JPS593511B2 - Method for producing small pellets using fine coke - Google Patents

Method for producing small pellets using fine coke

Info

Publication number
JPS593511B2
JPS593511B2 JP3731978A JP3731978A JPS593511B2 JP S593511 B2 JPS593511 B2 JP S593511B2 JP 3731978 A JP3731978 A JP 3731978A JP 3731978 A JP3731978 A JP 3731978A JP S593511 B2 JPS593511 B2 JP S593511B2
Authority
JP
Japan
Prior art keywords
granulation
coke
fine
particle size
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3731978A
Other languages
Japanese (ja)
Other versions
JPS54127902A (en
Inventor
孝雄 小野
政和 山口
直美 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshikawa Kogyo Co Ltd
Original Assignee
Yoshikawa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshikawa Kogyo Co Ltd filed Critical Yoshikawa Kogyo Co Ltd
Priority to JP3731978A priority Critical patent/JPS593511B2/en
Publication of JPS54127902A publication Critical patent/JPS54127902A/en
Publication of JPS593511B2 publication Critical patent/JPS593511B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Glanulating (AREA)
  • Coke Industry (AREA)

Description

【発明の詳細な説明】 この発明は微粉コークス、特に粒径149μm以下の微
粉コークスによる小ペレツト製造法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing small pellets using fine coke, particularly fine coke having a particle size of 149 μm or less.

製鉄所において高炉に装入されるコークスは粉化性、冷
間及び熱間での強度、或は硫黄分等の有害成分の管理と
共に高炉内における一定の通気性を確保するために高炉
への装入コークスの粒度管理が他の装入原料の粒度管理
と共に厳しくなされている。
The coke charged into the blast furnace at a steelworks is carefully controlled in terms of its pulverizability, cold and hot strength, and harmful components such as sulfur content, as well as to ensure a certain level of air permeability within the blast furnace. Particle size control of charged coke is strictly controlled along with particle size control of other charged raw materials.

高炉へ装入されるコークスは一般に大きい場合は75m
mの粒径のものから小さなもので1571t7ILの範
囲で高炉の操業条件に応じて任意に選択され、破砕及び
篩分けにより整粒されている。
The coke charged into the blast furnace is generally 75 m long if it is large.
Depending on the operating conditions of the blast furnace, the grain size is arbitrarily selected from a particle size of 1571t7IL to a small particle size of 1571t7IL, and the particles are sized by crushing and sieving.

これら高炉への装入コークスの整粒において発生する高
炉装入に適さない細粒は更に破砕され、粉鉄鉱石等、粉
状鉄源原料の焼結用燃料として好適な粒径に粒度調整さ
れる。
These fine particles unsuitable for blast furnace charging, which are generated during the sizing of coke charged into the blast furnace, are further crushed and adjusted to a particle size suitable for use as fuel for sintering powdered iron source raw materials such as powdered iron ore. Ru.

一般に焼結用燃料コークスは1〜3mmの範囲のものが
適当とされており、例えば3羽を超え或は5mm等の粒
径の比較的粗粒粉コークスは焼結層に熱的分布の不均一
による焼結むらを生じ、一方粒径が小さい例えば0.2
5mm以下の微細粉コークスは焼結原料装入層における
通気性が阻害され焼結効率が劣化されるのでこれら微細
粉コークスは好まれない。
In general, fuel coke for sintering is considered to have a diameter in the range of 1 to 3 mm. For example, relatively coarse powder coke with a particle size of more than 3 or 5 mm will cause thermal distribution to be uneven in the sintered layer. On the other hand, if the grain size is small, e.g. 0.2
Fine coke particles with a diameter of 5 mm or less impede air permeability in the sintering raw material charging layer and deteriorate sintering efficiency, so these fine coke particles are not preferred.

しかして、焼結用燃料としても適さない微細粉コークス
は前記した高炉装入コークスの整粒時、焼結用コークス
の整粒時の外、コークス製造時或はコークスの搬送等の
如きハンドリング時において多量に発生する。
Therefore, fine coke powder, which is not suitable as a fuel for sintering, is used not only during the sizing of coke charged in the blast furnace and during sizing of coke for sintering, but also during handling such as coke manufacturing or coke transportation. occurs in large quantities.

