。第4図より、残存酸素量
はグラファイト添加量とともに若干上昇するが、これは
フレークに混合する際、大気中で取り扱ったことによる
水分吸収によるものと思われる。残存C量はガラス添加
量に無関係にグラファイト添加量に対し直線的に増加す
る。
FIG. 4 shows changes in the amount of residual C and the amount of oxygen in the composite addition of glass and graphite. FIG. 4 shows that the amount of residual oxygen slightly increases with the amount of graphite added, which is considered to be due to the absorption of water due to handling in the atmosphere when mixed with flakes. The amount of residual C increases linearly with the amount of graphite added regardless of the amount of glass added.

この図と、後述する(実施例3)に示す第3図とを伴
わせ考えると、良好な磁気特性を得るための炭素含有量
は0.5重量%以下、酸素含有量が0.3重量%(3000ppm)
以下であることが好ましい。
Considering this figure and FIG. 3 shown below (Example 3), the carbon content for obtaining good magnetic properties is 0.5% by weight or less, and the oxygen content is 0.3% by weight (3000 ppm).
The following is preferred.

本発明に係る温間加工磁石においては、据込み速度の
影響がある。外観については据込み速度0.5〜0.1mm/sec
程度の変化では影響は見られないものの、変形抵抗につ
いてはひずみ速度依存性がある。この傾向は、特にひず
みが大きくなるにつれて顕著になるようである。歪速度
を遅くして行くと保磁力は若干減少してゆく傾向があ
る。最も影響を受けるのは飽和磁化と残留磁束密度であ
って、歪速度を遅くしてゆくと増加させることができ、
特に0.006(1/秒)よりも遅くしてゆくとその増加率が
増大する。したがつて、低歪速度で加工すると飽和磁化
と残留磁束密度が高く且つ保磁力がさほど低下せず、そ
の結果40MGOeに達する最大磁気エネルギー積を有する温
間加工磁石を得ることが可能となる。特に恒温鍛造法の
採用はそれを容易に実現する。
The warming magnet according to the present invention is affected by the upsetting speed. For external appearance, upsetting speed 0.5 ~ 0.1mm / sec
Although there is no effect on the degree of change, the deformation resistance has strain rate dependence. This tendency appears to be particularly pronounced as the strain increases. As the strain rate is reduced, the coercive force tends to decrease slightly. The most affected are the saturation magnetization and the residual magnetic flux density, which can be increased by decreasing the strain rate,
In particular, the rate of increase increases as the speed becomes slower than 0.006 (1 / second). Therefore, when processed at a low strain rate, the saturation magnetization and the residual magnetic flux density are high, and the coercive force does not decrease so much. As a result, it is possible to obtain a warm-worked magnet having a maximum magnetic energy product reaching 40 MGOe. In particular, the adoption of the constant temperature forging method can easily realize this.

本発明によると結晶磁気異方性を有する結晶粒の配向
度が向上することも優れた磁気特性を発現させるもので
ある。このことはX線解析によって知ることができた。
According to the present invention, an improvement in the degree of orientation of crystal grains having a magnetocrystalline anisotropy also provides excellent magnetic properties. This could be known by X-ray analysis.

本発明においても、本発明者らが既に出願したジエチ
レングリコール等の有機系液状潤滑剤を内部潤滑剤とし
て添加することは効果的である(特願昭63−247172
号)。
Also in the present invention, it is effective to add an organic liquid lubricant, such as diethylene glycol, already filed by the present inventors as an internal lubricant (Japanese Patent Application No. 63-247172).
issue).

しかし有機系液状潤滑剤の場合、以下の問題をかかえ
ている。例えば大型形状の据込み磁石を製造する場合、
圧密化の段階で熱伝達の違いから、気化に時間的な差が
生じ、局部的に酸素、Cの偏析が発生する。このため一
個の磁石内で特性のバラツキ(特に保磁力)が大きい。
特に大型の磁石を製造する場合に工業上問題になる。従
って本発明においては、適量を補助的に使用することに
より優れた温間加工磁石を得ることが可能となる。
However, the organic liquid lubricant has the following problems. For example, when manufacturing a large-sized upholstered magnet,
At the consolidation stage, a difference in heat transfer causes a time difference in vaporization, and local segregation of oxygen and carbon occurs. Therefore, there is a large variation in characteristics (particularly, coercive force) within one magnet.
This is an industrial problem particularly when large magnets are manufactured. Therefore, in the present invention, an excellent warm-worked magnet can be obtained by using an appropriate amount in an auxiliary manner.

本発明における平均結晶粒径の上限は1μm程度まで
であるが、微細なほど、磁気特性は良好であり、0.5μ
m程度が好ましい。
Although the upper limit of the average crystal grain size in the present invention is up to about 1 μm, the finer the grain size, the better the magnetic properties.
m is preferable.

