JPH11329810A - Magnetic alloy and anisotropic magnet using alloy thereof - Google Patents

Magnetic alloy and anisotropic magnet using alloy thereof

Info

Publication number
JPH11329810A
JPH11329810A JP10173760A JP17376098A JPH11329810A JP H11329810 A JPH11329810 A JP H11329810A JP 10173760 A JP10173760 A JP 10173760A JP 17376098 A JP17376098 A JP 17376098A JP H11329810 A JPH11329810 A JP H11329810A
Authority
JP
Japan
Prior art keywords
alloy
weight
magnetic properties
magnetic
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10173760A
Other languages
Japanese (ja)
Other versions
JP4678741B2 (en
Inventor
Yasuhiko Iriyama
恭彦 入山
Norio Yoshikawa
紀夫 吉川
Hiyoshi Yamada
日吉 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP17376098A priority Critical patent/JP4678741B2/en
Publication of JPH11329810A publication Critical patent/JPH11329810A/en
Application granted granted Critical
Publication of JP4678741B2 publication Critical patent/JP4678741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic alloy having excellent residual magnetism (Br) or a maximum energy product ((BH) max) by hot plastic working such as hot excrusion. SOLUTION: This alloy is the magnetic alloy, which comprizes R (R is one or more kinds of rare metals) of 28.0-30.0 weight%, B of 0.85-1.10 weight% and the remaining part comprising iron-group transition metal and has the excellent hot plastic working property and the magnetic characteristics. Or Ga of 0.05-0.8 weight% is added into the above described alloy. Or Si or C of 0.03-0.3 weight% is added into the above described alloy. By performing the hot plastic working of these metals at 750 deg.C-850 deg.C, the anisotropic magnet having the more higher magnetic characteristics can be realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、すぐれた高エネル
ギー積を有する磁気特性の良い永久磁石として適用され
うる磁石合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnet alloy which can be used as a permanent magnet having an excellent high energy product and good magnetic properties.

【0002】[0002]

【従来の技術】近年、残留磁束密度(Br)および保磁
力(Hc)が良好であってすぐれた高エネルギー積
((BH)max)を有する磁気特性の良い永久磁石と
して、R(希土類金属)−Fe−B系の磁石合金が多用
されるようになってきている。
2. Description of the Related Art In recent years, R (rare earth metal) has been used as a permanent magnet having good residual magnetic flux density (Br) and coercive force (Hc) and excellent magnetic properties having an excellent high energy product ((BH) max). -Fe-B based magnetic alloys have been widely used.

【0003】このR−Fe−B系の磁石合金は、熱間で
塑性加工を施すことによって結晶粒を特定の方向に配向
させることにより、磁気的に異方性を付与した磁気特性
の優れた永久磁石となる。
[0003] The R-Fe-B based magnetic alloy has excellent magnetic properties by magnetically giving anisotropy by orienting crystal grains in a specific direction by performing hot plastic working. It becomes a permanent magnet.

【0004】このR−Fe−B系の磁石合金は、この合
金溶湯を急冷することによって非晶質または微細結晶質
の薄片を得たのち破砕して粉末とし、これを冷間や熱間
で成形し、高密度化したのち熱間で塑性加工したり、あ
るいはまた、前記合金溶湯を鋳造したのち鋳造体を熱間
で塑性加工したりすることにより製造される。
[0004] This R-Fe-B-based magnetic alloy is obtained by quenching the alloy melt to obtain amorphous or fine crystalline flakes and then crushing the powder into a powder. It is manufactured by molding and densifying and then hot working plastically, or alternatively, casting the molten alloy and then hot working plastically the cast body.

【0005】[0005]

【発明が解決しようとする課題】この種の熱間塑性加工
法によるR−Fe−B系の磁石合金の特性は、従来、残
留磁束密度(Br)がおよそ12.6kG以下程度であ
ったが、残留磁束密度(Br)を高めることにより、最
大エネルギー積((BH)max)がさらに良好である
磁石合金を提供することが課題としてあった。
The characteristics of an R-Fe-B based magnet alloy formed by this type of hot plastic working method have a residual magnetic flux density (Br) of about 12.6 kG or less. It has been a problem to provide a magnet alloy having a better maximum energy product ((BH) max) by increasing the residual magnetic flux density (Br).

