JP2018107446A - Rare earth permanent magnet material and manufacturing method thereof - Google Patents

Rare earth permanent magnet material and manufacturing method thereof Download PDF

Info

Publication number
JP2018107446A
JP2018107446A JP2017245725A JP2017245725A JP2018107446A JP 2018107446 A JP2018107446 A JP 2018107446A JP 2017245725 A JP2017245725 A JP 2017245725A JP 2017245725 A JP2017245725 A JP 2017245725A JP 2018107446 A JP2018107446 A JP 2018107446A
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
earth permanent
ribbon
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017245725A
Other languages
Japanese (ja)
Other versions
JP6596061B2 (en
Inventor
▲羅▼▲陽▼
Yang Luo
于敦波
Dunbo Yu
▲盧▼▲碩▼
Shuo Lu
胡州
Zhou Hu
▲イェン▼文▲竜▼
Wenlong Yan
李▲紅▼▲衛▼
Hongwei Li
毛永▲軍▼
Yongjun Mao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grirem Advanced Materials Co Ltd
Original Assignee
Grirem Advanced Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grirem Advanced Materials Co Ltd filed Critical Grirem Advanced Materials Co Ltd
Publication of JP2018107446A publication Critical patent/JP2018107446A/en
Application granted granted Critical
Publication of JP6596061B2 publication Critical patent/JP6596061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • B22F1/0003
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Continuous Casting (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rare earth permanent magnet material and a manufacturing method thereof.SOLUTION: A raw material for forming a rare earth permanent magnet material contains an A component of which the main phase is RFeMB(wherein R is Nd or PrNd and it leads 27≤x≤34, 0.3≤y≤5 and 0.7≤z≤1.1) and a B component of which the main phase is YFeMB(wherein it leads 25≤a≤30, 0≤b≤1.5 and 1.2≤c≤3 and M is one or more kinds selected from among Al, Co, Cu and Ga). All contents of elements are weight contents. The rare earth permanent magnet material much further reduces a temperature coefficient of a rare earth permanent magnet material that is obtained by mixing the B component containing Y and an ordinary Nd(Pr)FeB rare earth permanent magnet material, further improves heat resistance and does not contain heavy rare earth elements, such that the cost is relatively low.SELECTED DRAWING: Figure 1

Description

本発明は希土類材料分野に関し、具体的に、希土類永久磁石材料及びその製造方法に関する。   The present invention relates to the field of rare earth materials, and specifically to a rare earth permanent magnet material and a method for manufacturing the same.

希土類永久磁石材料は、エネルギーを供給するための材料として、多くの分野でかけがえのない基礎材料になっており、電子、自動車、コンピューターなど多くの分野に広く利用されており、様々な産業の発展を促進している。科学技術の発展に伴い、高磁気、高温等の特別な分野の要求を満たし、それを適用する部品の進化を促進するために、材料の性能への要求が高まりつつある。 Rare earth permanent magnet materials are irreplaceable basic materials in many fields as materials for supplying energy, and are widely used in many fields such as electronics, automobiles, computers, and the development of various industries. Promotes. With the development of science and technology, there is an increasing demand for the performance of materials in order to satisfy the requirements of special fields such as high magnetism and high temperature and to promote the evolution of parts to which they are applied.

希土類永久磁石材料の製造方法の中、熱処理方法は、高寸法精度、高性能永久磁石材料を製造するための方法であり、主な製造工程は、永久磁石粉末を製造し、一定の温度下で圧縮成形体を形成するように加圧し、及び、該圧縮成形体を熱変形させ熱変形磁石を形成することを含む。製造工程全体からすれば、永久磁石粉末、ホットプレス、熱変形工程等はすべて最終製品の性能に極めて重要な影響を与える。最終の磁石の性能をさらに向上させるために、現在各工程に対して多くの改良が提出されている。例えば、公開番号がCN104143402Aである特許文献には、磁石の残留磁束密度及び保磁力を向上させ、且つその配向度を0.92とするためのPrGaBFeを基礎成分とした熱変形磁石原材料が提出されている。公開番号がCN104078179Aである特許文献には、NdFe原料粉末Bに重希土類元素RH析出処理を施し、重希土類元素を粉末表面に付着させることで、最終の磁石保磁力を向上させ、重希土類の使用量を低減する熱変形磁石の製造方法が開示されている。公開番号がCN104043834Aである特許文献には、NdFe原料粉末BとTb、Dyを含有する粉末とを混合して、且つ該混合後の粉末をホットプレスして熱変形させることが開示されている。公開番号がCN102436890Aである特許文献には、希土類フッ化物、水素化物粉末及びナノ結晶NdFeB磁石粉末を混合して、ホットプレスして熱変形させ、希土類フッ化物又は水素化物のNdFeB磁石粉末への粒界への拡散によって、高保磁力を有する粉末を得るナノ結晶NdFeB永久磁石材料の製造方法が開示されている。公開番号がCN102496437Aである特許文献には、軟磁性相の体積分率が2〜40%である各異方性ナノコンポジット磁石の製造方法が開示されており、該方法によって永久磁石材料の残留磁束密度及び磁気エネルギー積をさらに向上させることが開示されている。   Among the manufacturing methods of rare earth permanent magnet materials, the heat treatment method is a method for manufacturing high dimensional accuracy and high performance permanent magnet materials, and the main manufacturing process is to manufacture permanent magnet powder at a certain temperature. Pressurizing to form a compression molded body, and thermally deforming the compression molded body to form a heat-deformed magnet. In terms of the entire manufacturing process, permanent magnet powder, hot pressing, thermal deformation process, etc. all have a very important influence on the performance of the final product. Many improvements are currently submitted for each process to further improve the performance of the final magnet. For example, in the patent document with the publication number CN104143402A, a heat-deformed magnet raw material based on PrGaBFe for improving the residual magnetic flux density and coercive force of the magnet and setting its orientation degree to 0.92 is submitted. . In the patent document whose publication number is CN104078179A, the NdFe raw material powder B is subjected to heavy rare earth element RH precipitation treatment, and the heavy rare earth element is adhered to the powder surface, thereby improving the final magnet coercive force and using heavy rare earth elements. A method of manufacturing a heat-deformed magnet that reduces the amount is disclosed. Patent document No. CN104043834A discloses that NdFe raw material powder B is mixed with powder containing Tb and Dy, and the mixed powder is hot pressed to be thermally deformed. In the patent document whose publication number is CN102436890A, rare earth fluoride, hydride powder and nanocrystalline NdFeB magnet powder are mixed, hot pressed and thermally deformed, and the particles of rare earth fluoride or hydride to NdFeB magnet powder are mixed. A method for producing a nanocrystalline NdFeB permanent magnet material that obtains a powder having a high coercivity by diffusion into the field is disclosed. The patent document whose publication number is CN102496437A discloses a method for producing each anisotropic nanocomposite magnet having a volume fraction of the soft magnetic phase of 2 to 40%, and by this method, the residual magnetic flux of the permanent magnet material is disclosed. Further improving the density and magnetic energy product is disclosed.

