JP2696100B2 - Manufacturing method of magnetic anisotropic sintered magnet - Google Patents

Manufacturing method of magnetic anisotropic sintered magnet

Info

Publication number
JP2696100B2
JP2696100B2 JP2196464A JP19646490A JP2696100B2 JP 2696100 B2 JP2696100 B2 JP 2696100B2 JP 2196464 A JP2196464 A JP 2196464A JP 19646490 A JP19646490 A JP 19646490A JP 2696100 B2 JP2696100 B2 JP 2696100B2
Authority
JP
Japan
Prior art keywords
powder
binder
capsule
green
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2196464A
Other languages
Japanese (ja)
Other versions
JPH03224202A (en
Inventor
斎藤  博
Original Assignee
セイコーインスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社 filed Critical セイコーインスツルメンツ株式会社
Priority to JP2196464A priority Critical patent/JP2696100B2/en
Publication of JPH03224202A publication Critical patent/JPH03224202A/en
Application granted granted Critical
Publication of JP2696100B2 publication Critical patent/JP2696100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粉末冶金法で製造する1軸異方性磁石なら
びにラジアル異方性永久磁石及びその製造方法に関する
ものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a uniaxial anisotropic magnet and a radial anisotropic permanent magnet manufactured by powder metallurgy and a method for manufacturing the same.

〔発明の概要〕[Summary of the Invention]

本発明は、粉末冶金法で製造する異方性永久磁石にお
いて、結合剤を封入したマイクロカプセル(以下単にカ
プセルと記す)を磁石粉末(以下単に粉末と記す)に混
合しておき、磁場成形プレスで粉末を磁場配向成形した
後、加圧力でカプセルを破壊し、結合剤で粉末を結合す
ることで結晶軸の整列状態(以下配向率と略記する)を
低下させずに粉末成形体(以下グリーンと略記する)の
強度を向上するものである。その結果、グリーンの取扱
が容易となり、製造歩留りが向上し、さらにグリーンの
ハンドリングの自由度が向上するものである。
The present invention relates to an anisotropic permanent magnet manufactured by powder metallurgy, in which a microcapsule (hereinafter simply referred to as a capsule) in which a binder is encapsulated is mixed with a magnet powder (hereinafter simply referred to as a powder), and a magnetic field molding press is used. After the powder is subjected to magnetic field orientation molding, the capsule is broken by pressure and the powder is bound with a binder without deteriorating the crystal axis alignment state (hereinafter abbreviated as the orientation ratio). (Abbreviated as). As a result, the handling of the green is facilitated, the production yield is improved, and the degree of freedom in handling the green is improved.

また、グリーンの強度が向上することで、ラジアル異
方性の永久磁石の製造が可能となるものである。
Further, by improving the strength of the green, it is possible to manufacture a radially anisotropic permanent magnet.

〔従来の技術〕[Conventional technology]

粉末冶金法で製造する永久磁石は、磁気特性を向上す
るため単結晶状態に粉砕した粉末を磁場中で磁化容易方
向を揃えながら成形することで磁気異方性化している。
また、グリーン強度を向上して取扱を容易にするため微
粉砕後の粉末に、粉末同士を結合するパラフィンなどの
結合剤を少量添加する方法が用いられていた。
Permanent magnets manufactured by the powder metallurgy method are made magnetically anisotropic by shaping powder crushed into a single crystal state in a magnetic field while arranging the directions of easy magnetization in order to improve magnetic properties.
Further, in order to improve green strength and facilitate handling, a method of adding a small amount of a binder such as paraffin that binds the powders to the finely pulverized powder has been used.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、上記した従来の製造方法において、 (1) この結合剤は粉末同士を接着する性質を持って
おり、結合剤を添加した粉末を磁場中で配向させて成形
すると粉末粒子同士の滑りが悪く、配向しにくいため磁
気特性が低下するという問題があった。
However, in the above-described conventional manufacturing method, (1) the binder has a property of adhering the powders to each other, and when the powder to which the binder is added is oriented in a magnetic field and molded, the slip between the powder particles is poor. However, there is a problem that the magnetic properties are deteriorated due to the difficulty in orientation.