本発明において、平均結晶粒径は温間加工磁石の特徴
として微細である。0.02μm未満の超微細結晶を工業的
に安定して得ることは現時点の技術では困難であり、1
μmを超える場合は保磁力が低下して好ましくない。本
発明においてグラファイトパウダーの過剰添加(約0.5w
t%程度)は粗大結晶粒を形成する傾向にある。粗大結
晶粒が多く分布するようになる。
In the present invention, the average crystal grain size is fine as a feature of the warm-worked magnet. It is difficult to obtain ultra-fine crystals of less than 0.02 μm in an industrially stable manner with the current technology.
If it exceeds μm, the coercive force decreases, which is not preferable. In the present invention, an excessive addition of graphite powder (about 0.5 w
t%) tends to form coarse crystal grains. Many coarse crystal grains are distributed.

ここで平均結晶粒径の測定は、顕微鏡写真における切
断法による。すなわち、写真に任意に直線を引いたとき
線分を切断する結晶粒の数でその切断された線分長さを
除した値を結晶粒径とし、少なくとも20個所以上につい
て求めた平均値を平均結晶粒径とする。
Here, the average crystal grain size is measured by a cutting method in a micrograph. That is, the value obtained by dividing the length of the cut line segment by the number of crystal grains that cut the line segment when a straight line is arbitrarily drawn on the photograph is defined as the crystal grain size, and the average value obtained for at least 20 points or more is averaged. The crystal grain size is used.

ここで注意すべきことは、温間加工磁石においては結
晶のC軸に垂直な面に偏平な形状をしており、C軸を含
む面で切断するときの厚み方向となる。従って、前述の
平均結晶粒径はC軸に垂直な面上のものをいう。
It should be noted here that the warm-worked magnet has a flat shape in a plane perpendicular to the C-axis of the crystal, and is in a thickness direction when cut along a plane including the C-axis. Therefore, the above-mentioned average crystal grain size refers to that on a plane perpendicular to the C axis.

従って、温間加工磁石においては単にC軸に垂直な面
上の結晶粒径(c)だけではなく、C軸に平行方向の結
晶粒径(a)も考慮する必要がある。ちなみに、本発明
に係る温間加工磁石の場合はcが0.2〜0.3μm程度、a
が0.1μm程度である。cとaの比、c/aをアスペクト比
という。本発明においてグラファイトを過剰に添加(約
0.5wt%程度以上)すると、磁気的に等方的な成分が多
くなるため残留磁束密度も低下する。
Therefore, in the warm-worked magnet, it is necessary to consider not only the crystal grain size (c) on the plane perpendicular to the C axis but also the crystal grain size (a) in the direction parallel to the C axis. Incidentally, in the case of the warm-worked magnet according to the present invention, c is about 0.2 to 0.3 μm, a
Is about 0.1 μm. The ratio of c to a and c / a is called the aspect ratio. In the present invention, graphite is added in excess (about
If it is about 0.5 wt% or more), the magnetically isotropic component increases, so that the residual magnetic flux density also decreases.

本発明において炭素含有量が0.5重量%を超えると磁
気特性は低下し、同じく酸素含有量が0.3重量%を超え
ると被加工物の変形抵抗が著しく大きくなり加工性が悪
化して好ましくない。
In the present invention, when the carbon content exceeds 0.5% by weight, the magnetic properties are deteriorated, and when the oxygen content exceeds 0.3% by weight, the deformation resistance of the workpiece is remarkably increased, and the workability is deteriorated.

本発明に係る合金は、遷移金属Tを主成分とし、イッ
トリウムを含む希土類元素R及び硼素Bを含有する。組
成範囲は特開昭60−100402号公報で公知の温間加工磁石
に準ずる。但し、本発明で遷移金属Tとは鉄を主体と
し、一部Co,Ni,Ru,Rh,Pd,Os,Ir,Ptの狭義の遷移金属の
みならず、原子番号21〜29,39〜47,72〜79,89以上の元
素を全て含む広義の遷移金属をいう。
The alloy according to the present invention contains a transition metal T as a main component and a rare earth element R containing yttrium and boron B. The composition range conforms to that of a warm-worked magnet known in JP-A-60-100402. However, in the present invention, the transition metal T is mainly composed of iron, and not only transition metals in the narrow sense of Co, Ni, Ru, Rh, Pd, Os, Ir, and Pt, but also atomic numbers 21 to 29, 39 to 47. , 72 to 79, 89 or more in a broad sense.