これら微細粉コークスは集塵設備等により捕集はされる
が、高炉はもとより焼結用燃料として使用されることは
なく、ヤード等に貯留される場合が多いがその一部は豆
炭或は練炭原料に使用されている。
Although these fine coke particles are collected by dust collection equipment, they are not used as fuel for sintering, let alone in blast furnaces, and are often stored in yards, etc., but some of them are converted into charcoal or briquettes. used as raw material.

しかし、これら微細粉コークスは有用燃料として製鉄工
場内において有効利用を行うべきことが望まれながらも
、その粒表面に鋭利な突起を有し、しかも多孔質にして
粘結性がないためにこれを鉄鉱石粉等の如く転動造粒す
ることは極めて困難であり、粘結剤の配合下において専
ら練炭、或は豆炭等に型枠内における圧縮成形がなされ
ることが多い。
However, although it is desired that these fine coke powder be used effectively in steel plants as a useful fuel, it is not possible to do so because they have sharp protrusions on the particle surface and are porous and have no caking property. It is extremely difficult to roll and granulate iron ore powder, etc., and it is often compressed into briquettes or pulverized charcoal in a mold with the addition of a binder.

本発明者らは上記した如き造粒性に乏しく、末だ有効利
用のなされていない微細粉コークスを有効利用例えば焼
結燃料としての利用に適する粒に形成するための造粒方
法について種々研究を重ね本発明を完成したものであっ
て以下に本発明について詳細に述べる。
The present inventors have conducted various studies on granulation methods for forming fine coke powder, which has poor granulation properties and has not yet been effectively utilized, into particles suitable for use, for example, as sintering fuel. The present invention has been completed and will be described in detail below.

即ち、本発明の微細粉コークスの造粒においては転勤造
粒に先立って高速回転翼を内設ししかもこの高速回転翼
と逆方向に低速で回転する回転皿中において微細粉コー
クスをセメントと共に混練しこの混練中における微細粉
コークス粒子の衝突′結合による結合造粒核を形成せし
める予備処理を行うことを特徴とする。
That is, in the granulation of fine coke powder of the present invention, prior to transfer granulation, the fine coke powder is kneaded with cement in a rotary dish that is equipped with a high-speed rotary blade and rotates at a low speed in the opposite direction to the high-speed rotary blade. The method is characterized by carrying out a preliminary treatment to form bonded granulation nuclei through collision and bonding of fine coke particles during the kneading process.

本発明の造粒において使用される粉コークスは前記した
如くコークス製造において或は高炉用、焼結燃料用コー
クスとして整粒時において発生する粒径149μm以下
の微細粉を主体とする第1表に例示す如き微細粉コーク
スである。
As mentioned above, the coke powder used in the granulation of the present invention is mainly composed of fine powder with a particle size of 149 μm or less, which is generated in coke manufacturing or during sizing as coke for blast furnaces or sintered fuel. This is fine powder coke as illustrated.

上記のような微細粉コークスは粘結性が殆んどないため
に転勤造粒のみでは殆んど造粒し得す、従って、転勤造
粒に先立って、本発明が特定する予備処理を必要とする
Since the above-mentioned fine coke powder has almost no caking property, it can hardly be granulated by transfer granulation alone.Therefore, prior to transfer granulation, pretreatment specified by the present invention is required. shall be.

則ち、粒径が149μm以下の微細粉を主体とする粉コ
ークスに結合剤としてセメントを加え更に水を加えて調
湿を行ない微細な転勤造粒核の形成に好適な状態に原料
調整を行う。
In other words, cement is added as a binder to coke powder, which is mainly composed of fine powder with a particle size of 149 μm or less, and water is added to control the humidity to adjust the raw material to a state suitable for the formation of fine transferred granulation nuclei. .