上記公開されている特許文献では、成分、製造工程等の様々な観点から最終高密度磁石を変性することで、磁石の性能を向上させている。しかし、利用分野がどんどん広がっていく中、自動車EPSモーター等分野において、磁石の耐熱性に対する要求が高まりつつ、磁石に重希土類元素Dyを添加する方法、及び粒界拡散法等従来の方法では、いずれもDyの使用が必須であり、中重希土類フリー熱処理希土類永久磁石を形成するための方法が求められている。   In the published patent document, the performance of the magnet is improved by modifying the final high-density magnet from various viewpoints such as components and manufacturing processes. However, as the field of use is expanding, in the field of automobile EPS motors and the like, the demand for heat resistance of the magnet is increasing, and in the conventional method such as the method of adding heavy rare earth element Dy to the magnet and the grain boundary diffusion method, In any case, the use of Dy is essential, and a method for forming a medium heavy rare earth-free heat-treated rare earth permanent magnet is required.

本発明の主な目的は、希土類永久磁石材料及びその製造方法を提供することで、従来の技術において、希土類永久磁石粉末が重希土類元素を使用したためコストは高いという課題を解決することにある。   The main object of the present invention is to provide a rare earth permanent magnet material and a method for producing the same, and to solve the problem of high cost because rare earth permanent magnet powder uses heavy rare earth elements in the prior art.

上記の目的を実現するために、本発明の一側面では、希土類永久磁石材料を形成するための原料は、主相がRxFe100-x-yMyBz(式中、RはNd又はPrNdであり、27≦x≦34、0.3≦y≦5、0.7≦z≦1.1)であるA成分と、主相がYaFe100-a-b-cMbBc(式中、25≦a≦30、0≦b≦1.5、1.2≦c≦3、MはAl、Co、Cu、Gaから選択される1種又は複数種)であるB成分とを含み、上記各元素の含有量はすべて重量含有率である希土類永久磁石材料を提供する。 To achieve the above object, in one aspect of the present invention, the raw material for forming a rare earth permanent magnet materials, in the main phase R x Fe 100-xy M y B z ( wherein, R is Nd or PrNd A component that is 27 ≦ x ≦ 34, 0.3 ≦ y ≦ 5, 0.7 ≦ z ≦ 1.1) and the main phase is Y a Fe 100-abc M b B c (wherein 25 ≦ a ≦ 30, 0 ≦ b ≦ 1.5, 1.2 ≦ c ≦ 3, and M is one or more selected from Al, Co, Cu, and Ga), and the content of each of the above elements is the weight content. A rare earth permanent magnet material is provided.

さらに、上記A成分とB成分との重量比が3〜5:1である。   Furthermore, the weight ratio of the A component to the B component is 3 to 5: 1.

本発明の他方の側面では、主相がRxFe100-x-yMyBzであるA成分の急冷リボンA及び主相がYaFe100-a-b-cMbBcであるB成分の急冷リボンBを製造するステップS1と(式中、RはNd又はPrNdであり、27≦x≦34、0.3≦y≦5、0.7≦z≦1.1、25≦a≦30、0≦b≦1.5、1.2≦c≦3、MはAl、Co、Cu、Gaから選択される1種又は複数種であり、上記各元素の含有量はすべて重量含有率である)、急冷リボンA及び急冷リボンBを粉砕してから混合し、混合粉末を得るステップS2と、混合粉末を熱処理して希土類永久磁石材料を得るステップS3と、を含む希土類永久磁石材料の製造方法を提供する。 In other aspects of the present invention, the main phase quenching ribbon A and the main phase of the A component is a R x Fe 100-xy M y B z is Y a Fe 100-abc M b B c quenched ribbon B component Step S1 for producing B (wherein R is Nd or PrNd, 27 ≦ x ≦ 34, 0.3 ≦ y ≦ 5, 0.7 ≦ z ≦ 1.1, 25 ≦ a ≦ 30, 0 ≦ b ≦ 1.5, 1.2 ≦ c ≦ 3, M is one or more selected from Al, Co, Cu, Ga, and the content of each of the above elements is the weight content), and the quenching ribbon A and the quenching ribbon B are pulverized Then, there is provided a method for producing a rare earth permanent magnet material, comprising: mixing step S2 to obtain a mixed powder; and step S3 obtaining a rare earth permanent magnet material by heat-treating the mixed powder.

さらに、上記急冷リボンAと急冷リボンBとの重量比が3〜5:1である。   Furthermore, the weight ratio of the quenching ribbon A and the quenching ribbon B is 3 to 5: 1.

さらに、上記急冷リボンA及び急冷リボンBの厚さはそれぞれ独立して10〜150μmに制御し、好ましくはステップS1において、急冷リボンAを製造する第1のロール速度が、急冷リボンBを製造する第2のロール速度よりも小さい。   Furthermore, the thicknesses of the quenching ribbon A and the quenching ribbon B are independently controlled to 10 to 150 μm, and preferably, in step S1, the first roll speed for producing the quenching ribbon A produces the quenching ribbon B. Less than the second roll speed.

さらに、上記第1のロール速度及び第2のロール速度が15〜55m/sであり、好ましくは第2のロール速度と第1のロール速度との比が1.1〜1.6:1である。   Further, the first roll speed and the second roll speed are 15 to 55 m / s, and preferably the ratio of the second roll speed and the first roll speed is 1.1 to 1.6: 1.

さらに、上記ステップS1において、急冷リボンAを製造する原料Aの融点より100〜300℃高い温度範囲で原料Aを溶融し、急冷リボンBを製造する原料Bの融点より100〜300℃高い温度範囲で原料Bを溶融する。   Further, in step S1, the raw material A is melted in a temperature range that is 100 to 300 ° C. higher than the melting point of the raw material A that produces the quenching ribbon A, and the temperature range that is 100 to 300 ° C. higher than the melting point of the raw material B that produces the quenching ribbon B To melt raw material B.

さらに、上記ステップS2は、急冷リボンA及び急冷リボンBを粉砕して、粉末A及び粉末Bを得、好ましくは粉末A及び粉末Bの平均粒子径が100〜250μmであること、及び、粉末A及び粉末Bを混合して、混合粉末を得ることを含む。   Further, the step S2 pulverizes the quenching ribbon A and the quenching ribbon B to obtain powder A and powder B, preferably the average particle size of powder A and powder B is 100 to 250 μm, and powder A And mixing powder B to obtain a mixed powder.

さらに、上記ステップS3は、450℃以上800℃未満の温度で混合粉末を一方向に圧縮する工程を含む。   Furthermore, step S3 includes a step of compressing the mixed powder in one direction at a temperature of 450 ° C. or higher and lower than 800 ° C.