また、Gaの添加は本発明者らが既に発表したように温
間加工磁石において保磁力を顕著に向上する効果がある
ため、必要に応じて添加すると効果的である。更に、公
知の添加元素を目的に応じて添加することも本発明の効
果を逸脱するものではない。
Further, addition of Ga has an effect of remarkably improving the coercive force in a warm-worked magnet as already announced by the present inventors, so it is effective to add Ga as needed. Furthermore, addition of a known additive element according to the purpose does not depart from the effects of the present invention.

希土類元素RもNd,Prを主体とし、公知の通り、コス
ト低減の目的にはCe,シジム等による一部置換、温度特
性を改善する目的にはDy,Tbによる一部置換ができるこ
とは言うまでもない。
It is needless to say that the rare-earth element R is also mainly composed of Nd and Pr, and as is well known, can be partially replaced by Ce, sidinium or the like for the purpose of cost reduction, and partially replaced by Dy or Tb for the purpose of improving temperature characteristics. .

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be described specifically with reference to examples.

[実施例] (実施例1) 原子%でNd14.5%,B6%,Co7.5%,Ga0.75%の合金薄帯
を超急冷法によって得た。超急冷法薄片を−32mesh(−
500μm)に粗粉砕した後、分級機により球状塊を取り
除いた。この分級した薄片150gに対し0.2wt%のグラフ
ァイトパウダーと0.3wt%の低融点ガラスを投入し、V
型混合機で10分間混合した。グラファイトパウダーとし
ては鱗状黒鉛を、低融点ガラスとしては硼珪酸ピスマス
系の非晶質低融点ガラスを使用した。使用したガラスの
温度特性値を第1表に示す。
[Example] (Example 1) An alloy ribbon of 14.5% Nd, 6% B, 7.5% Co, and 0.75% Ga in atomic% was obtained by a rapid quenching method. The super-quenched flakes were taken from -32mesh (-
After coarsely pulverizing to 500 μm), the spherical mass was removed by a classifier. 0.2 wt% of graphite powder and 0.3 wt% of low melting glass were put into 150 g of the classified flakes.
The mixture was mixed for 10 minutes using a mold mixer. As graphite powder, scale-like graphite was used, and as the low-melting glass, an amorphous low-melting-point glass based on borosilicate pismuth was used. Table 1 shows the temperature characteristics of the glasses used.

得られた薄片を3ton/cm2の圧力で冷間成型し、φ28.5
×40.5(ρ=5.8g/cm2)の圧粉体とした。この圧粉体を
30トン温間据込み加工機を使用し、加工温度740℃,据
込み比3.90まで据込んで異方性据込み磁石を得た。据込
み磁石を外周切断機で10.5×10.5mm角に切断し評価し
た。
The resulting flakes were cold molded at a pressure of 3ton / cm 2, φ28.5
× 40.5 (ρ = 5.8 g / cm 2 ) was used as a green compact. This green compact
An anisotropic upset magnet was obtained by using a 30-ton warm upsetting machine and working up to a working temperature of 740 ° C and an upsetting ratio of 3.90. The upset magnet was cut into 10.5 x 10.5 mm squares using an outer peripheral cutting machine and evaluated.

以下に評価方法と使用機器を示す。 The evaluation method and equipment used are shown below.

(イ)応力(変形抵抗)−ひずみ 温間据込み加工時荷重−変位線から、クラックの入ら
ないひずみ領域すなわち、ひずみ0.1における応力を算
出した。応力は公称応力とし、各条件における加工性の
比較に用いた。
(A) Stress (deformation resistance) -strain From the load-displacement line at the time of warm upsetting, a stress in a strain region where cracks did not enter, that is, a stress at a strain of 0.1 was calculated. The stress was a nominal stress and used for comparison of workability under each condition.

(ロ)磁気特性 B−Hトレーサにより減磁曲線を描き、第2象限を読
み取った。試料の測定は、1枚の据込み磁石につき5個
測定し、その平均値を代表値とした。詳細な測定箇所及
び寸法は第5図に示す通りであり、(従来の端部クラッ
クの発生した場合を例示する。測定箇所は本発明におい
ても同様である。)10.5mm角の試料を切り出した。図中
で数字はサンプルの切り出し箇所を示し、磁気特性の評
価は数字1,3,5,7,9で示される箇所からのサンプルで、
行なった。なお、光学顕微鏡による観察は数字8で示さ
れる箇所からのサンプルで行なった。
(B) Magnetic properties A demagnetization curve was drawn with a BH tracer, and the second quadrant was read. For the measurement of the sample, five pieces were measured for one set-up magnet, and the average value was used as a representative value. The detailed measurement locations and dimensions are as shown in FIG. 5 (an example where a conventional end crack has occurred. The measurement locations are the same in the present invention.) A 10.5 mm square sample was cut out. . In the figure, the numbers indicate the cut-out portions of the samples, and the evaluation of the magnetic characteristics is the samples from the portions indicated by the numbers 1, 3, 5, 7, and 9,
Done. In addition, the observation with the optical microscope was performed on the sample from the location indicated by the numeral 8.