【0006】本発明は、このような課題にかんがみてな
されたものであって、R−Fe−B系の磁石合金におい
て、構成元素の組成範囲を限定することにより、残留磁
束密度(Br)を高め、最大エネルギー積((BH)m
ax)のより一層優れた磁石合金を提供することを目的
としている。
SUMMARY OF THE INVENTION The present invention has been made in view of such problems, and in a R-Fe-B based magnetic alloy, the residual magnetic flux density (Br) is reduced by limiting the composition range of constituent elements. High, maximum energy product ((BH) m
The object of the present invention is to provide an even more excellent magnet alloy of ax).

【0007】また、同時に塑性加工時における成形条
件、特に加工時の温度条件を種々検討し、加工性が良好
で、かつ高いBrあるいは高い(BH)maxをもつ磁
石合金を提供することを目的としている。
Also, at the same time, various examinations were made on the forming conditions during plastic working, particularly on the temperature conditions during working, with the aim of providing a magnet alloy having good workability and high Br or high (BH) max. I have.

【0008】[0008]

【課題を解決するための手段】R−Fe−B系の磁石合
金に塑性加工を施すことによって得られる磁石について
は、従来は組成と磁気特性が厳密に相関するという認識
は薄かった。本発明者らは、R−Fe−B組成と磁気特
性の関係に着目し、実験を重ねていくうちに、本磁石の
磁気特性はR−Fe−Bの基本組成と厳密な相関関係が
あることを見い出した。そこで、さらに実験を重ねた結
果、組成を限定することにより、従来は得られなかった
高磁気特性を有する異方性磁石を製造することに成功し
た。
Means for Solving the Problems Regarding magnets obtained by subjecting an R-Fe-B-based magnet alloy to plastic working, there has been little recognition that composition and magnetic properties are strictly correlated in the past. The present inventors have focused on the relationship between the R-Fe-B composition and the magnetic properties, and as the experiments are repeated, the magnetic properties of the present magnet have a strict correlation with the basic composition of R-Fe-B. I found something. Therefore, as a result of further experiments, the present inventors succeeded in producing an anisotropic magnet having high magnetic properties that could not be obtained conventionally by limiting the composition.

【0009】また、R−Fe−B系の磁石合金に塑性加
工を施し、高性能の異方性磁石を製造する際、R−Fe
−B組成が異なる場合も従来はほぼ同一の条件で塑性加
工を行っていた。本発明者らは、種々の組成のR−Fe
−B系合金の塑性加工実験を多数行っていく過程で、最
適の加工条件、特に加熱条件がR−Fe−B組成によっ
て異なることを見い出した。そして、従来の成形条件で
は低い特性しか示さなかった組成の合金についても、温
度条件を最適化することにより優れた磁気特性を発現す
ることを見い出した。さらに、 R−Fe−B組成と加
工条件を変化させた実験を鋭意重ねることにより、つい
に本発明の完成に到った。
[0009] Further, when a high performance anisotropic magnet is manufactured by subjecting an R-Fe-B-based magnet alloy to plastic working, R-Fe-B
Conventionally, plastic working was performed under substantially the same conditions even when the -B composition was different. The present inventors have proposed various compositions of R-Fe
In the course of conducting a number of plastic working experiments on a -B alloy, it was found that the optimum working conditions, especially the heating conditions, differed depending on the R-Fe-B composition. Further, it has been found that, even with an alloy having a composition exhibiting only low properties under conventional molding conditions, excellent magnetic properties can be exhibited by optimizing the temperature conditions. Furthermore, the present inventors finally completed the present invention by earnestly conducting experiments in which the R-Fe-B composition and the processing conditions were changed.

【0010】さらにまた、R−Fe−Bへの添加元素と
して、Ga,SiあるいはCを選択し、その含有量が熱
間加工性および磁気特性の両方に及ぼす影響を検討する
ことによって好ましい組成範囲の磁石合金を見い出し
た。
Further, Ga, Si or C is selected as an additive element to R-Fe-B, and the influence of the content on both hot workability and magnetic properties is examined to determine a preferable composition range. Found a magnetic alloy.

【0011】すなわち、本発明による熱間塑性加工性お
よび磁気特性に優れた磁石合金は、請求項1に記載して
いるように、R−T−Bの成分系を有し、Rは希土類金
属の1種または2種以上でR:28.0〜30.0重量
%、B:0.85〜1.10重量%、Tは鉄族遷移金属
の1種または2種以上で実質的に残部であるものとした
ことを特徴としている。
That is, the magnet alloy according to the present invention, which is excellent in hot plastic workability and magnetic properties, has an RTB component system, wherein R is a rare earth metal. R: 28.0 to 30.0% by weight, B: 0.85 to 1.10% by weight, and T is one or more of iron group transition metals and substantially the balance It is characterized by having it.

