JP3120503B2 - Method for producing anisotropic powder - Google Patents

Method for producing anisotropic powder

Info

Publication number
JP3120503B2
JP3120503B2 JP03299647A JP29964791A JP3120503B2 JP 3120503 B2 JP3120503 B2 JP 3120503B2 JP 03299647 A JP03299647 A JP 03299647A JP 29964791 A JP29964791 A JP 29964791A JP 3120503 B2 JP3120503 B2 JP 3120503B2
Authority
JP
Japan
Prior art keywords
powder
magnet
plastic working
anisotropic
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03299647A
Other languages
Japanese (ja)
Other versions
JPH05343218A (en
Inventor
岡 和 彦 平
川 淳 大
中 義 和 田
川 広 高 石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Sanyo Special Steel Co Ltd
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd, Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP03299647A priority Critical patent/JP3120503B2/en
Publication of JPH05343218A publication Critical patent/JPH05343218A/en
Application granted granted Critical
Publication of JP3120503B2 publication Critical patent/JP3120503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、異方性磁石粉末の製造
方法およびそれにより製造されたMnAlC系合金磁石
粉末に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing anisotropic magnet powder and a MnAlC-based alloy magnet powder produced by the method.

【0002】[0002]

【従来技術】樹脂成形磁石は磁石粉末に少量の樹脂を混
ぜて固めて作られる。磁石粉末としては、等方性粉末と
異方性粉末がある。同じ合金系の場合、等方性よりも異
方性粉末の方が磁気特性に優れるものが製造可能であ
る。塑性加工により異方性化が可能な合金系としては、
MnAlC系やNdFeB系が挙げられ、これらの合金
磁石を粉砕して異方性粉末を得ることができるが、酸化
等による劣化や生産性の問題から実用性が今一つであ
る。塑性加工により異方性化する合金系において優れた
磁石特性を有する異方性粉末の製法が期待されるもので
ある。
2. Description of the Related Art Resin-molded magnets are made by mixing a small amount of resin with magnet powder. The magnet powder includes an isotropic powder and an anisotropic powder. In the case of the same alloy system, it is possible to produce an anisotropic powder having better magnetic properties than isotropic powder. As an alloy system that can be made anisotropic by plastic working,
MnAlC-based and NdFeB-based alloys can be used, and anisotropic powders can be obtained by pulverizing these alloy magnets, but their practicality is still poor due to deterioration due to oxidation or the like and productivity problems. A method for producing an anisotropic powder having excellent magnet properties in an alloy system which is made anisotropic by plastic working is expected.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、塑性加
工により異方性化する磁石合金材において、異方性化し
た磁石粉末を製造しようとすると、出発原料として磁石
粉末を使用しても塑性加工中に磁石粉末同士が密着接合
して固形化するため、これらの固形材から機械的な粉砕
により異方性粉末を得ようとする場合、強固な粉砕工程
に付する必要上、磁性相が劣化したり、あるいは粉末同
士の接合が強固で、磁石粉末として利用可能なサイズま
で充分な粉砕が困難で、生産コスト面に難点がある。そ
こで、本発明者は出発原料としての磁石粉末に対し、磁
石粉末同士の接合を防止するための適切な粉末を適切量
混合すると、塑性加工後の成形体は、容易に機械的な粉
砕が可能であり、塑性変形後の磁石粉末の回収が容易で
あることに着目して鋭意研究の結果、添加する粉末の物
性によっては出発原料の磁石粉末に所定の塑性変形が生
じず、異方性化が充分に行われない場合があったり、異
方性化は行われるものの、添加粉末との分離が困難とな
る場合があるという知見を得るに至った。したがって、
本発明は上記知見に基づき、異方性化のための磁石粉末
の塑性変形を阻害せず、しかも塑性加工後磁石粉末を分
離回収するのが容易な製造方法を提供することを目的と
する。
However, in a magnet alloy material which is made anisotropic by plastic working, if an attempt is made to produce anisotropic magnet powder, even if the magnet powder is used as a starting material, plastic working is not possible. In order to obtain anisotropic powder by mechanical pulverization from these solid materials, the magnetic phase deteriorates due to the necessity of being subjected to a strong pulverization process because the magnet powders are tightly bonded to each other and solidified. Or the bonding between the powders is strong, and it is difficult to sufficiently pulverize the powder to a size usable as a magnet powder, and there is a problem in terms of production cost. Therefore, the present inventor mixes an appropriate amount of powder for preventing joining of the magnet powders with the magnet powder as a starting material, and the molded body after plastic working can easily be mechanically pulverized. Focusing on the fact that magnet powder after plastic deformation is easy to recover, as a result of intensive research, the starting material magnetic powder does not undergo predetermined plastic deformation depending on the physical properties of the powder to be added, resulting in anisotropy. May not be performed sufficiently, or it may be anisotropic, but it may be difficult to separate the powder from the additive powder. Therefore,
An object of the present invention is to provide a manufacturing method based on the above findings, which does not hinder the plastic deformation of the magnet powder for anisotropy, and can easily separate and recover the magnet powder after plastic working.