(ハ)残存C量、酸素量及びC、ガラス成分の分布の測
定は、据込み磁石の中央部を粉砕し、酸素濃度分析器で
行なった。酸素測定は、各試料につき3回行い、その平
均値を代表値とした。
(C) The distributions of the residual C amount, the oxygen amount, and the C and glass components were measured by grinding the central portion of the upset magnet and using an oxygen concentration analyzer. The oxygen measurement was performed three times for each sample, and the average value was used as a representative value.

一方ガラスの分析は、実験に使用した低融点ガラスの
配合組成から、Si、Biの2元素を選択し、これら2元素
の分布から、ガラス全体の分布状態を推定した。Bi、Si
の分析はEPMAを使用し、据込み方向に垂直な面で線分析
を行なった。
On the other hand, in the analysis of the glass, two elements, Si and Bi, were selected from the composition of the low-melting glass used in the experiment, and the distribution state of the entire glass was estimated from the distribution of these two elements. Bi, Si
In the analysis of EP, linear analysis was performed on a plane perpendicular to the upsetting direction using EPMA.

(ニ)組織 据込み磁石をエメリー紙で研摩し、バフ研摩で鏡面仕
上げした後光学顕微鏡で組織観察を行なった。観察は据
込み磁石据込み方向に対し垂直な方向について行なっ
た。
(D) Tissue The upset magnet was polished with emery paper and mirror-finished by buff polishing, and then the structure was observed with an optical microscope. The observation was made in a direction perpendicular to the upsetting magnet upsetting direction.

(ホ)破面 据込み磁石を破断し、据込み方向に対し垂直な面から
破断面の観察を行い、結晶粒の流れ、及び超急冷薄片境
界の異常成長粒の度合いを比較した。
(E) Fracture surface The upset magnet was fractured, and the fracture surface was observed from a plane perpendicular to the upsetting direction, and the flow of crystal grains and the degree of abnormally grown grains at the boundary of the ultra-quenched flakes were compared.

また、必要に応じてSEM−EDXで組成分析を行なった。 Moreover, composition analysis was performed by SEM-EDX as needed.

(ヘ)硬度 切り出した据込み磁石を鏡面仕上げした後、マイクロ
ビッカースを使用して硬度測定を行なった。硬度は試料
に角錐ダイヤモンド圧手を荷重1000gで押しつけ圧恨の
対角線長さから硬度換算表を基に求めた。測定は据込み
平行方向2面、垂直方向2面について行い、各面につい
て5点づつ測定(各方向とも10点)し、平均値を硬度の
代表値とした。
(F) Hardness After the cut-out upsetting magnet was mirror-finished, the hardness was measured using a micro Vickers. The hardness was determined by pressing a pyramidal diamond squeezer against the sample with a load of 1000 g based on the hardness conversion table from the diagonal length of the oppression. The measurement was performed on two surfaces in the upsetting parallel direction and two surfaces in the vertical direction, and five points were measured for each surface (10 points in each direction), and the average value was used as a representative value of hardness.

以下に本実施例の場合の評価結果を示す。 The evaluation results in the case of this example are shown below.

(イ)応力(変形抵抗)−ひずみ ひずみ速度0.1(1/sec)の場合には0.48(ton/cm2
であった。ひずみ速度を低下すると変形抵抗が減少でき
ることがわかる。
(B) Stress (deformation resistance)-strain 0.48 (ton / cm 2 ) for a strain rate of 0.1 (1 / sec)
Met. It is understood that the deformation resistance can be reduced by reducing the strain rate.

(ロ)磁気特性 4πIr=12.3(KG) iHc=15.7(KOe) (BH)max=34.6(MGOe) と優れた永久磁石特性の得られることがわかる。(B) Magnetic properties 4πIr = 12.3 (KG) iHc = 15.7 (KOe) (BH) max = 34.6 (MGOe) It can be seen that excellent permanent magnet properties can be obtained.

(ハ)残存C量、酸素量及びC,ガラス分布 残存C量=0.32(wt%) 残存酸素量=1700(ppm) 比較例として低融点ガラスを投入しないサンプルを作成
して比較したところ、本実施例の場合には、グラファイ
トパウダーがフレーク間により均一に分散することがわ
かった。ガラスについてもフレーク間に均一に分布して
いることがわかった。
(C) Residual C content, oxygen content and C, glass distribution Residual C content = 0.32 (wt%) Residual oxygen content = 1700 (ppm) As a comparative example, a sample without low melting point glass was prepared and compared. In the case of the examples, it was found that the graphite powder was more uniformly dispersed between the flakes. It was found that the glass was evenly distributed between the flakes.