さらに、上記ステップS3は、混合粉末をホットプレスして、磁石を得、ホットプレスの温度が好ましくは650〜750℃であり、圧力が好ましくは100〜300MPaであること、及び、磁石を熱変形させ、希土類永久磁石材料を得、熱変形の温度が好ましくは750〜900℃であり、圧力が好ましくは100〜200MPaであり、熱変形速度が好ましくは0.1〜0.8mm/sであることを含む。   Furthermore, the above step S3 hot-presses the mixed powder to obtain a magnet, the temperature of the hot press is preferably 650 to 750 ° C., the pressure is preferably 100 to 300 MPa, and the magnet is thermally deformed. A rare earth permanent magnet material is obtained, and the temperature of heat deformation is preferably 750 to 900 ° C., the pressure is preferably 100 to 200 MPa, and the heat deformation rate is preferably 0.1 to 0.8 mm / s. .

本発明によって、希土類永久磁石材料は、Yを含有するB成分と通常のNd(Pr)FeB希土類永久磁石材料とを混合して得られる希土類永久磁石材料の温度係数がより一層低く、耐熱性がより優れ、且つ重希土類元素を含有しないため、コストが比較的低い。   According to the present invention, the rare earth permanent magnet material has a lower temperature coefficient of the rare earth permanent magnet material obtained by mixing the B component containing Y and the normal Nd (Pr) FeB rare earth permanent magnet material, and has high heat resistance. The cost is relatively low because it is superior and does not contain heavy rare earth elements.

本願の一部を構成する図面は、本発明をより一層理解するためのものであり、本発明の例示的な実施例及びその説明は、本発明を解釈するためのものであり、本発明を制限するものではない。図面において、   The drawings, which form part of this application, are intended to provide a further understanding of the invention, and the exemplary embodiments of the invention and the description thereof are intended to interpret the invention. It is not limited. In the drawing

図1は本発明の一つの好適な実施例で提供された希土類永久磁石材料の製造工程を示すチャートである。FIG. 1 is a chart showing a manufacturing process of a rare earth permanent magnet material provided in one preferred embodiment of the present invention. 図2は本発明の一つの好適な実施例におけるホットプレス金型のホットプレス前の構造を示す図である。FIG. 2 is a view showing the structure of the hot press mold before hot pressing in one preferred embodiment of the present invention. 図3は図2で示されるホットプレス金型のホットプレス後の構造を示す図である。FIG. 3 is a view showing a structure after hot pressing of the hot press mold shown in FIG. 図4は本発明の一つの好適な実施例で提供された熱変形金型のホットプレス前の構造を示す図である。FIG. 4 is a view showing the structure before hot pressing of the heat deformation mold provided in one preferred embodiment of the present invention. 図5は図4で示される熱変形金型の熱変形後の構造を示す図である。FIG. 5 is a view showing a structure after thermal deformation of the thermal deformation mold shown in FIG.

なお、矛盾していない限り、本願における実施例、及び実施例における要件を組み合わせることができると理解される。以下、図面及び実施例を参照しながら、本発明について詳細に説明する。   As long as there is no contradiction, it is understood that the embodiment in the present application and the requirements in the embodiment can be combined. Hereinafter, the present invention will be described in detail with reference to the drawings and examples.

背景技術にあるように、従来の技術において、磁石の性能を改善するために、すべて重希土類元素、例えばDyの使用を避けられず、コストの上昇を招いている。この問題を解決するために、本発明は希土類永久磁石材料及びその製造方法を提供する。   As described in the background art, in the prior art, in order to improve the performance of the magnet, the use of all heavy rare earth elements such as Dy is unavoidable, resulting in an increase in cost. In order to solve this problem, the present invention provides a rare earth permanent magnet material and a manufacturing method thereof.

本発明の一つの典型的な実施形態において、希土類永久磁石材料を形成するための原料は、主相がRxFe100-x-yMyBz(式中、RはNd又はPrNdであり、27≦x≦34、0.3≦y≦5、0.7≦z≦1.1)であるA成分と、主相がYaFe100-a-b-cMbBc(式中、25≦a≦30、0≦b≦1.5、1.2≦c≦3、MはAl、Co、Cu、Gaから選択される1種又は複数種)であるB成分とを含み、上記各元素の含有量はすべて重量含有率である希土類永久磁石材料を提供する。 In one exemplary embodiment of the present invention, the raw material for forming a rare earth permanent magnet material, the main phase R x Fe 100-xy M y B z ( wherein, R is Nd or PRND, 27 ≦ x ≦ 34, 0.3 ≦ y ≦ 5, 0.7 ≦ z ≦ 1.1) and the main phase is Y a Fe 100-abc M b B c (where 25 ≦ a ≦ 30, 0 ≦ b ≦ 1.5, 1.2 ≦ c ≦ 3, where M is one or more selected from Al, Co, Cu, and Ga) and the content of each of the above elements is a rare earth permanent Provide magnet material.

本発明の希土類永久磁石材料は、Yを含有するB成分と通常のNd(Pr)FeB希土類永久磁石材料とを混合して得られる希土類永久磁石材料の温度係数がより一層低く、耐熱性がより優れ、且つ重希土類元素を含有しないため、コストが比較的低い。   The rare earth permanent magnet material of the present invention has a much lower temperature coefficient of the rare earth permanent magnet material obtained by mixing the B component containing Y and a normal Nd (Pr) FeB rare earth permanent magnet material, and is more heat resistant. The cost is relatively low because it is excellent and does not contain heavy rare earth elements.

希土類永久磁石材料の温度係数及び耐熱性をさらに制御するために、上記A成分とB成分との重量比が3〜5:1であることが好ましい。   In order to further control the temperature coefficient and heat resistance of the rare earth permanent magnet material, the weight ratio of the A component to the B component is preferably 3 to 5: 1.

本発明のもう一つの典型的な実施形態において、主相がRxFe100-x-yMyBzであるA成分の急冷リボンA及び主相がYaFe100-a-b-cMbBcであるB成分の急冷リボンBを製造するステップS1(式中、RはNd又はPrNdであり、27≦x≦34、0.3≦y≦5、0.7≦z≦1.1、25≦a≦30、0≦b≦1.5、1.2≦c≦3、MはAl、Co、Cu、Gaから選択される1種又は複数種であり、上記各元素の含有量はすべて重量含有率である)と、急冷リボンA及び急冷リボンBを粉砕してから混合し、混合粉末を得るステップS2と、混合粉末を熱処理して希土類永久磁石材料を得るステップS3とを含む希土類永久磁石材料的製造方法を提供する。 In another exemplary embodiment of the present invention, the A component quenching ribbon A whose main phase is R x Fe 100-xy M y B z and the main phase is Y a Fe 100-abc M b B c Step S1 for producing B component quenching ribbon B (wherein R is Nd or PrNd, 27 ≦ x ≦ 34, 0.3 ≦ y ≦ 5, 0.7 ≦ z ≦ 1.1, 25 ≦ a ≦ 30, 0 ≦ b) ≦ 1.5, 1.2 ≦ c ≦ 3, M is one or more selected from Al, Co, Cu, and Ga, and the content of each of the above elements is a weight content), and the quenching ribbon A and There is provided a rare earth permanent magnet material production method including step S2 of pulverizing and mixing the quenched ribbon B to obtain a mixed powder, and step S3 of obtaining a rare earth permanent magnet material by heat treating the mixed powder.