本発明の上記原料調整において微細粉コークスに添加さ
れるセメントは微細粉コークス粒子の乾重量に対して7
〜19係の範囲が好ましく、下限以下では添加量が少く
て必要な固結強度が得られず、一方上限以上になると不
経済であると共に燃料成分が稀釈されることになる。
In the above raw material preparation of the present invention, the amount of cement added to the fine coke powder is 7% based on the dry weight of the fine coke particles.
A range of 19 to 19 is preferable; below the lower limit, the amount added is too small to obtain the necessary consolidation strength, while above the upper limit, it is uneconomical and the fuel components are diluted.

又原料の調湿は水分20〜30係の範囲とするのが好ま
しく、微細粉コークスの小粒径分布が大きい程、或はセ
メント配合量が多い程その添加量を上記範囲において大
とすべきである。
In addition, it is preferable to control the humidity of the raw material so that the moisture content is within the range of 20 to 30 parts, and the larger the particle size distribution of the fine coke powder or the larger the amount of cement mixed, the larger the amount added should be within the above range. It is.

又本発明において結合剤として添加されるセメントは、
特に限定されることはないが焼結用燃料として使用され
る場合は焼結生産性低下の原因となるAl2O3Mgo
の比較的少ない普通ポルトランドセメント或は早強セメ
ントの使用が推奨される。
In addition, the cement added as a binder in the present invention is
Although not particularly limited, Al2O3Mgo causes a decrease in sintering productivity when used as a sintering fuel.
It is recommended to use ordinary Portland cement or early-strengthening cement, which has a relatively low content.

かく調整された微細粉コークスはついで、高速回転翼を
偏心して内部に有ししかもこの高速回転翼とは回転方向
が逆方向に低速で回転される回転皿内に投入される。
The fine coke powder thus prepared is then placed into a rotating plate which has a high-speed rotating blade eccentrically inside and is rotated at a low speed in a direction opposite to that of the high-speed rotating blade.

上記回転皿は、例えば25〜80rpmの如く比較的低
速にて投入微細粉コークスと共に回転されるが当該回転
皿内においてその回転皿とは逆方向に350〜1500
rpmの如く比較的高速に回転する回転翼は前記回転皿
内微細粉コークスを激しく衝撃的に圧縮すると共に皿の
回転方向に逆方向に逆行して押し戻し撹拌を行う。
The rotating plate is rotated together with the input fine coke at a relatively low speed, for example, 25 to 80 rpm, but within the rotating plate, the rotating plate rotates at a speed of 350 to 1,500 rpm in the opposite direction to the rotating plate.
The rotor blades, which rotate at a relatively high speed such as rpm, compress the fine coke in the rotary dish with a strong impact, and also move in the opposite direction to the direction of rotation of the dish to push it back and agitate it.

このような相互に回転方向を逆にし、しかも高速回転翼
を有する圧縮と撹拌を行う装置において投入微細粉コー
クスは高速回転翼によって微細粒は圧縮され微細コーク
ス粒子同志は強力に押し付けられ粒子表面の尖鋭突起と
凹穴部が相互にからみ合って粒子間の物理的結合がなさ
れると共にセメントによる結合補助がなされ、造粒核が
形成される。
In such a compression and agitation device with mutually opposite rotational directions and high-speed rotary blades, the fine coke particles are compressed by the high-speed rotary blades, and the fine coke particles are strongly pressed against each other to form a surface area of the particles. The sharp protrusions and the recessed holes are intertwined with each other to form a physical bond between the particles, and the bond is assisted by the cement, thereby forming a granulation nucleus.

これら造粒核は回転皿内での転勤によるポーリング作用
のため粒成長及び回転翼による過酸長粒、例えば粒径3
mm以上の過酸長粒の剪断的細分化がなされ粒径1〜3
mmの造粒核が形成される。
These granulation nuclei undergo grain growth due to the polling effect due to transfer in the rotating plate, and peracid long grains due to the rotary blade, for example, particle size 3.
The peracid long grains with a diameter of 1 to 3 mm are finely divided by shearing.
mm granulation nuclei are formed.