(ニ)組織 均一な組成流れを示す組織が観察された。(D) Structure A structure showing a uniform composition flow was observed.

(ホ)破面 フレークの流れが一様であることが観察された。(E) Fracture surface It was observed that the flow of flakes was uniform.

(ヘ)硬度 ビッカース硬度で650であった。比較例としてガラ
ス、グラファイト無添加のサンプルを作成したところHv
580であった。従って、本発明による永久磁石は少し硬
度が増加するが、脆くなることはない。
(F) Hardness Vickers hardness was 650. As a comparative example, when a sample without glass and graphite was prepared, Hv
It was 580. Therefore, the permanent magnet according to the present invention slightly increases in hardness but does not become brittle.

(比較例1) (実施例1)において低融点ガラスの添加量のみを変
化させたサンプルを作成し、磁気特性を評価した。
Comparative Example 1 A sample was prepared by changing only the amount of the low-melting glass in Example 1, and the magnetic properties were evaluated.

第1図にガラス添加量に対する磁気特性の変化を示
す。残留磁束密度、最大エネルギー積とも添加量にとも
ない次第に増加する傾向にある。最大エネルギー積(B
H)maxは0.1wt%添加で29MGOeであり、0.3wt%付近でピ
ークを示す。無添加材と比較し△4πIr=320G、△(B
H)max=2MGOe向上した。一方、保磁力は添加量ととも
に低下した。しかし0.5wt%添加材で保磁力の低下は無
添加材と比較し△iHc=1090Oeで、さほど大きな値では
なかった。
FIG. 1 shows the change in the magnetic properties with respect to the glass addition amount. Both the residual magnetic flux density and the maximum energy product tend to increase gradually with the addition amount. Maximum energy product (B
H) max is 29MGOe when 0.1 wt% is added, and shows a peak near 0.3 wt%. △ 4πIr = 320G, △ (B
H) max = 2MGOe improved. On the other hand, the coercive force decreased with the amount of addition. However, the decrease in coercive force of the 0.5 wt% additive material was ΔiHc = 1090 Oe as compared with the non-additive material, which was not so large.

(実施例2) グラファイトパウダーと低融点ガラス添加量の最適範
囲を決定するために(実施例1)と同様にして、各添加
量のみを変化させたサンプルを作成し磁気特性を測定し
た。
(Example 2) In order to determine the optimal ranges of the graphite powder and the low-melting-point glass addition amount, in the same manner as in (Example 1), samples in which only each addition amount was changed were prepared, and the magnetic properties were measured.

第2図にガラスを0.1,0.3,0.5wt%の3水準とし、グ
ラファイトパウダーを段階的に添加したときの磁気特性
の変化を示す。グラファイト添加にともない磁束密度、
最大エネルギー積は上昇し、ガラス量0.1,0.3wt%で
は、グラファイト0.3wt%でピークを示した。最高値は
ガラス、グラファイトともに0.3wt%添加時で無添加材
と比較し△4πIr=910G、△(BH)max=5.9MGOe上昇し
た。ガラス0.5wt%では少ないグラファイト量で残留磁
束密度が増加し、0.5wt%では著しく低下した。一方保
磁力はガラス単独で使用した場合に比べ、低下が著し
い。ガラス+グラファイトの複合添加量が多い程、その
傾向が大きく、段階的に低下した。最大エネルギー積の
最高値を示したガラス0.3wt%、グラファイト0.3wt%
で、保磁力は15430Oeを示し、無添加材と比較し約2590O
e低下した。
FIG. 2 shows the change in the magnetic properties when the glass is set to three levels of 0.1, 0.3 and 0.5 wt%, and graphite powder is added stepwise. Magnetic flux density with the addition of graphite,
The maximum energy product increased and showed a peak at 0.3 wt% of graphite when the glass content was 0.1 and 0.3 wt%. The maximum values of both glass and graphite were increased by △ 4πIr = 910G and △ (BH) max = 5.9MGOe compared to the non-added material when 0.3 wt% was added. At 0.5 wt% of glass, the residual magnetic flux density increased with a small amount of graphite, and decreased significantly at 0.5 wt%. On the other hand, the coercive force is significantly reduced as compared with the case where glass is used alone. The tendency was larger and decreased gradually as the combined amount of glass and graphite increased. 0.3% by weight of glass and 0.3% by weight of graphite with the highest energy product
The coercive force is 15430 Oe, which is about 2590 Oe compared to the additive-free material.
e dropped.

従って、(BH)maxが最大になるグラファイトパウダ
ーの添加量は0.3wt%であるが、耐熱性などの実用磁石
としての要求使用から保磁力10KOe以上は必要であるこ
とから、グラファイトパウダーの添加量は0.5wt%未満
が好ましいことがわかる。
Therefore, the amount of graphite powder that maximizes (BH) max is 0.3 wt%, but the coercive force of 10 KOe or more is required due to the required use as a practical magnet such as heat resistance. Is preferably less than 0.5 wt%.