本発明は、Yを含有する急冷リボンと通常のNd(Pr)Fe急冷リボンBとを混合することで、温度係数がより一層低く、耐熱性がより優れた混合粉末を得ることができ、さらに、熱処理することで、高密度で異方性希土類永久磁石を得ることができる。   In the present invention, by mixing a quenching ribbon containing Y and a normal Nd (Pr) Fe quenching ribbon B, it is possible to obtain a mixed powder having a much lower temperature coefficient and better heat resistance, By conducting the heat treatment, an anisotropic rare earth permanent magnet can be obtained at a high density.

急冷リボンとは、一定の成分を有する溶融合金溶液を、ノズルを通って回転しているロールに射出し、溶融合金液体がロール表面に液体フィルムとなり、且つ高速で持ち出され、急速冷却して、得られる急冷リボンである。   With the quenching ribbon, a molten alloy solution having a certain component is injected into a rotating roll through a nozzle, the molten alloy liquid becomes a liquid film on the surface of the roll, and is taken out at a high speed, rapidly cooled, It is the quenching ribbon obtained.

希土類永久磁石材料の温度係数及び耐熱性をさらに制御するために、急冷リボンAと急冷リボンBとの重量比が3〜5:1であることが好ましい。   In order to further control the temperature coefficient and heat resistance of the rare earth permanent magnet material, the weight ratio of the quenching ribbon A and the quenching ribbon B is preferably 3 to 5: 1.

本発明の一つの好適な実施例では、上記急冷リボンA及び上記急冷リボンBの厚さはそれぞれ独立して10〜150μmに制御する。急冷リボンが薄すぎると、製造条件が厳しくなるが、急冷リボンが太すぎると、後の熱処理で磁石を製造することを阻害するため、上記の厚さ範囲が好ましい。   In one preferred embodiment of the present invention, the thickness of the quench ribbon A and the quench ribbon B is independently controlled to 10 to 150 μm. If the quenching ribbon is too thin, the manufacturing conditions become severe. However, if the quenching ribbon is too thick, the production of the magnet in a subsequent heat treatment is hindered, so the above thickness range is preferable.

急冷リボンをより良く均一に混合し、及び、後の混合粉末の均一なホットプレス熱変形工程に寄与するために、ステップS1において、急冷リボンAを製造する第1のロール速度が、急冷リボンBを製造する第2のロール速度よりも小さいことが好ましい。さらに、第1のロール速度及び第2のロール速度を制御することで、急冷リボンAの厚さを急冷リボンBの厚さよりも大きいものとする。   In order to mix the quenching ribbon better and uniformly and to contribute to the subsequent uniform hot press thermal deformation process of the mixed powder, in step S1, the first roll speed for producing the quenching ribbon A is the quenching ribbon B. It is preferable that the speed is smaller than the second roll speed at which is manufactured. Further, the thickness of the quenching ribbon A is made larger than the thickness of the quenching ribbon B by controlling the first roll speed and the second roll speed.

上記目的となる厚さ、及び、急冷リボンAを形成する原料Aの組成、急冷リボンBを形成する原料Bの組成に基づき、複数回の試験によって、上記第1のロール速度及び第2のロール速度が15〜55m/sであることが好ましいと特定できた。さらに、急冷リボンAの厚さと急冷リボンBの厚さとの差を制御するために、第2のロール速度と第1のロール速度との比が1.1〜1.6:1であることが好ましい。   Based on the thickness, the composition of the raw material A that forms the quenching ribbon A, and the composition of the raw material B that forms the quenching ribbon B, the first roll speed and the second roll are determined by a plurality of tests. It could be specified that the speed is preferably 15 to 55 m / s. Furthermore, in order to control the difference between the thickness of the quenching ribbon A and the thickness of the quenching ribbon B, the ratio of the second roll speed to the first roll speed is preferably 1.1 to 1.6: 1.

急冷リボンを製造するときに、原料の溶融温度は従来の技術を参照すればよい。本発明では、ステップS1において、急冷リボンAを製造する原料Aの融点より100〜300℃高い温度範囲で原料Aを溶融し、急冷リボンBを製造する原料Bの融点より100〜300℃高い温度範囲で原料Bを溶融することが好ましい。これで素早い溶融を実現できるとともに、溶融温度が高すぎることによる高エネルギー消費を避けることができる。   When manufacturing a rapidly cooled ribbon, the melting temperature of the raw material may be referred to a conventional technique. In the present invention, in step S1, the raw material A is melted in a temperature range 100 to 300 ° C. higher than the melting point of the raw material A for producing the quenching ribbon A, and the temperature 100 to 300 ° C. higher than the melting point of the raw material B for producing the quenching ribbon B It is preferable to melt the raw material B within the range. This makes it possible to achieve quick melting and avoid high energy consumption due to the melting temperature being too high.

本発明のステップS1で得られる急冷リボンA及び急冷リボンBは厚さが異なりうるため、混合効果を確保するために、上記ステップS2は、急冷リボンA及び急冷リボンBを粉砕して、粉末A及び粉末Bを得、好ましくは粉末A及び粉末Bの平均粒子径が100〜250μmであること、及び、粉末A及び粉末Bを混合して、混合粉末を得ることを含むことが好ましい。急冷リボンA及び急冷リボンBをそれぞれ粉砕することで、2種の粉末の粒径を所定の範囲に制御することができる。上記の粉砕方法は、圧縮粉砕、気流粉砕、カッターによる粉砕等を含む。   Since the quenching ribbon A and the quenching ribbon B obtained in step S1 of the present invention can have different thicknesses, in order to ensure a mixing effect, the above step S2 is performed by pulverizing the quenching ribbon A and the quenching ribbon B to obtain a powder A And powder B, preferably the average particle size of powder A and powder B is 100 to 250 μm, and mixing powder A and powder B to obtain a mixed powder is preferable. By pulverizing the quenching ribbon A and the quenching ribbon B, the particle sizes of the two kinds of powders can be controlled within a predetermined range. The pulverization method includes compression pulverization, airflow pulverization, and pulverization with a cutter.

また、希土類永久磁石材料の異方性及び緻密性を最適化するために、上記ステップS3は、450℃以上800℃未満の温度で混合粉末を一方向に圧縮する工程を含むことが好ましい。   Further, in order to optimize the anisotropy and denseness of the rare earth permanent magnet material, the step S3 preferably includes a step of compressing the mixed powder in one direction at a temperature of 450 ° C. or higher and lower than 800 ° C.