(2) 従来の技術では粉末の磁気的配向率を向上して
高い磁気特性を得るため、粉末同士の滑りをよくする潤
滑剤を混合している。そのためグリーン強度が弱く、取
扱によるグリーンの欠け、割れなどが発生し製造歩留り
が低下するという問題があった。また、グリーンの強度
が弱いためグリーンのハンドリングに制約があり、自動
化手段にも制限が生じるという問題があった。
(2) In the prior art, in order to improve the magnetic orientation ratio of the powder and obtain high magnetic properties, a lubricant that improves the slip between the powders is mixed. Therefore, there is a problem that the green strength is weak, the green is chipped or cracked due to handling, and the production yield is reduced. In addition, there is a problem that the handling of the green is restricted because the strength of the green is weak, and the automation means is also limited.

(3) グリーン強度を向上させながら高配向率による
高い磁気特性を得るため、結合剤と潤滑剤とを混合添加
した例もあるが、結合剤と潤滑剤が各々の効果を相殺す
るため効果は少ない。
(3) In some cases, a binder and a lubricant are mixed and added in order to obtain high magnetic properties due to a high orientation ratio while improving the green strength. However, the effect of the binder and the lubricant cancel each other out. Few.

(4) 粉末冶金法でラジアル配向した薄肉のリング状
の永久磁石を製造する場合、磁場配向したグリーンの粉
末同士が同極となるため互いに反発し、グリーンにクラ
ックが入ったり、極端な場合グリーンが破壊するため製
造が困難だった。
(4) When manufacturing a thin ring-shaped permanent magnet radially oriented by powder metallurgy, the green powders oriented in the magnetic field have the same polarity and repel each other, causing cracks in the green or, in extreme cases, the green. Was difficult to manufacture because of its destruction.

本発明はこれらの問題を解決することを目的とするも
のである。
The present invention is directed to overcoming these problems.

〔課題を解決するための手段〕[Means for solving the problem]

上記問題を解決するために、本発明は、粉末冶金法で
製造する磁気異方性永久磁石において、微粉砕した粉末
に、結合剤を封入したカプセルを混合し、磁場成形プレ
スで粉末を配向した後、加圧力でカプセルを破壊する方
法。または、粉末に必要に応じて添加剤を混合し、さら
にカプセルを混合して造粒後、磁場成形プレスで粉末を
配向した後、加圧力でカプセルを破壊する方法。これら
の破壊により結合剤で粉末を結合してグリーンの磁場配
向率を低下させることなく、グリーンの強度を得る永久
磁石の製造方法であり、これらの方法から製造した1軸
異方性、またはラジアル異方性の永久磁石を提供するも
のである。
To solve the above problems, the present invention relates to a magnetic anisotropic permanent magnet manufactured by a powder metallurgy method, in which finely pulverized powder, a capsule encapsulating a binder were mixed, and the powder was oriented by a magnetic forming press. Afterwards, a method of breaking the capsule by pressing force. Alternatively, a method in which an additive is mixed with the powder as needed, the capsule is further mixed, granulated, the powder is oriented by a magnetic forming press, and the capsule is broken by a pressing force. This is a method for producing a permanent magnet that obtains green strength without lowering the magnetic field orientation ratio of the green by binding the powder with a binder by these destructions, and is a uniaxial anisotropy or radial produced by these methods. The present invention provides an anisotropic permanent magnet.

〔作用〕[Action]

本発明によれば、成形前の粉末には結合剤が封入され
たカプセルが混合されている。よって磁場配向するとき
粉末は結合剤によって接着されることなく一つ一つバラ
バラに分離している。そのため磁場成形機で磁界を印加
することで良好な配向が得られる。
According to the invention, the powder before molding is mixed with a capsule in which a binder is enclosed. Therefore, when the magnetic field is oriented, the powders are separated one by one without being bonded by the binder. Therefore, good orientation can be obtained by applying a magnetic field with a magnetic field molding machine.