(実施例3) 本発明の重要な点は、グラファイトパウダーと低融点
ガラスを単に潤滑油として添加するのではなく、フレー
ク間に磁気特性向上のために好ましい酸素量、C量の最
適値で残留させることである。
(Embodiment 3) The important point of the present invention is that graphite powder and low melting point glass are not simply added as lubricating oils, but are maintained at optimum values of oxygen and C between flakes in order to improve magnetic properties. It is to make it.

従って、好ましい磁気特性(特にiHc)を得るために
最適な残留酸素量、C量を決定するために、グラファイ
トパウダーと低融点ガラスの添加量を種々変えた以外は
(実施例1)と同様にしてサンプルを作成し、各々にお
ける残留酸素量、C量と保磁力の関係を調べた。その結
果を第3図に示す。第4図にはグラファイト添加量と酸
素量、C量の相関関係をガラス添加量をパラメータにし
て示す。
Therefore, the procedure was the same as in Example 1 except that the amounts of the graphite powder and the low melting point glass were variously changed in order to determine the optimal residual oxygen content and C content in order to obtain preferable magnetic properties (in particular, iHc). Samples were prepared in each case, and the relationship between the residual oxygen amount and C amount and the coercive force of each sample was examined. FIG. 3 shows the results. FIG. 4 shows the correlation between the amount of added graphite, the amount of oxygen, and the amount of C, using the added amount of glass as a parameter.

グラファイトパウダーの場合、添加によるOの増加は
極めて少ないため、有機系液状潤滑剤+ガラスのよう
に、双方のO増加量を考慮する必要はなく、またグラフ
ァイト添加量と据込み磁石残存C量はほぼ一対一に対応
している。従ってO増加量はガラス添加量のみに依存す
ると考えてよい。
In the case of graphite powder, the increase in O due to the addition is extremely small, so that it is not necessary to consider the increase in O of both, as in the case of an organic liquid lubricant + glass. They correspond almost one-to-one. Therefore, it may be considered that the O increase amount depends only on the glass addition amount.

この結果、グラファイトあるいはガラスいずれかが増
加しても保磁力は低下する。保磁力の低下傾向は、グラ
ファイトを単独で使用する場合に比べ小さいものの全く
同様の傾向を示す。従って複合添加の場合でも、CとO
のバランスを考慮しなければならない。つまりC、Oと
も温間据込み加工中に、保磁力に必要なNd成分と反応す
るため、いずれか増加しても保磁力低下は避けられな
い。例えば、保磁力を16kOe以上得ようとする場合、グ
ラファイト添加量を0.2wt%に決めると、第3図を内挿
することによってガラス添加量は0.4wt%が限界値にな
る。また、本発明によれば、上記原料薄片又は薄帯の粉
砕したものにグラファイトパウダーと低融点ガラスとを
適量複合添加することによって温間加工性が改善される
結果、温間加工時の割れの発生を抑えることが可能であ
る。
As a result, the coercive force decreases even if either graphite or glass increases. The tendency of the coercive force to decrease is smaller than the case where graphite is used alone, but shows the same tendency. Therefore, even in the case of composite addition, C and O
You have to consider the balance. That is, since both C and O react with the Nd component necessary for the coercive force during the warm upsetting, a decrease in the coercive force cannot be avoided even if either of them increases. For example, in order to obtain a coercive force of 16 kOe or more, if the graphite addition amount is determined to be 0.2 wt%, the glass addition amount becomes 0.4 wt% as a limit value by interpolating FIG. Further, according to the present invention, the warm workability is improved by adding a suitable amount of graphite powder and low-melting glass to the crushed raw material flakes or ribbons, resulting in improved workability. It is possible to suppress the occurrence.

[発明の効果] 本発明によれば、加工性が改善されて温間加工時の割
れが無く、且つ良好な磁気特性を有する温間加工磁石お
よびその製造方法を提供することができる。
[Effects of the Invention] According to the present invention, it is possible to provide a warm-worked magnet having improved workability, no crack during warm working, and excellent magnetic properties, and a method for manufacturing the same.