【0012】同じく、本発明による熱間塑性加工性およ
び磁気特性に優れた磁石合金は、請求項2に記載してい
るように、R−T−Ga−Bの成分系を有し、Rは希土
類金属の1種または2種以上でR:28.0〜30.0
重量%、Ga:0.05〜0.8重量%、B:0.85
〜1.10重量%、Tは鉄族遷移金属の1種または2種
以上で実質的に残部であるものとしたことを特徴として
いる。
Similarly, the magnet alloy according to the present invention, which has excellent hot plastic workability and magnetic properties, has an RT-Ga-B component system, wherein R is R: 28.0 to 30.0 with one or more rare earth metals
% By weight, Ga: 0.05 to 0.8% by weight, B: 0.85
-1.10% by weight, and T is one or more of iron-group transition metals and substantially the remainder.

【0013】同じく、本発明による熱間塑性加工性およ
び磁気特性に優れた磁石合金は、請求項3に記載してい
るように、R−T−X−Bの成分系を有し、Rは希土類
金属の1種または2種以上でR:28.0〜30.0重
量%、XはSiおよびCの1種または2種で、X:0.
03〜0.3重量%、B:0.85〜1.10重量%、
Tは鉄族遷移金属の1種または2種以上で実質的に残部
であるものとしたことを特徴としている。
[0013] Similarly, the magnet alloy according to the present invention, which is excellent in hot plastic workability and magnetic properties, has an R-T-X-B component system, wherein R is R is 28.0 to 30.0% by weight of one or more rare earth metals, X is one or two of Si and C, and X is 0.
03 to 0.3% by weight, B: 0.85 to 1.10% by weight,
T is characterized in that one or more of the iron group transition metals are substantially the balance.

【0014】そして、本発明に係わる熱間塑性加工性お
よび磁気特性に優れた磁石合金は、請求項4に記載して
いるように、RはNdあるいはPrを主体とし、Ndお
よびPr以外の希土類金属が5.0重量%以下であるも
のとすることができる。
Further, in the magnet alloy according to the present invention, which is excellent in hot plastic workability and magnetic properties, R is mainly composed of Nd or Pr and rare earth elements other than Nd and Pr. The metal can be up to 5.0% by weight.

【0015】また、本発明に係わる熱間塑性加工性およ
び磁気特性に優れた磁石合金のは,請求項5に記載して
いるように、TがFeおよびCoの1種または2種から
なるものとすることができる。
The magnetic alloy according to the present invention, which has excellent hot plastic workability and magnetic properties, is characterized in that T is composed of one or two of Fe and Co. It can be.

【0016】さらに、本発明に係わる熱間塑性加工性お
よび磁気特性に優れた異方性磁石は、請求項6に記載し
ているように、熱間塑性加工を750℃〜850℃の温
度で行うことを特徴としている。
Further, the anisotropic magnet according to the present invention, which is excellent in hot plastic workability and magnetic properties, is characterized in that hot plastic working is performed at a temperature of 750 ° C. to 850 ° C. It is characterized by performing.

【0017】同じく、本発明に係わる熱間塑性加工性お
よび磁気特性に優れた異方性磁石の実施態様において
は、請求項7に記載しているように、熱間塑性加工は熱
間押出し加工であるものとすることができる。
Similarly, in an embodiment of the anisotropic magnet according to the present invention having excellent hot plastic workability and magnetic properties, the hot plastic working is performed by hot extrusion. May be used.

【0018】[0018]

【発明の作用】本発明による熱間塑性加工性および磁気
特性に優れた磁石合金の成分組成(重量%)の限定理由
は次のとおりである。
The reasons for limiting the component composition (% by weight) of the magnet alloy excellent in hot plastic workability and magnetic properties according to the present invention are as follows.

【0019】R:28.0〜30.0% R含有量が少ないと保磁力(iHc)が低下するので、
28.0%以上とすることが必要である。一方、R含有
量が多いと残留磁束密度(Br)が低下するので、3
0.0%以下とすることが必要である。
R: 28.0-30.0% If the R content is small, the coercive force (iHc) decreases.
It is necessary to be 28.0% or more. On the other hand, when the R content is large, the residual magnetic flux density (Br) is reduced.
It is necessary to make it 0.0% or less.