〔実施例〕〔Example〕

実施例−1 Sm35.8wt%Co残の組成となるように調整秤量した原料
(以下SmCo5系合金と記す)をアーク炉でAr雰囲気中で
溶解後、クラッシャーミルで#32メッシュスルーに粗粉
砕し、ジェットミルによりN2ガス中で3μmの粒径に粉
砕した物を出発合金とした。
Example 1 A raw material (hereinafter referred to as a SmCo 5- based alloy) adjusted and weighed so as to have a composition of S5.8 wt% Co residue was melted in an arc furnace in an Ar atmosphere, and then roughly crushed to # 32 mesh through with a crusher mill. Then, a material pulverized to a particle size of 3 μm in N 2 gas by a jet mill was used as a starting alloy.

前記出発合金に造粒、潤滑剤としてステアリン酸を0.
05wt%混合し、流動パラフィンを封入したカプセルを1w
t%混合し、10kOeの磁界中で1ton/cm2の圧力で成形し
た。このとき、カプセルの寸法を外径20μmに固定し、
膜厚を0.2,0.5,1,2,3μmの5種類とした。また、カプ
セルの材質はポリウレタンとした。
Granulate the starting alloy with stearic acid as a lubricant.
1w capsules mixed with 05wt% and filled with liquid paraffin
The mixture was molded at a pressure of 1 ton / cm 2 in a magnetic field of 10 kOe. At this time, the dimensions of the capsule were fixed to an outer diameter of 20 μm,
The film thickness was made into five types of 0.2, 0.5, 1, 2, and 3 μm. The material of the capsule was polyurethane.

前記グリーンの強度比をラトラー試験機で100回転し
た後の残重量比で表した。また、グリーンを500℃1時
間真空中で脱ガスしてカプセル及び結合剤を蒸発させ11
20℃Arガス中で焼結後、830℃まで1℃/分の割合で冷
却し830℃で2時間保持後急冷した焼結体の配向率を振
動試料型磁化測定装置で測定した。
The strength ratio of the green was represented by the remaining weight ratio after 100 rotations with a Rattler tester. Further, the green is degassed in vacuum at 500 ° C. for 1 hour to evaporate the capsule and the binder.
After sintering in Ar gas at 20 ° C., it was cooled to 830 ° C. at a rate of 1 ° C./min, kept at 830 ° C. for 2 hours, and quenched, and the orientation ratio of the sintered body was measured with a vibration sample type magnetometer.

なお、配向率は磁化容易方向に磁化したときの残留磁
束密度(Br11)と磁化困難方向に磁化したときの残留磁
束密度(Br⊥)とを用い、 より求めた。グリーン強度比及び焼結体の配向率のカプ
セル膜厚依存性を第1図の特性図に示す。
The orientation ratio is calculated using the residual magnetic flux density (Br11) when magnetized in the easy magnetization direction and the residual magnetic flux density (Br⊥) when magnetized in the hard magnetization direction. I asked more. The dependence of the green strength ratio and the orientation ratio of the sintered body on the capsule film thickness is shown in the characteristic diagram of FIG.

実施例1によりカプセル膜厚が薄すぎると粉末を混合
〜磁場配向する時の圧力でカプセルが破壊し、結合剤が
カプセルから流れ出すことにより磁場による配向の前に
粉末同士が接着され配向率が低下する。また、膜厚が厚
すぎると成形圧力でカプセルを破壊できず結合剤が流出
しないため成形終了時点で粉末同士が接着されずグリー
ン強度は従来と変わらないことがわかった。
According to Example 1, if the capsule film thickness is too thin, the capsule is broken by the pressure at which the powder is mixed to orientate in a magnetic field, and the binder flows out of the capsule, whereby the powders adhere to each other before being oriented by the magnetic field, and the orientation ratio decreases. I do. It was also found that if the film thickness was too large, the capsule could not be broken by the molding pressure and the binder did not flow out, so that the powders did not adhere to each other at the end of molding, and the green strength was not different from the conventional one.