このようにして予備造粒された造粒核粒子はついでポー
リングディスク或はポーリングドラム等の如き転勤造粒
装置に微細粉コークスと共に装入され転勤せしめること
によって形成粉は圧密化され、さらに成長され、球状化
して所望の大きさに造粒される。
The granulation core particles pre-granulated in this way are then charged and transferred together with fine coke into a transfer granulation device such as a polling disk or a polling drum, whereby the formed powder is consolidated and further grown. , spheroidized and granulated to a desired size.

この造粒物は養生場にて数日間養生を行い配合セメント
の凝固を行う。
This granulated material is cured in a curing field for several days to solidify the blended cement.

本発明の微細粉コークスの造粒方法は上記の如くである
が以下更に実施例について述べる。
The method for granulating fine coke of the present invention is as described above, and examples will be further described below.

第2図は本発明の微細粉コークスの造粒のフローチャー
トの1例を示すもので、第1表に例示した如き、粒径が
149μm以下の微細粒を68.3係を含む篩分場集塵
粉コークスに結合剤として普通ポルトランドセメント8
係を配合し更に水分が28%になるように調湿して、こ
れを回転数が350〜1500rpm範囲の高速回転翼
2が偏心して内部に設けられ、しかもこの高速回転翼2
の回転方向とは逆方向に25〜80rpm範囲で低速回
転する回転皿1中に投入し、これら回転翼2及び回転皿
1を夫々に作動させると回転皿1中の原料はその一部が
回転皿1中の偏心位置において逆方向に高速回転する回
転翼2により捕捉され衝撃的に粒子同志が圧着され結合
し造粒核が形成される一方、粒径が3mrIL以上の過
酸長粒は偏心設置されている高速回転翼の衝撃によって
圧縮或は細化され1〜3imの粒径の造粒核が生成され
た。
Figure 2 shows an example of a flowchart for granulation of fine coke of the present invention, in which fine particles with a particle size of 149 μm or less are sieved through a sieve containing a ratio of 68.3 as illustrated in Table 1. Ordinary portland cement 8 as a binder for dust coke
A high-speed rotary blade 2 with a rotation speed in the range of 350 to 1500 rpm is installed eccentrically inside the high-speed rotary blade 2.
When the raw material in the rotating plate 1 is fed into a rotating plate 1 that rotates at a low speed in the range of 25 to 80 rpm in the opposite direction to the rotating direction of At an eccentric position in the dish 1, the particles are captured by the rotary blades 2 rotating at high speed in the opposite direction, and the particles are impulsively pressed together and bonded to form granulation nuclei, while peracid long grains with a particle size of 3 mrIL or more are caught in the eccentric position. The particles were compressed or atomized by the impact of the installed high-speed rotary blades, and granulation nuclei with a particle size of 1 to 3 mm were generated.

この生成粒には粒径0.5mm以下の微細粉も一部台ま
れているが、これらは定量供給機3を介して、皿形転動
造粒機4へ供給される。
The produced granules also contain some fine powder with a particle size of 0.5 mm or less, and these are supplied to a dish-shaped rolling granulator 4 via a quantitative feeder 3.

該造粒機4内で装入物は転勤により造粒核を粒成長核と
して、微細粉コークスの付着成長、或は造粒核の接触結
合し、更に圧密化され球状化され滞溜時間2〜5分間で
粒径は大きいもので4〜5 mm、小さくとも0.5〜
LOmmのミニコールドペレットに造粒される。
In the granulator 4, the charged material is transferred to the granulation cores as granulation growth nuclei, fine coke particles are attached and grown, or the granulation cores are contacted and bonded, and further compacted and spheroidized for a residence time of 2. In ~5 minutes, the particle size is as large as 4-5 mm, and as small as 0.5-5 mm.
Granulated into mini cold pellets of LOmm.