【0020】B:0.85〜1.10% Bはこの種の磁石合金の保磁力(iHc)および残留磁
束密度(Br)を向上させる作用を有するが、このB含
有量が少ないと保磁力(iHc)および残留磁束密度
(Br)の向上作用が小さいので0.85%以上とする
のが良いが、多すぎると残留磁束密度(Br)を逆に低
下させる傾向になると共に、変形抵抗を急激に増大させ
て例えば熱間押出し加工の際の加工時間を多く必要とす
ることになるので、1.10%以下とするのが良い。
B: 0.85 to 1.10% B has the effect of improving the coercive force (iHc) and residual magnetic flux density (Br) of this type of magnetic alloy. Since the effect of improving (iHc) and residual magnetic flux density (Br) is small, the content is preferably set to 0.85% or more. However, if it is too large, the residual magnetic flux density (Br) tends to decrease, and the deformation resistance decreases. Since it is required to rapidly increase the processing time for hot extrusion, for example, it is necessary to set it to 1.10% or less.

【0021】Ga:0.05〜0.8% Gaはこの種の磁石合金の保磁力(iHc)および残留
磁束密度(Br)を向上させる作用を有するが、このG
a含有量が少ないと保磁力(iHc)および残留磁束密
度(Br)が低下するので、0.05%以上とするのが
良いが、多すぎると残留磁束密度(Br)が低下するこ
ととなるので、0.8%以下とするのが良い。
Ga: 0.05-0.8% Ga has the effect of improving the coercive force (iHc) and residual magnetic flux density (Br) of this type of magnet alloy.
If the content of a is small, the coercive force (iHc) and the residual magnetic flux density (Br) decrease. Therefore, the content is preferably set to 0.05% or more. However, if it is too large, the residual magnetic flux density (Br) decreases. Therefore, it is better to set it to 0.8% or less.

【0022】SiまたはC:0.03〜0.3% SiあるいはCはこの種の磁石合金の残留磁束密度(B
r)を向上させる作用を有するが、その効果が生じるの
は、0.03%以上である。しかし、含有量が多すぎる
と逆に残留磁束密度(Br)が低下することとなるの
で、0.3%以下とするのが良い。
Si or C: 0.03-0.3% Si or C is the residual magnetic flux density (B
It has the effect of improving r), but its effect occurs at 0.03% or more. However, if the content is too large, on the contrary, the residual magnetic flux density (Br) decreases, so it is preferable to set the content to 0.3% or less.

【0023】そして、RはNdあるいはPrを主体とす
るものが望ましく、他の希土類金属の含有は残留磁束密
度(Br)の低下を招くので、その含有量は5.0%以
下とするのが良い。
It is desirable that R is mainly composed of Nd or Pr. Since the content of another rare earth metal causes a decrease in the residual magnetic flux density (Br), its content should be 5.0% or less. good.

【0024】また、上述のような成分組成の磁石合金を
熱間塑性加工する際の温度を750〜850℃とするこ
とによって、磁気特性、特に、磁束密度(Br)をさら
に高めることができ、磁束密度(Br)が13.0kG
以上の磁気特性に優れたラジアル異方性高ネルギー積磁
石合金が得られることとなる。
Further, by setting the temperature at the time of hot plastic working of the magnet alloy having the above-mentioned composition to 750 to 850 ° C., the magnetic properties, particularly the magnetic flux density (Br), can be further increased. Magnetic flux density (Br) is 13.0 kG
A radially anisotropic high energy product magnet alloy having excellent magnetic properties can be obtained.

【0025】[0025]

【実施例】(実施例1)合金溶湯を単ロール法にて超急
冷することによって、Nd:29.5重量%、Co:6
重量%、B:0.95重量%、Fe:残部の組成からな
る薄帯を得たのち、この薄帯を破砕して粉末を得た。
(Example 1) Nd: 29.5% by weight, Co: 6 by ultra-quenching a molten alloy by a single roll method.
After obtaining a ribbon having the composition of wt%, B: 0.95% by weight, and Fe: balance, the ribbon was crushed to obtain a powder.

【0026】次いで、上記粉末を冷間でプレス成形した
後、Arガス雰囲気中において温度790℃でホットプ
レスを行った。
Next, the powder was cold-pressed, and then hot-pressed at 790 ° C. in an Ar gas atmosphere.

【0027】続いて、このホットプレス成形体に対し、
温度820℃で熱間押出し加工を行うことによって結晶
方位をそろえたカップ状の磁石素材にした。
Subsequently, for this hot press molded body,
By performing hot extrusion at a temperature of 820 ° C., a cup-shaped magnet material having a uniform crystal orientation was obtained.