実施例−2 カプセルの膜厚を1μm、外径を20μm、材質をポリ
ウレタンとし、結合剤を流動パラフィン、ショウノウ、
ポリビニールブチラール(以下PVBと記す)として前記
結合剤の配向比を1.5,1,2,3,4,5wt%とした。SmCo5系合
金を実施例−1に従って試料製作し、グリーン強度比及
び磁気特性を測定した結果を第2図の特性図に示し、結
合剤をPVBとしたときの磁気特性を第1表に示す。ショ
ウノウ及びPVBは固体であるためメタノールに溶解しグ
リース状にしてカプセルに封入した。
Example 2 A capsule having a film thickness of 1 μm, an outer diameter of 20 μm, a material of polyurethane, and a binder of liquid paraffin, camphor,
The orientation ratio of the binder was 1.5, 1, 2, 3, 4, 5 wt% as polyvinyl butyral (hereinafter referred to as PVB). The SmCo 5 alloy was manufactured as a sample in accordance with Example 1, and the results of measuring the green strength ratio and the magnetic properties are shown in the characteristic diagram of FIG. 2, and the magnetic properties when the binder was PVB are shown in Table 1. . Since camphor and PVB are solids, they were dissolved in methanol, greased and encapsulated.

比較として、結合剤をまったく配合せず、造粒、潤滑
剤としてステアリン酸のみ配合した試料を測定したとこ
ろ、保磁力は19kOe、グリーン強度比は70であった。
As a comparison, when a sample containing only stearic acid as a lubricant and a granulator without any binder was measured, the coercive force was 19 kOe and the green strength ratio was 70.

実施例−2により結合剤配合比は0.5〜5wt%で磁気特
性及びグリーン強度は実用上問題ない値を示すことが分
かった。結合剤がパラフィンの場合、配合比が5wt%に
なると残留カーボンの影響と思われる磁気特性の低下が
認められた。しかし、PVBは広い範囲で特性が安定して
いることが分かった。
According to Example-2, it was found that the magnetic properties and green strength exhibited values that were practically satisfactory when the binder compounding ratio was 0.5 to 5 wt%. In the case where the binder was paraffin, when the mixing ratio was 5 wt%, a decrease in the magnetic properties considered to be due to the residual carbon was observed. However, it was found that the characteristics of PVB were stable over a wide range.

実施例−3 実施例−1,2よりSmCo5の合金についてカプセルの膜厚
及び最適な結合剤が得られたので、Sm26.75Co残Fe15Cu8
Zr1.77wt%となるように調整秤量した合金(以下Sm2Co
17系合金と記す)について実施例−1に従って製作した
物を出発合金とし、実施例−2で用いたPVB法入のカプ
セル1.5wt%を混合して10kOeの磁界中で1ton/cm2の圧力
で磁場成形後、500℃1時間真空中で脱ガスしてカプセ
ル及び結合剤を蒸発させ、1200℃1時間Ar中焼結、1170
℃2時間保持後Ar急冷による溶体化を行いさらに800℃
4時間保持後0.5℃/分で冷却し、400℃8時間保持の時
効を行った。このとき、造粒、潤滑剤はステアリン酸0.
05wt%、フタル酸ジnブチル2.5wt%、ステアリング酸
マグネシウム0.05wt%をそれぞれ1種類ずつ配合した。
比較材としてPVBを封入したカプセルを混合せずに同様
の方法で試料を作成した。
Since the capsule thickness and optimal binding agent for the alloys of SmCo 5 from Example -3 Example 1,2 is obtained, Sm26.75Co residue Fe15Cu8
Adjusted and weighed to Zr1.77wt% (hereinafter Sm 2 Co
The alloy prepared in accordance with Example 1 was used as a starting alloy, and 1.5% by weight of the PVB-filled capsule used in Example 2 was mixed, and a pressure of 1 ton / cm 2 was applied in a magnetic field of 10 kOe. After demagnetizing in a magnetic field at 500 ° C. for 1 hour in a vacuum to evaporate the capsule and binder, sintering in Ar at 1200 ° C. for 1 hour, 1170
After quenching for 2 hours at ℃, the solution was quenched by quenching Ar and further 800 ℃
After holding for 4 hours, the mixture was cooled at a rate of 0.5 ° C./min, and aged at 400 ° C. for 8 hours. At this time, granulation and lubricant are stearic acid 0.
05 wt%, 2.5 wt% of di-n-butyl phthalate, and 0.05 wt% of magnesium stearate were blended.
As a comparative material, a sample was prepared in the same manner without mixing a capsule enclosing PVB.