【0004】[0004]

【課題を解決するための手段】本発明は、(1) 塑性加工により異方性化可能な磁石合金粉末と該
磁石粉末同士の塑性加工時の接合を防止し、しかも磁石
粉末に密着しない無機粉末を磁石粉末に対する体積比率
で15〜30%添加した混合物をカプセルに封入し、磁
石合金の塑性加工能があり、且つ異方性化が可能な温度
域および歪速度領域で塑性加工に付し、塑性加工後の成
形体を粉砕して磁石合金粉末を分離回収することを特徴
とする異方性磁石粉末の製造方法。(2)塑性加工により異方性化可能な磁石合金粉末と該
磁石粉末同士の塑性加工時の接合を防止し、しかも磁石
粉末に密着しない無機粉末の粒径を磁石粉末の1/10
以下とした混合物をカプセルに封入し、磁石合金の塑性
加工能があり、且つ異方性化が可能な温度域および歪速
度領域で塑性加工に付し、塑性加工後の成形体を粉砕し
て磁石合金粉末を分離回収することを特徴とする異方性
磁石粉末の製造方法。 (3)塑性加工により異方性化可能な磁石合金粉末と該
磁石粉末同士の塑性加工時の接合を防止し、しかも磁石
粉末に密着しない無機粉末の粒径を磁石粉末の1/10
以下とし、かつ磁石粉末に対する体積比率で15〜30
%添加した混合物をカプセルに封入し、磁石合金の塑性
加工能があり、且つ異方性化が可能な温度域および歪速
度領域で塑性加工に付し、塑性加工後の成形体を粉砕し
て磁石合金粉末を分離回収することを特徴とする異方性
磁石粉末の製造方法。 (4)塑性加工により異方性化可能な磁石合金粉末とし
て、MnAlC系合金磁石粉末を用いるようにした前記
(1)〜(3)記載の異方性磁石粉末の製造方法。 にあ
る。
SUMMARY OF THE INVENTION The present invention provides: (1) a magnetic alloy powder which can be made anisotropic by plastic working and an inorganic material which prevents the magnet powder from joining during plastic working and which does not adhere to the magnet powder. Volume ratio of powder to magnet powder
The mixture added by 15 to 30% is encapsulated in a capsule and subjected to plastic working in a temperature range and a strain rate range where the magnetic alloy has plastic working ability and can be made anisotropic. A method for producing anisotropic magnet powder, comprising separating and recovering magnet alloy powder by pulverizing anisotropic magnet powder. (2) a magnet alloy powder that can be anisotropically formed by plastic working;
Prevents the joining of magnet powders during plastic working
The particle size of the inorganic powder that does not adhere to the powder is 1/10 of the magnet powder
The following mixture was encapsulated in a capsule and the plasticity of the magnet alloy
Temperature range and strain rate with processing ability and anisotropy
Plastic working in the temperature range, and pulverize the compact after plastic working.
Characterized by separating and recovering magnet alloy powder by heating
Manufacturing method of magnet powder. (3) a magnet alloy powder that can be made anisotropic by plastic working;
Prevents the joining of magnet powders during plastic working
The particle size of the inorganic powder that does not adhere to the powder is 1/10 of the magnet powder
And the volume ratio to the magnet powder is 15 to 30
% Of the mixture is encapsulated in a capsule,
Temperature range and strain rate with processing ability and anisotropy
Plastic working in the temperature range, and pulverize the compact after plastic working.
Characterized by separating and recovering magnet alloy powder by heating
Manufacturing method of magnet powder. (4) Magnet alloy powder that can be made anisotropic by plastic working
The MnAlC-based alloy magnet powder is used.
(1) The method for producing an anisotropic magnet powder according to (3). It is in.