かくて造粒されたミニコールドペレットの粒度分布は第
1図において線Bで示す如く大部分が1〜2,2m1t
t粒径の圧密されたものであり極めて優れた安定造粒結
集を得ることが出来た。
The particle size distribution of the mini-cold pellets thus granulated is mostly 1 to 2.2 m1t, as shown by line B in Figure 1.
It was possible to obtain an extremely stable granulation agglomeration, which was compacted and had a grain size of t.

又第1図中曲線Aは予備造粒において得られた各種粒径
の造粒核の生成分布を示すものであるが特定粒径の造粒
核の集中形成は得られない。
Curve A in FIG. 1 shows the production distribution of granulation nuclei of various particle sizes obtained in preliminary granulation, but concentrated formation of granulation nuclei of a specific particle size cannot be obtained.

上記の如くして造粒されたミニコールドペレットは層厚
が1mになるように第1次養生槽に装入して2日間仮養
生を行った後、相互に凝集固化したミニコールドペレッ
トを回転ドラム型解砕機6へ供給して解砕し、この解砕
ペレットは更に2次養生槽7へ供給して6日間養生を行
った。
The mini-cold pellets granulated as described above were charged into the primary curing tank so that the layer thickness was 1 m, and after temporary curing for 2 days, the mini-cold pellets that had coagulated and solidified with each other were rotated. The pellets were supplied to a drum-type crusher 6 and crushed, and the crushed pellets were further supplied to a secondary curing tank 7 for curing for 6 days.

本発明において上記養生工程は必ずしも解砕工程を要す
るものではなく養生時の層厚の低減化等粒子間の凝着固
化の生じない養生法の選択によって解砕工程を省くこと
ができる。
In the present invention, the curing step does not necessarily require a crushing step, and the crushing step can be omitted by selecting a curing method that does not cause coagulation and solidification between particles, such as by reducing the layer thickness during curing.

かくて得られたミニコールドペレットは粉鉄鉱石の焼結
用燃料として使用したが極めて良好な焼結生産性を得る
ことができた。
The mini-cold pellets thus obtained were used as fuel for sintering fine iron ore, and very good sintering productivity could be obtained.

本発明の微粉コークスの造粒方法は上記の如くでありコ
ークス製造工場、コークスの整粒工場或はコークスの運
搬等のハンドリングにおいて多量に発生するコークス微
細粉を冷間において、しかもプレス成形機を使用するこ
となく焼結燃料用粉コークス等充分に実用に耐え得るコ
ークスミニコールドペレットを製造することが出来、と
かく処理に困惑していた微細粉コークスの経済的有効活
用の途を開くことができた。
The method for granulating fine coke of the present invention is as described above, and involves cold processing of fine coke powder, which is generated in large quantities in coke manufacturing plants, coke sizing plants, coke handling, etc., and using a press molding machine. It is possible to produce coke mini-cold pellets that can be used in practical applications, such as coke powder for sintered fuel, without using it, opening the way to the economical and effective use of fine coke powder, which has been difficult to dispose of. Ta.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造法による予備造粒および転動造粒
の粒度分布図、第2図は本発明の実施の一例を示す造粒
工程図である。 A・・・・・・予備造粒々度分布曲線、B・・・・・・
転動造粒粒度分布曲線、1・・・・・・回転皿、2・・
・・・・回転翼、4・・・・・・皿形転動造粒機、5・
・・・・・1次養生槽、6・・・・・・解砕機、7・・
・・・・2次養生槽。
FIG. 1 is a particle size distribution diagram of preliminary granulation and rolling granulation according to the production method of the present invention, and FIG. 2 is a granulation process diagram showing an example of the implementation of the present invention. A... Pre-granulation degree distribution curve, B...
Rolling granulation particle size distribution curve, 1...Rotating plate, 2...
...Rotary blade, 4...Dish type rolling granulator, 5.
...Primary curing tank, 6...Crusher, 7...
...Secondary curing tank.