グリーン強度比及び磁気特性を第2表に示す。 Table 2 shows the green intensity ratio and the magnetic properties.

実施例−3により、Sm2Co17系の磁石についても本発
明が有効であることが分かった。また、造粒、潤滑剤の
種類が変わっても同様の効果が得られることが分かっ
た。
According to Example 3, it was found that the present invention is also effective for Sm 2 Co 17- based magnets. It was also found that the same effect can be obtained even if the type of granulation and the type of the lubricant were changed.

実施例−4 Nd34Fe残B1wt%となるように調整秤量した合金(以下
Nd−Fe系合金と記す)について実施例−1に従って製作
した物を出発合金とし、実施例−2で用いたPVB封入の
カプセル1.5wt%を混合して10kOeの磁界中で1ton/cm2
圧力で磁場成形後、500℃1時間真空中で脱ガスとして
カプセル及び結合剤を蒸発させ、1070℃1時間Ar焼結後
1℃/分で冷却し、600℃2時間保持後急冷を行った。
このとき、造粒、潤滑剤はステアリング酸マグネシウム
及びステアリン酸マグネシウムとポリエチレングリコー
ルとを1:1で配合したものをそれぞれ0.05wt%混合し
た。
Example-4 An alloy adjusted and weighed so that the remaining amount of Nd34Fe is B1 wt% (hereinafter referred to as "the alloy").
Nd-Fe-based alloy) was prepared according to Example 1 as a starting alloy, and 1.5 wt% of the PVB-encapsulated capsule used in Example 2 was mixed and mixed at 1 ton / cm 2 in a magnetic field of 10 kOe. After forming the magnetic field under pressure, the capsule and binder were evaporated as degassed in vacuum at 500 ° C. for 1 hour, sintered at 1070 ° C. for 1 hour, cooled at 1 ° C./min after sintering for 1 hour, and rapidly cooled after holding at 600 ° C. for 2 hours. .
At this time, as the granulation and lubricant, magnesium stearate, magnesium stearate and polyethylene glycol mixed at a ratio of 1: 1 were mixed at 0.05 wt% each.

比較材としてPVBを挿入したカプセルを混合せずに同
様の方法で試料を作成した。
A sample was prepared in the same manner without mixing a capsule into which PVB was inserted as a comparative material.

グリーン強度比及び磁気特性を第3表に示す。実施例
−4により、本発明がNd−Fe系の磁石にも有効であるこ
とが分かった。
Table 3 shows the green intensity ratio and the magnetic properties. According to Example-4, it was found that the present invention is also effective for Nd-Fe-based magnets.

また、造粒、潤滑剤を2種類配合しても同様の効果が
得られることが分かった。
It was also found that the same effect can be obtained by mixing two types of granulation and lubricant.

実施例−5 SmCo5系合金、Sm2Co17系合金、Nd−Fe系合金をそれぞ
れ実施例−1に従って溶解、粉砕し、実施例−2で用い
たPVB封入のカプセルを1.5wt%混合した粉末試料をフッ
素化炭化水素と混合してスラリー状とし、スラリー状の
まま磁界中で1ton/cm2の圧力下で成形した。(以下湿式
法と記す)得られたグリーンを12時間以上真空中で常温
乾燥しそれぞれの組成毎に実施例−1,−3,−4に従って
脱ガス、焼結、時効を施した。
Example -5 SmCo 5 alloy, Sm 2 Co 17 alloy, dissolved according to the respective embodiments -1 Nd-Fe-based alloy, and pulverizing, capsules PVB encapsulation used in Example -2 mixed 1.5 wt% The powder sample was mixed with a fluorinated hydrocarbon to form a slurry, and the slurry was formed in a magnetic field under a pressure of 1 ton / cm 2 . The resulting green was dried in a vacuum at room temperature for 12 hours or more and degassed, sintered, and aged according to Examples 1, 3, and 4 for each composition.

比較例として結合剤を混合しない試料を製作した。グ
リーン強度比及び磁気特性を第4表に示す。
As a comparative example, a sample without mixing a binder was manufactured. Table 4 shows the green intensity ratio and the magnetic properties.