【0028】次いで、このカップ状磁石素材の外壁から
試料を切り出してラジアル方向の磁気特性を調査した結
果、残留磁束密度(Br)が13.5kG、保磁力(i
Hc)が13.8kOe、および最大エネルギー積
((BH)max)が42.1MGOeの高磁気特性を
有することがわかった。
Next, a sample was cut out from the outer wall of the cup-shaped magnet material and the magnetic properties in the radial direction were examined. As a result, the residual magnetic flux density (Br) was 13.5 kG, and the coercive force (i
Hc) was found to have high magnetic properties of 13.8 kOe and a maximum energy product ((BH) max) of 42.1 MGOe.

【0029】(実施例2)合金溶湯を単ロール法にて超
急冷することによって、Nd:29.2重量%、Co:
6重量%、B:0.92重量%、Ga:0.6重量%、
Fe:残部の組成からなる薄帯を得たのち、この薄帯を
破砕して粉末を得た。
(Example 2) Nd: 29.2% by weight, Co:
6% by weight, B: 0.92% by weight, Ga: 0.6% by weight,
Fe: After obtaining a ribbon having the remaining composition, the ribbon was crushed to obtain a powder.

【0030】この粉末を使用し、実施例1と同様の方法
でカップ状磁石素材を得た。次いで、実施例1と同様に
磁気特性を調査した結果、残留磁束密度(Br)が1
3.7kG、保磁力(iHc)が15.3kOe、およ
び最大エネルギー積((BH)max)が44.3MG
Oeの高磁気特性を有することがわかった。
Using this powder, a cup-shaped magnet material was obtained in the same manner as in Example 1. Next, as a result of examining the magnetic characteristics in the same manner as in Example 1, the residual magnetic flux density (Br) was 1
3.7 kG, coercive force (iHc) 15.3 kOe, and maximum energy product ((BH) max) 44.3 MG
Oe was found to have high magnetic properties.

【0031】(実施例3)表1に示す組成を有する粉末
を実施例1と同様にして得た。おのおのの粉末を用い
て、実施例1と同様にカップ状磁石素材を作製し、磁気
特性を調べた結果を表1に示す。なお、表1中の試料番
号1,5,6,12,21,25,29は比較例を示
す。表1の試料番号1,5はNdが範囲外にあり保磁
力、最大エネルギー積が低い。またBが範囲外の試料番
号6,12は最大エネルギー積が低い。さらに、Ga,
Si,Cの添加量が大きい試料番号21,25,29も
最大エネルギー積が低い。
Example 3 A powder having the composition shown in Table 1 was obtained in the same manner as in Example 1. Using each powder, a cup-shaped magnet material was produced in the same manner as in Example 1, and the magnetic properties were examined. The results are shown in Table 1. Sample numbers 1, 5, 6, 12, 21, 25, and 29 in Table 1 show comparative examples. Sample Nos. 1 and 5 in Table 1 have Nd outside the range and have low coercive force and maximum energy product. Sample numbers 6 and 12 in which B is out of the range have a low maximum energy product. Further, Ga,
Sample numbers 21, 25, and 29 with large amounts of Si and C added also have low maximum energy products.

【0032】[0032]

【表1】 [Table 1]

【0033】(実施例4)実施例1および2で用いた合
金組成を有するカップ状磁石素材を実施例1と同様に作
製した。ただし、このとき、熱間押出し加工の温度を表
2に示すように種々変化させた。おのおのの磁石素材に
ついて磁気特性を調べた結果を表2に示す。表2から、
押し出し加工の温度が750〜850℃のときにBrが
13.0kG以上の高い特性が得られることがわかる。
Example 4 A cup-shaped magnet material having the alloy composition used in Examples 1 and 2 was produced in the same manner as in Example 1. However, at this time, the temperature of the hot extrusion was varied as shown in Table 2. Table 2 shows the results of examining the magnetic properties of each magnet material. From Table 2,
It can be seen that when the temperature of the extrusion processing is 750 to 850 ° C., a high characteristic of Br of 13.0 kG or more can be obtained.

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【発明の効果】本発明により限定された組成の磁石合金
を使用することによって、残留磁束密度(Br)が大き
く、かつ、最大エネルギー積((BH)max)の優れ
た磁石合金を提供することが可能である。
According to the present invention, there is provided a magnet alloy having a high residual magnetic flux density (Br) and an excellent maximum energy product ((BH) max) by using a magnet alloy having a composition limited by the present invention. Is possible.