本発明のもう1つの好適な実施例では、上記ステップS3は、混合粉末をホットプレスして、磁石を得ること、及び、磁石を熱変形させ、希土類永久磁石材料を得ることを含む。混合粉末をホットプレスしてから、混合粉末を緻密化させ、真密度に近いホットプレス磁石を形成し、その後に、熱変形させることで、ホットプレス磁性の熱特性をさらに向上させる。   In another preferred embodiment of the present invention, the step S3 includes hot pressing the mixed powder to obtain a magnet, and thermally deforming the magnet to obtain a rare earth permanent magnet material. After hot pressing the mixed powder, the mixed powder is densified to form a hot pressed magnet close to true density, and then thermally deformed, thereby further improving the thermal characteristics of the hot pressed magnetism.

上記ホットプレス工程は、ホットプレス金型で行われる。図2に示すように、金型は、第1の雌型201及び第1の雄型202に分け、金型を誘導加熱体又はホットワイヤによる加熱体である第1の加熱体205に入れ、混合粉末203を第1の雌型201に入れ、第1の加熱体205をオンにして、金型及びその中の混合粉末を加熱すると共に、第1の雄型202を下に向かって移動させ、粉末をホットプレスし、図3に示す真密度を有する希土類永久磁石204(ρ>98%)を得た。上記混合粉末の組成について、磁石全体を均一にさせ、且つその後の性能向上のために、上記ホットプレスの温度が好ましくは650〜750℃であり、圧力が好ましくは100〜300MPaである。   The said hot press process is performed with a hot press metal mold | die. As shown in FIG. 2, the mold is divided into a first female mold 201 and a first male mold 202, and the mold is put into a first heating body 205 which is a heating body by induction heating body or hot wire, The mixed powder 203 is put in the first female mold 201, the first heating body 205 is turned on, the mold and the mixed powder therein are heated, and the first male mold 202 is moved downward. The powder was hot pressed to obtain a rare earth permanent magnet 204 (ρ> 98%) having the true density shown in FIG. Regarding the composition of the mixed powder, the temperature of the hot press is preferably 650 to 750 ° C. and the pressure is preferably 100 to 300 MPa in order to make the whole magnet uniform and improve the performance thereafter.

上記熱変形工程は、熱変形金型で行われる。図4に示すように、熱変形金型は、第2の雌型1001及び第2の雄型1002を含む。異なる形状を有する磁石に対して、金型設計も異なる。ここでは、角型磁石を設計実例として例示する。図4に示すように、第2の雌型1001の内径及び第2の雄型1002の外径はいずれも図2に示す金型よりも大きい。図3で製造された希土類永久磁石204を第2の雌型1001の内部に入れ、次に第2の加熱体1003によって金型システム全体を加熱し、それと同時に第2の雄型1002を下に向かって移行させ、希土類永久磁石石204を熱変形させ、冷却した後に、図5に示す角型磁石1005を得た。   The heat deformation step is performed with a heat deformation mold. As shown in FIG. 4, the thermal deformation mold includes a second female mold 1001 and a second male mold 1002. For magnets having different shapes, the mold design is also different. Here, a square magnet is illustrated as a design example. As shown in FIG. 4, the inner diameter of the second female mold 1001 and the outer diameter of the second male mold 1002 are both larger than the mold shown in FIG. The rare earth permanent magnet 204 manufactured in FIG. 3 is placed inside the second female mold 1001, and then the entire mold system is heated by the second heating body 1003, and at the same time the second male mold 1002 is lowered. Then, after the rare earth permanent magnet stone 204 was thermally deformed and cooled, a square magnet 1005 shown in FIG. 5 was obtained.

高性能を有する熱変形磁石を得るために、上記熱変形の温度が好ましくは750〜900℃であり、圧力が好ましくは100〜200MPaであり、熱変形速度が好ましくは0.1〜0.8mm/sである。   In order to obtain a heat-deformed magnet having high performance, the temperature of the heat deformation is preferably 750 to 900 ° C., the pressure is preferably 100 to 200 MPa, and the heat deformation rate is preferably 0.1 to 0.8 mm / s. is there.

以下、実施例及び比較例を参照しながら、本発明の有利な効果についてさらに説明する。   The advantageous effects of the present invention will be further described below with reference to examples and comparative examples.

各実施例で得られた高密度の異方性磁石の性能を、以下の方法で測定する。   The performance of the high-density anisotropic magnet obtained in each example is measured by the following method.

性能テストでは、主に永久磁石測定器により磁気性能を測定する。測定データは、単位がkGsである残留磁束密度Br、単位がkOeである保磁力Hcj、単位がMGOeである磁気エネルギー積(BH)mを含む。温度係数測定は、GB/T 24270-2009に準拠して行われ、本発明では、保磁力温度係数βを意味する。   In the performance test, the magnetic performance is mainly measured by a permanent magnet measuring instrument. The measurement data includes a residual magnetic flux density Br having a unit of kGs, a coercive force Hcj having a unit of kOe, and a magnetic energy product (BH) m having a unit of MGOe. The temperature coefficient measurement is performed according to GB / T 24270-2009, and in the present invention, it means the coercivity temperature coefficient β.

製造工程は図1に示すように、具体的には以下の通りである。   As shown in FIG. 1, the manufacturing process is specifically as follows.

<急冷リボン>   <Quenching ribbon>

原料A及び原料Bを準備した。原料Aの成分がRxFe100-x-yMyBzであり、原料Bの成分がYaFe100-a-b-cMbBcであり、具体的な成分組成は表1に示すとおりである。準備した原料を加熱容器に投入し、誘導コイルによって原料を溶融させ、次にノズルを通って回転している冷却ロールの表面に射出し、ロール回転によって急冷リボンを得た。なお、急冷リボンA及び急冷リボンBを製造する時の溶融温度、ロール速度、得られた急冷リボンの厚さは表1に示す。 Raw material A and raw material B were prepared. The raw material components A is R x Fe 100-xy M y B z, components of the raw material B is Y a Fe 100-abc M b B c, the specific chemical composition is shown in Table 1. The prepared raw material was put into a heating container, the raw material was melted by an induction coil, and then injected through the nozzle onto the surface of a rotating cooling roll, and a rapid cooling ribbon was obtained by roll rotation. Table 1 shows the melting temperature, roll speed, and thickness of the obtained rapid cooling ribbon when manufacturing the rapid cooling ribbon A and the rapid cooling ribbon B.

<混合>   <Mixed>

製造した急冷リボンを粗粉砕した後に、混合して混合粉末を得た。実施例では、粉砕後の粒径は40メッシュであり、粉砕した2種の粉末を一定の比率で混合し、急冷リボンAと急冷リボンBの混合重量比σを表2に示す。   The manufactured quenched ribbon was roughly pulverized and then mixed to obtain a mixed powder. In the examples, the particle size after pulverization is 40 mesh, the two kinds of pulverized powders are mixed at a constant ratio, and the mixing weight ratio σ of the quenching ribbon A and the quenching ribbon B is shown in Table 2.