実施例−5により湿式法による磁場成形においても本
発明が有効であることが分かった。
According to Example-5, it was found that the present invention is also effective in magnetic field molding by a wet method.

実施例−6 実施例−2,−3,−4で用いたSmCo5系合金、Sm2Co17
合金及びNd−Fe系合金に実施例−2で用いたPVB封入カ
プセル1.5wt%を混合し10kOeの磁場中で1ton/cm2の圧力
下でラジアル状に磁場配向成形したリング状のグリーン
を、それぞれの組成毎に実施例−1,−3,−4に従って脱
ガス、焼結、時効を施した。
Example -6 Example -2, -3, SmCo 5 alloy used at -4, the PVB Capsule 1.5 wt% used in Example -2 Sm 2 Co 17 alloy and Nd-Fe-based alloy mixture Then, a ring-shaped green, which was radially magnetically oriented under a pressure of 1 ton / cm 2 in a magnetic field of 10 kOe, was degassed, sintered, and aged according to Examples 1, 3, and 4 for each composition. Was given.

比較例として結合剤を混合しない試料を製作した。グ
リーン強度及び磁気特性を第5表に示す。
As a comparative example, a sample without mixing a binder was manufactured. Table 5 shows the green strength and magnetic properties.

実施例−6により本発明がラジアル配向した焼結磁石
に対しても有効であることが分かった。
From Example-6, it was found that the present invention is also effective for radially oriented sintered magnets.

実施例−7 実施例−6で用いたPVB封入のカプセルを混合した合
金にステアリン酸を0.05wt%混合し、実施例−6に従っ
て磁場中成形したリング状のグリーンをそれぞれの組成
毎に実施例−1,−3,−4に従って脱ガス、焼結、時効を
施した。比較材として、結合剤を混合しない試料を製作
した。
Example -7 0.05 wt% of stearic acid was mixed with the alloy mixed with the PVB-encapsulated capsule used in Example-6, and ring-shaped greens formed in a magnetic field according to Example-6 were prepared for each composition. Degassing, sintering and aging were performed according to -1, -3 and -4. As a comparative material, a sample not mixed with a binder was manufactured.

グリーン強度及び磁気特性を第6表に示した。 Table 6 shows the green strength and the magnetic properties.

実施例−6により本発明が、原料微粉末に潤滑剤を混
合し配向率を向上した、ラジアル配向焼結磁石に対して
も有効であることが分かった。
From Example-6, it was found that the present invention is also effective for radially oriented sintered magnets in which a lubricant is mixed with the raw material fine powder to improve the orientation ratio.

〔発明の効果〕 本発明によれば、磁気特性の低下させることなくグリ
ーン強度を大幅に向上できるため、グリーンの取扱が容
易となり成形時のグリーンの割れ、欠くなどの不良も少
なくなると同時にグリーンのハンドリングの自由度が向
上するため自動化による工数削減の効果も期待できる。
また、従来製造が困難だったラジアル異方性の焼結磁石
が容易に製造できるなど実用上の効果は非常に大きい。
[Effects of the Invention] According to the present invention, the green strength can be greatly improved without lowering the magnetic properties, so that the handling of the green is facilitated, and defects such as cracking and chipping of the green during molding are reduced, and at the same time, the green Since the degree of freedom of handling is improved, the effect of man-hour reduction by automation can be expected.
In addition, a practical effect is very large, for example, a radially anisotropic sintered magnet, which was difficult to manufacture conventionally, can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