【0005】[0005]

【作用】塑性加工により異方性化することができる磁石
粉末としてはMnAlC系合金、NdFeB系合金等を
挙げることができる。特に、MnAlC系合金粉末は塑
性加工による粒子密着固形化が著しいので、本発明方法
を採用するのが有効である。この種合金粉末はガスアト
マイズ法、回転電極法等により製造されるものが一般的
であり、何れも使用可能である。
The magnet powder which can be made anisotropic by plastic working includes MnAlC-based alloys, NdFeB-based alloys and the like. In particular, since the MnAlC-based alloy powder has remarkable solidification of particles due to plastic working, it is effective to adopt the method of the present invention. This kind of alloy powder is generally produced by a gas atomizing method, a rotating electrode method or the like, and any of them can be used.

【0006】他方、これらの磁石粉末に混合される接合
防止用無機粉末としては、塑性変形に悪影響を及ぼさ
ず、また、粉砕を容易にするためには、適切な物性の接
合防止用粉末を選択する必要がある。一般に、塩化ナト
リウムのように塑性加工時に溶融あるいは溶融に近い粘
度に軟化するものは塑性変形に支障を与えるので使用出
来ず、また、バリウムフェライトのように塑性加工後磁
石粉末に密着するものは使用出来ない。他方、ケイ砂、
硫酸バリウム、タルク等は塑性変形時に溶融せず、磁石
粉末の界面において塑性変形に必要な摩擦係数を生ずる
劈開能を有するためか、塑性変形に支障を与えず、使用
可能であるが、その粒径を磁石粉末以下、好ましくは磁
石粉末の1/10以下とするのが、針状粉末が得られる
ので好ましい。
On the other hand, as the inorganic powder for preventing bonding mixed with these magnet powders, a powder for preventing bonding which has appropriate physical properties is selected so as not to have an adverse effect on plastic deformation and to facilitate pulverization. There is a need to. In general, those that melt or have a viscosity close to the melting during plastic working, such as sodium chloride, cannot be used because they hinder plastic deformation, and those that adhere to the magnet powder after plastic working, such as barium ferrite, should be used. Can not. On the other hand, quartz sand,
Barium sulfate, talc, etc. do not melt at the time of plastic deformation and may be used without interfering with plastic deformation, probably because they have a cleavage ability that generates the friction coefficient necessary for plastic deformation at the interface of the magnet powder. It is preferable that the diameter is not more than the magnet powder, preferably not more than 1/10 of the magnet powder, since needle-like powder is obtained.

【0007】また、磁石粉末と接合防止用粉末との混合
は、V型ブレンダーによる方法や、有機溶剤中で混合物
を撹拌し、その後乾燥する方法等があるが、均一に混合
可能であれば、どのような方法でも実施可能である。磁
石粉末に対する接合防止用粉末の配合量は添加する粉末
の粒度によっても異なるが、体積比率で混合粉末全体の
15%以上とするのが好ましく、30%以下に止めるの
が以後の分離を容易にするので好ましい。
The mixing of the magnet powder and the joining preventing powder may be carried out by a V-blender method or by stirring the mixture in an organic solvent and then drying the mixture. Any method can be used. The blending amount of the joining preventing powder with respect to the magnet powder varies depending on the particle size of the powder to be added, but is preferably 15% or more of the whole mixed powder by volume ratio, and is limited to 30% or less to facilitate subsequent separation. Is preferred.