【図面の簡単な説明】[Brief description of the drawings]

第1図はガラス添加量と磁気特性の関係を示す図、第2
図はガラス添加量をパラメータとしたときのグラファイ
ト添加量と磁気特性の関係を示す図、第3図はガラス添
加量とグラファイト添加量をパラメータとしたときの保
磁力と酸素含有量の関係を示す図、第4図はガラス添加
量をパラメータとしたときのグラファイト添加量と炭素
・酸素含有量との関係を示す図、第5図は温間加工磁石
の端部クラックと磁気特性測定箇所を示す図、第6図は
温間加工の圧縮方向と垂直方向から観察した破断面の金
属組織を示す写真、第7図は温間加工の圧縮方向と平行
方向から観察した破断面の金属組織を示す写真である。
FIG. 1 is a diagram showing the relationship between the amount of glass added and magnetic properties, and FIG.
The figure shows the relationship between the graphite addition amount and the magnetic properties when the glass addition amount is used as a parameter. FIG. 3 shows the relationship between the coercive force and the oxygen content when the glass addition amount and the graphite addition amount are used as parameters. FIG. 4 is a diagram showing the relationship between the graphite addition amount and the carbon / oxygen content when the glass addition amount is used as a parameter. FIG. 5 shows the end cracks of the warm-worked magnet and the magnetic property measurement points. FIG. 6 is a photograph showing a metal structure of a fractured surface observed from a direction perpendicular to the compression direction of warm working, and FIG. 7 is a photograph showing a metal structure of a fractured surface observed from a direction parallel to the compression direction of warm working. It is a photograph.

フロントページの続き (56)参考文献 特開 昭64−7504(JP,A) 特開 昭64−65202(JP,A)Continuation of front page (56) References JP-A-64-7504 (JP, A) JP-A-64-65202 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】R−T−B系合金(Rはイットリウムを含
む希土類元素の1種又は2種以上、Tは鉄を主体とする
遷移金属、Bは硼素)の溶湯を超急冷して薄帯又は薄片
を得て、この薄帯又は薄片を粉砕し、得られた粉砕粉に
対し軟化点が500〜800℃のガラスを0.5重量%以下(0
を含まず)とグラファイトを0.5重量%未満(0を含ま
ず)とを添加し混合後、混合粉を成形して高密度化し更
に600〜850℃で塑性加工することにより磁気異方性を付
与することを特徴とするR2T14Bで表される金属間化合物
を主相とする温間加工磁石の製造方法。
An ultra-rapidly cooled molten metal of an RTB-based alloy (R is one or more rare earth elements including yttrium, T is a transition metal mainly composed of iron, and B is boron). A strip or flake is obtained, and the strip or flake is pulverized. The obtained pulverized powder is mixed with glass having a softening point of 500 to 800 ° C. by 0.5% by weight or less (0%).
) And less than 0.5% by weight of graphite (excluding 0), and after mixing, the mixed powder is molded and densified to give a magnetic anisotropy by plastic working at 600-850 ° C. A method for producing a warm-worked magnet having an intermetallic compound represented by R 2 T 14 B as a main phase.
【請求項2】R2T14B(Rはイットリウムを含む希土類元
素の1種又は2種以上、Tは鉄を主体とする遷移金属、
Bは硼素)で表される金属間化合物を主相とする温間加
工磁石であって、磁気異方性化された平均結晶粒径が0.
02〜1μmの微細な結晶粒を有し、炭素含有量が0.5重
量%以下、酸素含有量が0.3重量%以下であり、且つ含
有されるガラス成分およびグラファイト成分がフレーク
境界に沿って分布していることを特徴とする温間加工磁
石。
2. R 2 T 14 B (R is one or more of rare earth elements containing yttrium, T is a transition metal mainly composed of iron,
B is a warm-worked magnet having an intermetallic compound represented by boron as a main phase and having a magnetic anisotropy average crystal grain size of 0.1.
It has fine crystal grains of 02 to 1 μm, has a carbon content of 0.5% by weight or less, an oxygen content of 0.3% by weight or less, and contains glass component and graphite component distributed along the flake boundary. A warm-worked magnet.
JP1094493A 1989-04-14 1989-04-14 Warm-worked magnet and manufacturing method thereof Expired - Lifetime JP3047239B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1094493A JP3047239B2 (en) 1989-04-14 1989-04-14 Warm-worked magnet and manufacturing method thereof
DE1989617906 DE68917906T2 (en) 1989-04-14 1989-10-17 Hot-formed anisotropic magnets and their manufacture.
EP19890119269 EP0392077B1 (en) 1989-04-14 1989-10-17 Magnetically anisotropic hot-worked magnets and composition and method for their production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1094493A JP3047239B2 (en) 1989-04-14 1989-04-14 Warm-worked magnet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02272703A JPH02272703A (en) 1990-11-07
JP3047239B2 true JP3047239B2 (en) 2000-05-29

Family

ID=14111825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1094493A Expired - Lifetime JP3047239B2 (en) 1989-04-14 1989-04-14 Warm-worked magnet and manufacturing method thereof

Country Status (3)