比較例では、Yを含有する粉末の含有量が0である。   In the comparative example, the content of the powder containing Y is 0.

<熱処理>   <Heat treatment>

混合後の粉末を金型に投入して熱処理を施し、高密度の異方性磁石を得た。ホットプレスは図2に示す金型で行われ、熱変形は図4に示す金型で行われ、ホットプレスステップでは、温度がT1であり、圧力がP1であり、熱変形ステップでは、温度及び圧力がそれぞれT2及びP2である。具体的な工程パラメーターを表2に示す。   The mixed powder was put into a mold and heat treated to obtain a high density anisotropic magnet. The hot press is performed with the mold shown in FIG. 2, and the thermal deformation is performed with the mold shown in FIG. 4.In the hot press step, the temperature is T1, the pressure is P1, and in the thermal deformation step, the temperature and The pressure is T2 and P2, respectively. Specific process parameters are shown in Table 2.

表1(balは残部を表す。)   Table 1 (bal represents the balance)

表2   Table 2

上記表の実施例1、実施例2と比較例1及び比較例2との対比から分かるように、本方法で一定量のYを含有するB成分を添加した後に、磁気性能が大幅に低減しない前提で、保磁力温度係数βが顕著に向上した。したがって、温度を向上させる場合、熱変形材料の保磁力を大幅に保持でき、熱変形材料の高温下での利用を促進した。   As can be seen from the comparison between Example 1, Example 2 and Comparative Example 1 and Comparative Example 2 in the above table, the magnetic performance is not significantly reduced after adding the B component containing a certain amount of Y in this method. On the premise, the coercive force temperature coefficient β was significantly improved. Therefore, when the temperature is increased, the coercive force of the thermally deformable material can be largely maintained, and the utilization of the thermally deformable material at a high temperature is promoted.

また、表1から明らかなように、2種の成分A及びBの製造工程による影響も顕著であり、特に両者の急冷速度について、実施例1と実施例10との対比からすれば、成分Bの製造時の急冷ロール速度が成分Aの製造時の急冷ロール速度より大きい場合、効果がより優れた。また、実施例5と実施例9の比較から分かるように、両者の速度の差が大きすぎる(≧1.5)場合にも、性能の向上には不利である。   Further, as is clear from Table 1, the influence of the production process of the two types of components A and B is also remarkable, and particularly regarding the rapid cooling rate of both, component B is compared with Example 1 and Example 10. When the quenching roll speed at the time of manufacture was higher than the quenching roll speed at the time of manufacture of component A, the effect was more excellent. Further, as can be seen from the comparison between Example 5 and Example 9, when the difference between the two speeds is too large (≧ 1.5), it is disadvantageous for improving the performance.

以上の説明から、本発明の上記実施例は以下のような効果を実現できたと分かる。   From the above description, it can be seen that the above-described embodiment of the present invention can realize the following effects.

本発明の希土類永久磁石材料は、Yを含有するB成分と通常のNd(Pr)FeB希土類永久磁石材料とを混合して得られる希土類永久磁石材料の温度係数がより一層低く、耐熱性がより優れ、且つ重希土類元素を含有しないため、コストが比較的低い。   The rare earth permanent magnet material of the present invention has a much lower temperature coefficient of the rare earth permanent magnet material obtained by mixing the B component containing Y and a normal Nd (Pr) FeB rare earth permanent magnet material, and is more heat resistant. The cost is relatively low because it is excellent and does not contain heavy rare earth elements.

Yを含有する急冷リボンと通常のNd(Pr)Fe急冷リボンBとを混合することで、温度係数がより一層低く、耐熱性がより優れた混合粉末を得ることができ、さらに、熱処理することで、高密度で異方性希土類永久磁石を得ることができる。   By mixing the quenching ribbon containing Y and the normal Nd (Pr) Fe quenching ribbon B, it is possible to obtain a mixed powder with a lower temperature coefficient and better heat resistance, and further heat treatment Thus, an anisotropic rare earth permanent magnet with high density can be obtained.

以上は、本発明の好適な実施例に過ぎず、本発明はこれらに制限されるものではない。当業者であれば、本発明に対して様々な変更および変形を行うことができることが理解されるであろう。本発明の精神及び範囲から逸脱することなく、様々な修正例、置換例、改良例等がすべて本発明に包含される。   The above are only preferred embodiments of the present invention, and the present invention is not limited thereto. Those skilled in the art will appreciate that various changes and modifications can be made to the present invention. Various modifications, substitutions, improvements, and the like are all encompassed by the present invention without departing from the spirit and scope of the present invention.

Claims (10)