【0008】塑性加工条件は磁石粉末が異方性化する温
度域と歪速度域にある必要があり、磁石粉末によってそ
れぞれ適当な領域が選択される。MnAlC系合金磁石
粉末の場合は530〜830°Cの温間領域が選ばれ
る。また、塑性加工はカプセルに粉末を充填して押し出
す方法が一般に採用されるが、その際異方性化可能な一
定の歪速度域(MnAlC系の場合0.2/sec以下
が望ましい)で押出加工を行う必要がある。
[0008] The plastic working conditions must be in a temperature range and a strain rate range in which the magnet powder becomes anisotropic, and an appropriate region is selected depending on the magnet powder. In the case of MnAlC-based alloy magnet powder, a warm region of 530 to 830 ° C is selected. The plastic working is generally carried out by filling the powder into a capsule and extruding the powder. At this time, the capsule is extruded at a constant strain rate range capable of anisotropy (preferably 0.2 / sec or less in the case of MnAlC). Processing must be performed.

【0009】塑性加工後の成形体から異方性化した磁石
粉末を回収するにあたっては成形体を先ず粉砕するが、
成形体は接合防止用粉末を介して結合しているにすぎな
いから容易に粉砕することができ、ボールミル等の機械
的粉砕手段を使用することができる。両者の粉末から磁
石粉末を回収するにあたっては両者の比重差を利用した
比重選鉱を用いるのがよく、選鉱溶媒としては磁石粉末
の酸化を回避するために水以外の有機溶媒を使用するの
がよい。勿論、他の洗浄等の回収方法が採用されてもよ
い。
In recovering the anisotropic magnet powder from the compact after plastic working, the compact is first crushed.
Since the compact is merely bonded via the joining preventing powder, the compact can be easily pulverized, and a mechanical pulverizing means such as a ball mill can be used. In recovering the magnet powder from both powders, it is preferable to use a specific gravity separation utilizing the difference in specific gravity between the two, and it is preferable to use an organic solvent other than water as a beneficiation solvent in order to avoid oxidation of the magnet powder. . Of course, other recovery methods such as washing may be adopted.

【0010】本発明者らは、種々の実験を行った結果、
例えば、ガスアトマイズによるMnAlC系合金磁石粉
末の場合は、接合防止用粉末として全体に対し25%体
積率のタルク粉末が適切であり、良好な温間塑性変形が
可能であり、粉砕も容易で、良好な異方性粉末が得られ
ることを見出した。表1に磁石粉末をガスアトマイズに
よるMnAlC系合金磁石粉末とした場合の接合防止用
粉末の種類と温間塑性変形後の固形材の粉砕の難易度お
よび得られた粉砕粉末の形状を示す。なお、接合防止用
粉末の混合量は、全体の25%体積率である。
The present inventors have conducted various experiments, and as a result,
For example, in the case of a MnAlC-based alloy magnet powder by gas atomization, a talc powder having a volume ratio of 25% based on the entirety is suitable as a joining preventing powder, good warm plastic deformation is possible, and pulverization is easy and good. It has been found that anisotropic powder can be obtained. Table 1 shows the types of powder for joining prevention, the difficulty of pulverizing a solid material after warm plastic deformation, and the shape of the obtained pulverized powder when the magnet powder is a MnAlC-based alloy magnet powder by gas atomization. The mixing amount of the bonding preventing powder is 25% by volume of the whole.

【0011】[0011]

【表1】 [Table 1]

【0012】また、表2に、磁石粉末としてガスアトマ
イズによるMnAlC系合金磁石粉末を使用し、接合防
止粉末としてタルク粉末を使用した場合の、タルク粉末
の全体に対する混合体積率と温間塑性変形後の素材の粉
砕の難易度、および得られた粉砕粉の形状を示す。な
お、何れの場合も温間塑性加工の条件は、混合物を変形
可能なカプセルに充填したビレットを700℃にて押出
し比4の温間1軸押出しである。押出御の固形材の粉砕
はメノウ乳鉢にて行った。
Table 2 shows the mixing volume ratio of the talc powder with respect to the entire talc powder and the talc powder after warm plastic deformation when a MnAlC alloy magnet powder by gas atomization was used as the magnet powder and a talc powder was used as the joining prevention powder. It shows the difficulty of crushing the material and the shape of the obtained crushed powder. In any case, the condition of the warm plastic working is that the billet in which the mixture is filled into a deformable capsule is warm uniaxial extrusion at an extrusion ratio of 4 at 700 ° C. The solid material in the extrusion was crushed in an agate mortar.