第1図はグリーン強度比及び配向率のカプセル膜厚依存
性の特性図、第2図はグリーン強度比及び磁気特性(保
磁力)の結合剤配合比依存性の特性図である。
FIG. 1 is a characteristic diagram of the dependence of the green intensity ratio and the orientation ratio on the capsule film thickness, and FIG. 2 is a characteristic diagram of the dependence of the green intensity ratio and the magnetic characteristics (coercive force) on the blending ratio of the binder.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】粉末冶金法で製造する磁気異方性焼結磁石
において、 微粉砕した磁石粉末に、結合剤を封入したマイクロカプ
セルを混合して造粒する工程と、 磁石粉末を配向する工程と、 結合剤を封入したマイクロカプセルを含む磁石粉末を加
圧成形する工程と、 該粉末成形体を真空中で脱ガスして、カプセル及び結合
剤を蒸発させる工程と、 該脱ガスした粉末成形体を焼結する工程とを有すること
を特徴とする磁気異方性焼結磁石の製造方法。
1. A magnetically anisotropic sintered magnet manufactured by a powder metallurgy method, comprising: a step of mixing and granulating a microcapsule containing a binder with finely ground magnet powder; and a step of orienting the magnet powder. Pressure-forming a magnetic powder containing microcapsules encapsulating a binder; degassing the powder compact in a vacuum to evaporate the capsule and the binder; and forming the degassed powder. And sintering the body.
【請求項2】磁石粉末に造粒性および潤滑性を向上させ
る1種または2種以上の添加剤を混合する工程を有する
ことを特徴とする請求項1記載の磁気異方性焼結磁石の
製造方法。
2. The magnetic anisotropic sintered magnet according to claim 1, further comprising a step of mixing one or more additives for improving the granulating property and lubricity with the magnet powder. Production method.
JP2196464A 1989-12-25 1990-07-25 Manufacturing method of magnetic anisotropic sintered magnet Expired - Lifetime JP2696100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2196464A JP2696100B2 (en) 1989-12-25 1990-07-25 Manufacturing method of magnetic anisotropic sintered magnet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-337746 1989-12-25
JP33774689 1989-12-25
JP2196464A JP2696100B2 (en) 1989-12-25 1990-07-25 Manufacturing method of magnetic anisotropic sintered magnet

Publications (2)

Publication Number Publication Date
JPH03224202A JPH03224202A (en) 1991-10-03
JP2696100B2 true JP2696100B2 (en) 1998-01-14

Family

ID=26509750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2196464A Expired - Lifetime JP2696100B2 (en) 1989-12-25 1990-07-25 Manufacturing method of magnetic anisotropic sintered magnet

Country Status (1)

Country Link
JP (1) JP2696100B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2558790B2 (en) * 1988-02-29 1996-11-27 松下電器産業株式会社 Resin magnet manufacturing method

Also Published As

Publication number Publication date
JPH03224202A (en) 1991-10-03

Similar Documents

Publication Publication Date Title
CA1106648A (en) Permanent-magnet alloy
EP0239031B2 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
US5352301A (en) Hot pressed magnets formed from anisotropic powders
EP0249973A1 (en) Permanent magnetic material and method for producing the same
JPS60221549A (en) Rare earth permanent magnet
KR0135209B1 (en) Fabrication method and equipment for granulated powders
US6063322A (en) Method for manufacturing shaped bodies from hard ferrites
JPS6181606A (en) Preparation of rare earth magnet
US3682714A (en) Sintered cobalt-rare earth intermetallic product and permanent magnets produced therefrom
JPH0685369B2 (en) Permanent magnet manufacturing method
US3684591A (en) Sintered cobalt-rare earth intermetallic product including samarium and cerium and permanent magnets produced therefrom
JPS6181603A (en) Preparation of rare earth magnet
JP2696100B2 (en) Manufacturing method of magnetic anisotropic sintered magnet
JP4089212B2 (en) Method for producing granulated powder of rare earth alloy and method for producing sintered rare earth alloy
JPH05335120A (en) Anisotropic bonded manget manufacturing magnet powder coated with solid resin binder and manufacture thereof
JPH06188113A (en) Manufacture of permanent magnet composed mainly of ndfeb
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
US3682715A (en) Sintered cobalt-rare earth intermetallic product including samarium and lanthanum and permanent magnets produced therefrom
JPS6181607A (en) Preparation of rare earth magnet
CA1158460A (en) Process for the production of cobalt/rare earth alloy powders
JPS6181604A (en) Preparation of rare earth magnet
JPS5945745B2 (en) Permanent magnet material and its manufacturing method
JP3652751B2 (en) Anisotropic bonded magnet
JPH04119605A (en) Manufacture of sintered permanent magnet, sintered permanent magnet power and bonded magnet made of the power
JPS6245684B2 (en)