希土類永久磁石材料を形成するための原料は、
主相がRxFe100-x-yMyBz(式中、RはNd又はPrNdであり、27≦x≦34、0.3≦y≦5、0.7≦z≦1.1)であるA成分と、主相がYaFe100-a-b-cMbBc(式中、25≦a≦30、0≦b≦1.5、1.2≦c≦3、MはAl、Co、Cu、Gaから選択される1種又は複数種)であるB成分とを含み、前記各元素の含有量はすべて重量含有率であることを特徴とする希土類永久磁石材料。
Raw materials for forming rare earth permanent magnet materials are:
A component in which the main phase is R x Fe 100-xy M y B z (wherein R is Nd or PrNd, 27 ≦ x ≦ 34, 0.3 ≦ y ≦ 5, 0.7 ≦ z ≦ 1.1), The phase is Y a Fe 100-abc M b B c (wherein 25 ≦ a ≦ 30, 0 ≦ b ≦ 1.5, 1.2 ≦ c ≦ 3, M is one selected from Al, Co, Cu, Ga or A rare earth permanent magnet material comprising a plurality of types of B component, wherein the content of each element is a weight content.
前記A成分と前記B成分との重量比が3〜5:1であることを特徴とする請求項1に記載の希土類永久磁石材料。   2. The rare earth permanent magnet material according to claim 1, wherein a weight ratio of the A component to the B component is 3 to 5: 1. 主相がRxFe100-x-yMyBzであるA成分の急冷リボンA及び主相がYaFe100-a-b-cMbBcであるB成分の急冷リボンBを製造するステップS1と(式中、RはNd又はPrNdであり、27≦x≦34、0.3≦y≦5、0.7≦z≦1.1、25≦a≦30、0≦b≦1.5、1.2≦c≦3、MはAl、Co、Cu、Gaから選択される1種又は複数種であり、前記各元素の含有量はすべて重量含有率である)、
前記急冷リボンA及び前記急冷リボンBを粉砕してから混合し、混合粉末を得るステップS2と、
前記混合粉末を熱処理して前記希土類永久磁石材料を得るステップS3と、を含むことを特徴とする希土類永久磁石材料の製造方法。
Main phase steps S1 to quench ribbon A and the main phase of the A component is a R x Fe 100-xy M y B z to produce a Y a Fe 100-abc M b quenched ribbon B of the B component is a B c ( In the formula, R is Nd or PrNd, 27 ≦ x ≦ 34, 0.3 ≦ y ≦ 5, 0.7 ≦ z ≦ 1.1, 25 ≦ a ≦ 30, 0 ≦ b ≦ 1.5, 1.2 ≦ c ≦ 3, M is Al , Co, Cu, Ga, or one or more selected from the above, and the content of each element is a weight content)
Step S2 for obtaining a mixed powder by pulverizing and mixing the quenching ribbon A and the quenching ribbon B, and
And step S3 of obtaining the rare earth permanent magnet material by heat-treating the mixed powder.
前記急冷リボンAと前記急冷リボンBとの重量比が3〜5:1であることを特徴とする請求項3に記載の製造方法。   4. The manufacturing method according to claim 3, wherein a weight ratio of the quenching ribbon A and the quenching ribbon B is 3 to 5: 1. 前記急冷リボンA及び前記急冷リボンBの厚さはそれぞれ独立して10〜150μmに制御し、好ましくは前記ステップS1において、前記急冷リボンAを製造する第1のロール速度が、前記急冷リボンBを製造する第2のロール速度よりも小さいことを特徴とする請求項3に記載の製造方法。   The thicknesses of the quenching ribbon A and the quenching ribbon B are independently controlled to 10 to 150 μm, and preferably, in the step S1, the first roll speed for producing the quenching ribbon A is the quenching ribbon B. 4. The production method according to claim 3, wherein the production speed is smaller than a second roll speed to be produced. 前記第1のロール速度及び前記第2のロール速度が15〜55m/sであり、好ましくは前記第2のロール速度と前記第1のロール速度との比が1.1〜1.6:1であることを特徴とする請求項5に記載の製造方法。   The first roll speed and the second roll speed are 15 to 55 m / s, preferably the ratio of the second roll speed and the first roll speed is 1.1 to 1.6: 1. 6. The manufacturing method according to claim 5, wherein the manufacturing method is characterized. 前記ステップS1において、前記急冷リボンAを製造する原料Aの融点より100〜300℃高い温度範囲で前記原料Aを溶融し、前記急冷リボンBを製造する原料Bの融点より100〜300℃高い温度範囲で前記原料Bを溶融することを特徴とする請求項3に記載の製造方法。   In step S1, the raw material A is melted in a temperature range 100 to 300 ° C. higher than the melting point of the raw material A for producing the quenching ribbon A, and the temperature is 100 to 300 ° C. higher than the melting point of the raw material B for producing the quenching ribbon B 4. The production method according to claim 3, wherein the raw material B is melted in a range. 前記ステップS2は、
前記急冷リボンA及び前記急冷リボンBを粉砕して、粉末A及び粉末Bを得、好ましくは前記粉末A及び前記粉末Bの平均粒子径が100〜250μmであること、及び、
前記粉末A及び前記粉末Bを混合して、前記混合粉末を得ることを含むことを特徴とする請求項3に記載の製造方法。
Step S2 includes
The quenched ribbon A and the quenched ribbon B are pulverized to obtain powder A and powder B, preferably the average particle diameter of the powder A and the powder B is 100 to 250 μm, and
4. The production method according to claim 3, comprising mixing the powder A and the powder B to obtain the mixed powder.
前記ステップS3は、450℃以上800℃未満の温度で前記混合粉末を一方向に圧縮する工程を含むことを特徴とする請求項3に記載の製造方法。   4. The manufacturing method according to claim 3, wherein the step S3 includes a step of compressing the mixed powder in one direction at a temperature of 450 ° C. or higher and lower than 800 ° C. 前記ステップS3は、
前記混合粉末をホットプレスして、磁石を得、前記ホットプレスの温度が好ましくは650〜750℃であり、圧力が好ましくは100〜300MPaであること、及び、
前記磁石を熱変形させ、前記希土類永久磁石材料を得、前記熱変形の温度が好ましくは750〜900℃であり、圧力が好ましくは100〜200MPaであり、熱変形速度が好ましくは0.1〜0.8mm/sであることを含むことを特徴とする請求項8に記載の製造方法。
Step S3 includes
The mixed powder is hot pressed to obtain a magnet, the temperature of the hot press is preferably 650 to 750 ° C., and the pressure is preferably 100 to 300 MPa, and
The magnet is thermally deformed to obtain the rare earth permanent magnet material, the temperature of the heat deformation is preferably 750 to 900 ° C., the pressure is preferably 100 to 200 MPa, and the heat deformation rate is preferably 0.1 to 0.8 mm. 9. The production method according to claim 8, comprising / s.
JP2017245725A 2016-12-27 2017-12-22 Rare earth permanent magnet material and manufacturing method thereof Active JP6596061B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611229478.7A CN108242305B (en) 2016-12-27 2016-12-27 Rare earth permanent magnetic material and preparation method thereof
CN201611229478.7 2016-12-27

Publications (2)

Publication Number Publication Date
JP2018107446A true JP2018107446A (en) 2018-07-05
JP6596061B2 JP6596061B2 (en) 2019-10-23

Family

ID=62702965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017245725A Active JP6596061B2 (en) 2016-12-27 2017-12-22 Rare earth permanent magnet material and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP6596061B2 (en)
CN (1) CN108242305B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113620701A (en) * 2021-09-29 2021-11-09 海安南京大学高新技术研究院 Preparation method of superfine-crystal high-temperature-resistant high-frequency manganese-zinc ferrite
CN113724956A (en) * 2021-08-27 2021-11-30 安徽吉华新材料有限公司 Double-main-phase rare earth permanent magnetic material and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100402A (en) * 1983-08-04 1985-06-04 ゼネラル モ−タ−ズ コ−ポレ−シヨン Iron-rare earth element-boron permanent magnet by high temperature heat treatment
JPS6181606A (en) * 1984-09-04 1986-04-25 Tohoku Metal Ind Ltd Preparation of rare earth magnet
US4792367A (en) * 1983-08-04 1988-12-20 General Motors Corporation Iron-rare earth-boron permanent
EP0392077A2 (en) * 1989-04-14 1990-10-17 Hitachi Metals, Ltd. Magnetically anisotropic hot-worked magnets and composition and method for their production
JPH02288305A (en) * 1989-04-28 1990-11-28 Nippon Steel Corp Rare earth magnet and manufacture thereof
JPH03295202A (en) * 1990-04-13 1991-12-26 Hitachi Metals Ltd Hot-worked magnet and manufacture thereof
WO2005095024A1 (en) * 2004-03-31 2005-10-13 Santoku Corporation Process for producing alloy slab for rare-earth sintered magnet, alloy slab for rare-earth sintered magnet and rare-earth sintered magnet
US20060054245A1 (en) * 2003-12-31 2006-03-16 Shiqiang Liu Nanocomposite permanent magnets
JP2011187624A (en) * 2010-03-08 2011-09-22 Hitachi Metals Ltd Rare-earth system permanent magnet and method of manufacturing the same
CN103151161A (en) * 2013-03-22 2013-06-12 四川大学 Method for preparing anisotropic neodymium iron boron magnetic powder through directionally breaking thermal deformed magnet
CN104112557A (en) * 2013-04-22 2014-10-22 Tdk株式会社 R-t-b based sintered magnet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302417A (en) * 1993-04-15 1994-10-28 Seiko Epson Corp Permanent magnet and its manufacture
CN103903824B (en) * 2012-12-27 2017-08-04 比亚迪股份有限公司 A kind of rare earth permanent-magnetic material and preparation method thereof
CN103545079A (en) * 2013-09-30 2014-01-29 赣州诚正有色金属有限公司 Double-principal-phase yttrium-contained permanent magnet and preparing method of double-principal-phase yttrium-contained permanent magnet
CN104599802B (en) * 2014-12-03 2017-07-04 中国科学院宁波材料技术与工程研究所 Rare earth permanent-magnetic material and preparation method thereof