【0013】[0013]

【表2】 [Table 2]

【0014】[0014]

【実施例】磁石粉末として、温間塑性加工にて異方性化
が可能な、ガスアトマイズにて作製したMnAlC系合
金磁石粉末(組成70Mn−29.5Al−0.5C)
を使用し、これに接合防止用粉末として全体の25%体
積率のタルク粉末を加え、有機溶剤中で撹拌し、上澄み
液を除去した後、乾燥炉にて乾燥した。さらに、この混
合物を変形可能なカプセルに充填し、加工温度700°
C、歪速度0.05sec-1にて、押出比4の1軸温間
押出を実施した。次いで、押出材のカプセルを除去し、
中の固形材をメノウ乳鉢にて粉砕し、粉砕物からタルク
を有機溶剤中にて比重分離した。得られた磁石粉末の形
状を図2に示す。形状は、アスペクト比約4の針状粉で
あり、略押出比に相当する。また、温間押出前の磁石粉
末がガスアトマイズによる球状粉(図3)であった事実
から、タルクによっても塑性加工は阻害されていないと
考えられる。そして温間塑性加工を受けたこれらの異方
性粉末を磁場中圧縮にて樹脂成形磁石を作成し、磁気特
性の評価を行った。作成の条件は、樹脂として熱硬化型
のエポキシ系樹脂を用い、樹脂体積率を全体の15%と
して混練し、15kエルステッドの磁場にて配向させ、
磁場と垂直な方向に5ton/cm2の1軸圧縮にて成形
した。その形状および配向方向と圧縮方向を図1に示
す。また、その磁気特性は、配向ならびに圧縮方向にて
測定した。表3にその結果を示す。なお、測定はBHル
ープトレーサーにて印可磁場10kエルステッドで実施
した。
EXAMPLE As a magnet powder, a MnAlC-based alloy magnet powder (composition 70Mn-29.5Al-0.5C) produced by gas atomization, which can be made anisotropic by warm plastic working.
Was added thereto, and talc powder having a volume ratio of 25% as a whole was added as a bonding preventing powder, stirred in an organic solvent to remove a supernatant, and then dried in a drying oven. Further, the mixture is filled into a deformable capsule, and the processing temperature is 700 °.
C, uniaxial warm extrusion at an extrusion ratio of 4 was performed at a strain rate of 0.05 sec -1 . The extruded material capsule is then removed,
The solid material therein was pulverized in an agate mortar, and talc was separated from the pulverized material in an organic solvent by specific gravity. FIG. 2 shows the shape of the obtained magnet powder. The shape is acicular powder having an aspect ratio of about 4, which substantially corresponds to the extrusion ratio. Further, from the fact that the magnet powder before the warm extrusion was a spherical powder (FIG. 3) by gas atomization, it is considered that the plastic working was not hindered even by talc. These anisotropic powders subjected to warm plastic working were compressed in a magnetic field to form a resin molded magnet, and the magnetic properties were evaluated. The conditions for the preparation were as follows: a thermosetting epoxy resin was used as the resin, kneaded with a resin volume ratio of 15% of the whole, and oriented by a magnetic field of 15 kOe.
It was formed by uniaxial compression of 5 ton / cm 2 in a direction perpendicular to the magnetic field. FIG. 1 shows the shape, orientation direction and compression direction. The magnetic properties were measured in the orientation and the compression direction. Table 3 shows the results. The measurement was performed with a BH loop tracer at an applied magnetic field of 10 kOersted.