Country Link
EP (1) EP0392077B1 (en)
JP (1) JP3047239B2 (en)
DE (1) DE68917906T2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147473A (en) 1989-08-25 1992-09-15 Dowa Mining Co., Ltd. Permanent magnet alloy having improved resistance to oxidation and process for production thereof
AU9020991A (en) * 1990-11-12 1992-06-11 Fileco Antiviral use of a 2,6-di-t-butylphenol compound substituted in position 4, particularly in relation to herpesviruses and papillomaviruses
JP3120503B2 (en) * 1991-10-18 2000-12-25 山陽特殊製鋼株式会社 Method for producing anisotropic powder
EP0608152B1 (en) * 1993-01-22 1997-08-13 Magnaflex Systems Limited Rotary press cutters
JP6451529B2 (en) * 2015-07-07 2019-01-16 トヨタ自動車株式会社 High frequency induction heating method
CN108242305B (en) * 2016-12-27 2020-03-27 有研稀土新材料股份有限公司 Rare earth permanent magnetic material and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127707A (en) * 1977-04-13 1978-11-08 Nippon Gakki Seizo Kk Production of laminated type head core
CA1271394A (en) * 1985-02-25 1990-07-10 Karen S. Canavan Enhanced remanence permanent magnetic alloy and bodies thereof and method of preparing same
DE3789829T2 (en) * 1986-06-06 1994-09-01 Seiko Instr Inc Rare earth iron magnet and manufacturing process.
DE3774333D1 (en) * 1986-06-16 1991-12-12 Tokin Corp PERMANENT MAGNETIC MATERIAL AND METHOD FOR THE PRODUCTION.
AT386554B (en) * 1986-08-04 1988-09-12 Treibacher Chemische Werke Ag METHOD FOR PRODUCING CORROSION-RESISTANT, HARD MAGNETIC POWDER FOR MAGNETIC PRODUCTION, MAGNETS FROM HARD MAGNETIC POWDER AND METHOD FOR PRODUCING THE SAME
JP2731150B2 (en) * 1986-10-14 1998-03-25 日立金属株式会社 Magnetic anisotropic bonded magnet, magnetic anisotropic magnetic powder used therefor, method for producing the same, and magnetic anisotropic powder magnet
JPS6398105A (en) * 1986-10-15 1988-04-28 Mitsubishi Metal Corp Permanent magnet made of metal carbide dispersion type fe based sintered alloy
US4780226A (en) * 1987-08-03 1988-10-25 General Motors Corporation Lubrication for hot working rare earth-transition metal alloys

Also Published As

Publication number Publication date
DE68917906T2 (en) 1995-01-05
DE68917906D1 (en) 1994-10-06
JPH02272703A (en) 1990-11-07
EP0392077B1 (en) 1994-08-31
EP0392077A2 (en) 1990-10-17
EP0392077A3 (en) 1991-06-26

Similar Documents

Publication Publication Date Title
US4952239A (en) Magnetically anisotropic bond magnet, magnetic powder for the magnet and manufacturing method of the powder
EP2043114B1 (en) R-fe-b microcrystalline high-density magnet and process for production thereof
CN112136192B (en) Method for producing rare earth sintered permanent magnet
CN108417334B (en) R-T-B sintered magnet
CN107530772B (en) Magnetic refrigeration module, sintered body, and method for manufacturing magnetic refrigeration module
CN101370606B (en) Rare earth sintered magnet and method for producing same
CN112119475B (en) Method for producing rare earth sintered permanent magnet
JP3047239B2 (en) Warm-worked magnet and manufacturing method thereof
US5026419A (en) Magnetically anisotropic hotworked magnet and method of producing same
JP3135120B2 (en) Manufacturing method of warm-worked magnet
US4952251A (en) Magnetically anisotropic hotworked magnet and method of producing same
US5098486A (en) Magnetically anisotropic hotworked magnet and method of producing same
KR102261143B1 (en) Manufacturing method of rare earth sintered magnet
US20220130580A1 (en) Rare earth magnet and method for producing thereof
JP4506973B2 (en) Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet
JP2823076B2 (en) Warm magnet
US5395458A (en) Method to enhance the thermomechanical properties of hot-formed magnets and magnets formed thereby
KR20240092866A (en) Manufacturing Method Of Anisotropic Rare Earth Bulk Magnet
JPH01239901A (en) Rare-earth magnet and its manufacture
JP2005283268A (en) Powder evaluation method, rare earth sintered magnet, and manufacturing method thereof
TW202130832A (en) R-Fe-B sintered magnet
JPH03295202A (en) Hot-worked magnet and manufacture thereof
JPH02285603A (en) Hot-worked magnet and manufacture thereof
JP2005136355A (en) Method of manufacturing sintered rare-earth magnet
JPH02262303A (en) Manufacture of bonding type permanent magnet

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080324

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080324

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10