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792367A (en) * 1983-08-04 1988-12-20 General Motors Corporation Iron-rare earth-boron permanent
JPS60100402A (en) * 1983-08-04 1985-06-04 ゼネラル モ−タ−ズ コ−ポレ−シヨン Iron-rare earth element-boron permanent magnet by high temperature heat treatment
JPS6181606A (en) * 1984-09-04 1986-04-25 Tohoku Metal Ind Ltd Preparation of rare earth magnet
EP0392077A2 (en) * 1989-04-14 1990-10-17 Hitachi Metals, Ltd. Magnetically anisotropic hot-worked magnets and composition and method for their production
JPH02272703A (en) * 1989-04-14 1990-11-07 Hitachi Metals Ltd Warm-worked magnet and manufacture thereof
JPH02288305A (en) * 1989-04-28 1990-11-28 Nippon Steel Corp Rare earth magnet and manufacture thereof
US5049203A (en) * 1989-04-28 1991-09-17 Nippon Steel Corporation Method of making rare earth magnets
JPH03295202A (en) * 1990-04-13 1991-12-26 Hitachi Metals Ltd Hot-worked magnet and manufacture thereof
JP2007517414A (en) * 2003-12-31 2007-06-28 ユニバーシティ・オブ・デイトン Nano composite permanent magnet
US20060054245A1 (en) * 2003-12-31 2006-03-16 Shiqiang Liu Nanocomposite permanent magnets
WO2005095024A1 (en) * 2004-03-31 2005-10-13 Santoku Corporation Process for producing alloy slab for rare-earth sintered magnet, alloy slab for rare-earth sintered magnet and rare-earth sintered magnet
JP2011187624A (en) * 2010-03-08 2011-09-22 Hitachi Metals Ltd Rare-earth system permanent magnet and method of manufacturing the same
CN103151161A (en) * 2013-03-22 2013-06-12 四川大学 Method for preparing anisotropic neodymium iron boron magnetic powder through directionally breaking thermal deformed magnet
CN104112557A (en) * 2013-04-22 2014-10-22 Tdk株式会社 R-t-b based sintered magnet
DE102014105632A1 (en) * 2013-04-22 2014-10-23 Tdk Corp. R-T-B based sintered magnet
US20140311288A1 (en) * 2013-04-22 2014-10-23 Tdk Corporation R-t-b based sintered magnet
JP2014216341A (en) * 2013-04-22 2014-11-17 Tdk株式会社 R-t-b-based sintered magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113724956A (en) * 2021-08-27 2021-11-30 安徽吉华新材料有限公司 Double-main-phase rare earth permanent magnetic material and preparation method thereof
CN113724956B (en) * 2021-08-27 2023-11-24 安徽吉华新材料有限公司 Double-main-phase rare earth permanent magnet material and preparation method thereof
CN113620701A (en) * 2021-09-29 2021-11-09 海安南京大学高新技术研究院 Preparation method of superfine-crystal high-temperature-resistant high-frequency manganese-zinc ferrite

Also Published As

Publication number Publication date
JP6596061B2 (en) 2019-10-23
CN108242305A (en) 2018-07-03
CN108242305B (en) 2020-03-27

Similar Documents

Publication Publication Date Title
CN105355354B (en) A kind of samarium iron nitrogen base anisotropy rare earth permanent magnet powder and preparation method thereof
KR101535487B1 (en) Magnetic substances based on mn-bi, fabrication method thereof, sintered magnet based on mn-bi and its fabrication method
JP6419812B2 (en) Manganese bismuth-based sintered magnet with improved thermal stability and manufacturing method thereof
JP2017128793A (en) MANUFACTURING METHOD OF SINTERED Nd-Fe-B MAGNETIC SUBSTRATE CONTAINING NO HEAVY RARE EARTH ELEMENT
JP6503483B2 (en) Highly heat-stable rare earth permanent magnet material, method for producing the same, and magnet including the same
JP2016115923A (en) ANISOTROPIC COMPLEX SINTERED MAGNET COMPRISING MnBi WHICH HAS IMPROVED MAGNETIC PROPERTY AND METHOD OF PREPARING THE SAME
CN101425355B (en) Pr/Nd based biphase composite permanent magnetic material and block body preparing method thereof
CN107424695B (en) Double-alloy nanocrystalline rare earth permanent magnet and preparation method thereof
EP4020505B1 (en) Preparation method for a neodymium-iron-boron magnet
CN108962523A (en) A kind of preparation method for the SmCo base nanocomposite permanent magnets adulterating SmCu alloy
CN105321646A (en) Nanocrystalline thermal deformation rare-earth permanent magnet with high coercivity and preparation method of nanocrystalline thermal deformation rare-earth permanent magnet
CN104599802B (en) Rare earth permanent-magnetic material and preparation method thereof
CN104823249A (en) Rare-earth permanent magnetic powders, bonded magnet comprising same, and device using bonded magnet
KR101966785B1 (en) A Fabricating method of magnet of Nd-Fe-B system
JP6613730B2 (en) Rare earth magnet manufacturing method
JP6596061B2 (en) Rare earth permanent magnet material and manufacturing method thereof
CN108987017A (en) A kind of no heavy rare earth sintered NdFeB
CN103907163A (en) R-T-B alloy powder, compound for anisotropic bonded magnet, and anisotropic bonded magnet
US9324485B2 (en) Material for anisotropic magnet and method of manufacturing the same
CN110491616A (en) A kind of neodymium-iron-boron magnetic material and preparation method thereof
JP2008223052A (en) Rare earth magnet alloy, method for manufacturing thin strip of rare earth magnet alloy, and bond magnet
JP6513623B2 (en) Method of manufacturing isotropic bulk magnet
EP4006931B1 (en) Manufacturing method of sintered magnet
CN106601464A (en) Preparation method for permanent magnet material with low content of heavy rare earth and high coercivity
US20090218012A1 (en) Material for magnetic anisotropic magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190927

R150 Certificate of patent or registration of utility model

Ref document number: 6596061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250