【0015】[0015]

【表3】 [Table 3]

【0016】[0016]

【発明の効果】本発明の方法によれば、温間塑性加工に
より異方性化する磁石粉末を用い、異方性を有する磁石
粉末を得ることができ、従来の異方性磁石粉末の製法で
あった湿式方法に比べ、製法コストが安価で、大量生産
性に優れるものである。また、特に、この方法を利用し
て調製されるMnAlC系磁石粉末は従来の異方性磁石
粉末として利用されているフェライト粉末に比べ、磁気
特性が飛躍的に優れるものであるから、性能のよい磁場
配向型異方性樹脂磁石を安価にしかも大量に提供するこ
とができる。
According to the method of the present invention, a magnet powder having anisotropy can be obtained by using a magnet powder which is made anisotropic by warm plastic working. As compared with the wet method, the production cost is lower and mass productivity is excellent. Further, in particular, MnAlC-based magnet powder prepared using this method has remarkably superior magnetic properties as compared with ferrite powder used as conventional anisotropic magnet powder, and therefore has good performance. Magnetic-field-oriented anisotropic resin magnets can be provided inexpensively and in large quantities.

【図面の簡単な説明】[Brief description of the drawings]

図1は本発明の方法により作成した異方性粉末を用いて
作成した圧縮成形による樹脂磁石の形状であり、図中に
磁場による配向方向および圧縮方向を示す。図2は本発
明方法で塑性加工を行ったMnAlC系合金粉末の粒子
形状を示す顕微鏡写真である。図3は本発明方法の塑性
加工を行う前の原料粉末の粒子形状を示す顕微鏡写真で
ある。
FIG. 1 shows the shape of a compression-molded resin magnet produced by using an anisotropic powder produced by the method of the present invention. The drawing shows the orientation direction and compression direction by a magnetic field. FIG. 2 is a micrograph showing the particle shape of the MnAlC-based alloy powder subjected to plastic working by the method of the present invention. FIG. 3 is a micrograph showing the particle shape of the raw material powder before plastic working in the method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大 川 淳 兵庫県姫路市飾磨区中島字一文字3007番 地 山陽特殊製鋼株式会社内 (72)発明者 田 中 義 和 兵庫県姫路市飾磨区中島字一文字3007番 地 山陽特殊製鋼株式会社内 (72)発明者 石 川 広 高 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平2−102504(JP,A) 特開 平2−272703(JP,A) 特開 昭55−100943(JP,A) ────────────────────────────────────────────────── ─── Continuing on the front page (72) Atsushi Okawa, 3007 character, Nakajima-shi, Shima, Himeji, Hyogo Prefecture Inside Sanyo Special Steel Co., Ltd. 3007 one character Inside Sanyo Special Steel Co., Ltd. (72) Inventor Hirotaka Ishikawa 1006 Ojidoma, Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-2-102504 (JP, A) JP-A-2-272703 (JP, A) JP-A-55-100943 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 塑性加工により異方性化可能な磁石合金
粉末と該磁石粉末同士の塑性加工時の接合を防止し、し
かも磁石粉末に密着しない無機粉末を磁石粉末に対する
体積比率で15〜30%添加した混合物をカプセルに封
入し、磁石合金の塑性加工能があり、且つ異方性化が可
能な温度域および歪速度領域で塑性加工に付し、塑性加
工後の成形体を粉砕して磁石合金粉末を分離回収するこ
とを特徴とする異方性磁石粉末の製造方法。
1. A magnet alloy powder that can be made anisotropic by plastic working and a bonding between the magnet powders during plastic working are prevented, and an inorganic powder that does not adhere to the magnet powder is removed from the magnetic powder.
The mixture added by 15 to 30% by volume is encapsulated in a capsule, subjected to plastic working in a temperature range and a strain rate range where the magnetic alloy has plastic working ability and can be made anisotropic, and is subjected to plastic working. A method for producing anisotropic magnet powder, characterized in that a compact is pulverized to separate and collect magnet alloy powder.
【請求項2】 塑性加工により異方性化可能な磁石合金
粉末と該磁石粉末同士の塑性加工時の接合を防止し、し
かも磁石粉末に密着しない無機粉末の粒径を磁石粉末の
1/10以下とした混合物をカプセルに封入し、磁石合
金の塑性加工能があり、且つ異方性化が可能な温度域お
よび歪速度領域で塑性加工に付し、塑性加工後の成形体
を粉砕して磁石合金粉末を分離回収することを特徴とす
る異方性磁石粉末の製造方法。
2. A magnet alloy which can be made anisotropic by plastic working.
To prevent the powder and the magnet powder from joining during plastic working,
The particle size of the inorganic powder that does not adhere to the magnet powder
Encapsulate the mixture of 1/10 or less in a capsule,
It has the plastic working ability of gold and can be anisotropic.
And plastic deformation in the range of strain rate
Crushing and separating and collecting the magnet alloy powder
For producing anisotropic magnet powder.
【請求項3】 塑性加工により異方性化可能な磁石合金
粉末と該磁石粉末同士の塑性加工時の接合を防止し、し
かも磁石粉末に密着しない無機粉末の粒径を磁石粉末の
1/10以下とし、かつ磁石粉末に対する体積比率で1
5〜30%添加した混合物をカプセルに封入し、磁石合
金の塑性加工能があり、且つ異方性化が可能な温度域お
よび歪速度領域で塑性加工に付し、塑性加工後の成形体
を粉砕して磁石合金粉末を分離回収することを特徴とす
る異方性磁石粉末の製造方法。
3. A magnet alloy which can be made anisotropic by plastic working.
To prevent the powder and the magnet powder from joining during plastic working,
The particle size of the inorganic powder that does not adhere to the magnet powder
1/10 or less and a volume ratio of 1 to magnet powder
The mixture added with 5 to 30% is encapsulated in a capsule,
It has the plastic working ability of gold and can be anisotropic.
And plastic deformation in the range of strain rate
Crushing and separating and collecting the magnet alloy powder
For producing anisotropic magnet powder.
【請求項4】 塑性加工により異方性化可能な磁石合金
粉末として、MnAlC系合金磁石粉末を用いるように
した請求項1〜3記載の異方性磁石粉末の製造方法。
4. The method for producing anisotropic magnet powder according to claim 1, wherein a MnAlC-based alloy magnet powder is used as the magnet alloy powder that can be made anisotropic by plastic working.
JP03299647A 1991-10-18 1991-10-18 Method for producing anisotropic powder Expired - Fee Related JP3120503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03299647A JP3120503B2 (en) 1991-10-18 1991-10-18 Method for producing anisotropic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03299647A JP3120503B2 (en) 1991-10-18 1991-10-18 Method for producing anisotropic powder