Claims (1)

【特許請求の範囲】[Claims] 1 粒径149μm以下の微細粉コークスにセメントを
配合すると共に水を加えて調湿する原料調整工程と、こ
の調整原料粉を高速回転撹拌翼を偏心して内設ししかも
前記撹拌翼きは逆方向に低速で回転する回転皿中に投入
して、粒径3mm以下の結合造粒核を形成する予備造粒
工程と、更にこの結合造粒核を微粉と共に転勤造粒機に
て転勤造粒する造粒工程とこの造粒物を養生する養生工
程とからなる微粉コークスによる小ペレツト製造法。
1. A raw material conditioning step in which cement is blended with fine coke powder with a particle size of 149 μm or less and water is added to adjust the humidity, and a high-speed rotating stirring blade is installed eccentrically inside the adjusted raw material powder, and the stirring blade is in the opposite direction. A preliminary granulation step in which the combined granulation cores with a particle size of 3 mm or less are formed by placing them in a rotary dish that rotates at a low speed, and then the combined granulation nuclei are transferred together with fine powder in a transfer granulation machine. A method for producing small pellets using fine coke, which comprises a granulation process and a curing process for curing the granules.
JP3731978A 1978-03-28 1978-03-28 Method for producing small pellets using fine coke Expired JPS593511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3731978A JPS593511B2 (en) 1978-03-28 1978-03-28 Method for producing small pellets using fine coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3731978A JPS593511B2 (en) 1978-03-28 1978-03-28 Method for producing small pellets using fine coke

Publications (2)

Publication Number Publication Date
JPS54127902A JPS54127902A (en) 1979-10-04
JPS593511B2 true JPS593511B2 (en) 1984-01-24

Family

ID=12494340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3731978A Expired JPS593511B2 (en) 1978-03-28 1978-03-28 Method for producing small pellets using fine coke

Country Status (1)

Country Link
JP (1) JPS593511B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191720A (en) * 1982-04-30 1983-11-09 Mutsushi Kimata Powder coating of small spherical particle with high sphericity
JPS5939333A (en) * 1982-08-31 1984-03-03 Yoshikawa Kogyo Kk Granulation of fine powdery coke in high efficiency
JP4872533B2 (en) * 2006-08-24 2012-02-08 Jfeエンジニアリング株式会社 Solid fuel production method and apparatus, and solid fuel produced by the method
JP6540359B2 (en) * 2014-11-21 2019-07-10 日本製鉄株式会社 Modified carbon material for producing sintered ore and method for producing sintered ore using the same

Also Published As

Publication number Publication date
JPS54127902A (en) 1979-10-04

Similar Documents

Publication Publication Date Title
Kapur Balling and granulation
CN101715473B (en) Composite counterweight and method of making same
JP2005350770A5 (en)
JPS63248753A (en) Method of manufacturing granular construction material from waste
JP4113820B2 (en) Method for producing reduced metal raw material agglomerate and method for producing reduced metal
JPS593511B2 (en) Method for producing small pellets using fine coke
JP2007077512A5 (en)
JP2626820B2 (en) Manufacturing method of high fine powder blast furnace cement
CN111712321A (en) Potassium dust pelletizing process
JPH11229047A (en) Raw material for iron-making and production therefor
JP6353749B2 (en) Method for producing sintered ore
JPH02144186A (en) Manufacture of aggregate for preventing leaching
JP3837845B2 (en) Method for producing reduced iron
JP3789796B2 (en) Iron-based powder material and manufacturing method thereof
JPS6362558B2 (en)
JPH0819485B2 (en) Powder coke, anthracite granulation method and sinter production method
JPH0328331A (en) Pretreatment of raw material for sintering
JP4382937B2 (en) Method for producing coal-ash quality artificial aggregate
JP2005097665A (en) Reduced metal raw material agglomerate and its producing method, and method for producing reduced metal
JPS59247B2 (en) Granulation method of fine powder
JPH0268129A (en) Production of consolidated spherical fine particle
JP3881111B2 (en) Method for producing high density spinel type LiMn2O4
JP2685893B2 (en) Manufacturing method of iron powder with high packing density
JPH06170206A (en) Spherical granulation method
JP3662778B2 (en) Method for producing granular iron oxide agglomerated powder