Publications (2)

Publication Number Publication Date
JPH05343218A JPH05343218A (en) 1993-12-24
JP3120503B2 true JP3120503B2 (en) 2000-12-25

Family

ID=17875288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03299647A Expired - Fee Related JP3120503B2 (en) 1991-10-18 1991-10-18 Method for producing anisotropic powder

Country Status (1)

Country Link
JP (1) JP3120503B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6226066B1 (en) 1996-01-09 2001-05-01 Lg. Philips Lcd Co., Ltd. Method for controlling pretilt angle direction in a liquid crystal cell
US6383579B1 (en) 1999-04-21 2002-05-07 Lg. Philips Lcd Co., Ltd. Liquid crystal display device
US6399165B1 (en) 1997-11-21 2002-06-04 Lg. Philips Lcd Co., Ltd. Liquid crystal display device
US6417905B1 (en) 1996-11-07 2002-07-09 Lg. Philips Lcd Co., Ltd. Method for fabricating a liquid crystal cell
US6543153B1 (en) 1993-12-21 2003-04-08 3M Innovative Properties Company Reflective polarizer having improved properties and optical display with improved reflective polarizer
US6764724B1 (en) 1999-03-25 2004-07-20 Lg.Philips Lcd Co., Ltd. Alignment layer for a liquid crystal display device
US6804058B1 (en) 1993-12-21 2004-10-12 3M Innovative Properties Company Electroluminescent light source and display incorporating same
US7852560B2 (en) 1993-12-21 2010-12-14 3M Innovative Properties Company Display incorporating reflective polarizer
US7911696B1 (en) 1997-05-28 2011-03-22 Lg Display Co., Ltd. Large scale polarizer and polarizer system employing it

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852540B2 (en) * 1979-01-26 1983-11-24 松下電器産業株式会社 Manufacturing method of anisotropic magnet
JPH02102504A (en) * 1988-10-12 1990-04-16 Nippon Steel Corp Manufacture of rare earth-iron-boron anisotropic magnet powder
JP3047239B2 (en) * 1989-04-14 2000-05-29 日立金属株式会社 Warm-worked magnet and manufacturing method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804058B1 (en) 1993-12-21 2004-10-12 3M Innovative Properties Company Electroluminescent light source and display incorporating same
US6543153B1 (en) 1993-12-21 2003-04-08 3M Innovative Properties Company Reflective polarizer having improved properties and optical display with improved reflective polarizer
US7852560B2 (en) 1993-12-21 2010-12-14 3M Innovative Properties Company Display incorporating reflective polarizer
US6633355B2 (en) 1996-01-09 2003-10-14 Lg. Philips Lcd Co., Ltd. Method for controlling pretilt angle direction in a liquid crystal cell
US6226066B1 (en) 1996-01-09 2001-05-01 Lg. Philips Lcd Co., Ltd. Method for controlling pretilt angle direction in a liquid crystal cell
US6417905B1 (en) 1996-11-07 2002-07-09 Lg. Philips Lcd Co., Ltd. Method for fabricating a liquid crystal cell
US6721025B2 (en) 1996-11-07 2004-04-13 Lg.Philips Lcd Co., Ltd Method for fabricating a liquid crystal cell
US7911696B1 (en) 1997-05-28 2011-03-22 Lg Display Co., Ltd. Large scale polarizer and polarizer system employing it
US6399165B1 (en) 1997-11-21 2002-06-04 Lg. Philips Lcd Co., Ltd. Liquid crystal display device
US6572939B2 (en) 1997-11-21 2003-06-03 Lg.Philips Lcd Co., Ltd. Liquid crystal display device
US6764724B1 (en) 1999-03-25 2004-07-20 Lg.Philips Lcd Co., Ltd. Alignment layer for a liquid crystal display device
US7901605B2 (en) 1999-03-25 2011-03-08 Lg Display Co., Ltd. Method of forming an alignment layer for liquid crystal display device
US6582784B2 (en) 1999-04-21 2003-06-24 Lg.Philips Lcd Co., Ltd. Liquid crystal display
US6383579B1 (en) 1999-04-21 2002-05-07 Lg. Philips Lcd Co., Ltd. Liquid crystal display device

Also Published As

Publication number Publication date
JPH05343218A (en) 1993-12-24

Similar Documents

Publication Publication Date Title
EP0239031B2 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
JP3120503B2 (en) Method for producing anisotropic powder
US4842656A (en) Anisotropic neodymium-iron-boron powder with high coercivity
CN106688056B (en) Bonded permanent magnet ferrite powder and its manufacturing method and ferrite system bonded permanent magnet
JPH05175022A (en) Manufacture of magnet and bonded magnet
JPS5841336B2 (en) Sonoseihou
JP2020053435A (en) BINDER FOR Sm-Fe-N-BASED MAGNET
JPH07118408B2 (en) Method for manufacturing polymer composite rare earth magnet
JPS6353201A (en) Production of permanent magnet material
JPS593511B2 (en) Method for producing small pellets using fine coke
JPH10199717A (en) Anisotropic magnet and its manufacturing method
JPH01297805A (en) Magnetic anisotropic powder and anisotropic plastic magnet
JP2696100B2 (en) Manufacturing method of magnetic anisotropic sintered magnet
JPS63121601A (en) Production of nd-fe plastic magnet material
JPS5852540B2 (en) Manufacturing method of anisotropic magnet
JP2893281B2 (en) Method for producing shape-anisotropic soft magnetic alloy powder
JPH03198303A (en) Manufacture of powder for nd-fe-b anisotropic bond magnet
JPS6245684B2 (en)
JPS5940211B2 (en) Cobalt-based sintered alloy for permanent magnets
JPS5852541B2 (en) Manufacturing method of anisotropic magnet
JPH04144207A (en) Rare earth bonded magnet
JPH04110404A (en) Treatment of anisotropy rare earth metal-iron-boron series magnetic powder and plastic magnet with this magnetic powder and manufacture thereof
JPH01230208A (en) Isotropic magnet
JPH01117642A (en) Permanent magnet for rotor and manufacture thereof
JPH0555019A (en) Resin-bonded magnet

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980512

LAPS Cancellation because of no payment of annual fees