【0036】さらに、熱間塑性加工の温度を750〜8
50℃に限定することにより、請求項1ないし5に示さ
れる組成の合金の磁気特性、特に残留磁束密度(Br)
を一層高めることが可能である。
Further, the temperature of the hot plastic working is set to 750 to 8
By limiting the temperature to 50 ° C., the magnetic properties, particularly the residual magnetic flux density (Br), of the alloy having the composition shown in claims 1 to 5 are obtained.
Can be further increased.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 R−T−Bの成分系を有し、Rは希土類
金属の1種または2種以上でR:28.0〜30.0重
量%、B:0.85〜1.10重量%、Tは鉄族遷移金
属の1種または2種以上で実質的に残部であることを特
徴とする熱間塑性加工性および磁気特性に優れた磁石合
金。
An R-T-B component system wherein R is one or more rare earth metals, R: 28.0 to 30.0% by weight, B: 0.85 to 1.10 A magnetic alloy having excellent hot plastic workability and magnetic properties, wherein T is one or more of iron group transition metals and substantially the balance.
【請求項2】 R−T−Ga−Bの成分系を有し、Rは
希土類金属の1種または2種以上でR:28.0〜3
0.0重量%、Ga:0.05〜0.8重量%、B:
0.85〜1.10重量%、Tは鉄族遷移金属の1種ま
たは2種以上で実質的に残部であることを特徴とする熱
間塑性加工性および磁気特性に優れた磁石合金。
2. It has an RT-Ga-B component system, wherein R is one or more rare earth metals and R: 28.0-3.
0.0% by weight, Ga: 0.05 to 0.8% by weight, B:
0.85 to 1.10% by weight, T is one or more of iron group transition metals, and the balance is substantially the balance, and the magnet alloy is excellent in hot plastic workability and magnetic properties.
【請求項3】 R−T−X−Bの成分系を有し、Rは希
土類金属の1種または2種以上でR:28.0〜30.
0重量%、XはSiおよびCの1種または2種で、X:
0.03〜0.3重量%、B:0.85〜1.10重量
%、Tは鉄族遷移金属の1種または2種以上で実質的に
残部であることを特徴とする熱間塑性加工性および磁気
特性に優れた磁石合金。
3. It has an RTXB component system, wherein R is one or more rare earth metals and R: 28.0-30.
0% by weight, X is one or two of Si and C, and X:
0.03 to 0.3% by weight, B: 0.85 to 1.10% by weight, T is one or more of iron group transition metals and substantially the balance is hot plasticity. Magnet alloy with excellent workability and magnetic properties.
【請求項4】 RはNdあるいはPrを主体とし、Nd
およびPr以外の希土類金属が5.0重量%以下である
請求項1ないし3のいずれかに記載の熱間塑性加工性お
よび磁気特性に優れた磁石合金。
4. R is mainly composed of Nd or Pr.
4. The magnet alloy according to claim 1, wherein the rare earth metal other than Pr and Pr is 5.0% by weight or less.
【請求項5】 TがFeおよびCoの1種または2種か
らなる請求項1ないし3のいずれかに記載の熱間塑性加
工性および磁気特性に優れた磁石合金。
5. The magnet alloy according to claim 1, wherein T comprises one or two of Fe and Co.
【請求項6】 請求項1ないし5の磁石合金に750℃
〜850℃の熱間塑性加工を施した磁気特性に優れた異
方性磁石。
6. The magnetic alloy according to claim 1, wherein said magnetic alloy is 750 ° C.
Anisotropic magnets with excellent magnetic properties that have been subjected to hot plastic working at -850 ° C.
【請求項7】 熱間塑性加工が熱間押出し加工である請
求項6に記載の磁気特性に優れた異方性磁石。
7. The anisotropic magnet having excellent magnetic properties according to claim 6, wherein the hot plastic working is hot extrusion.
JP17376098A 1998-05-19 1998-05-19 Anisotropic magnet material Expired - Fee Related JP4678741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17376098A JP4678741B2 (en) 1998-05-19 1998-05-19 Anisotropic magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17376098A JP4678741B2 (en) 1998-05-19 1998-05-19 Anisotropic magnet material

Publications (2)

Publication Number Publication Date
JPH11329810A true JPH11329810A (en) 1999-11-30
JP4678741B2 JP4678741B2 (en) 2011-04-27

Family

ID=15966644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17376098A Expired - Fee Related JP4678741B2 (en) 1998-05-19 1998-05-19 Anisotropic magnet material

Country Status (1)

Country Link
JP (1) JP4678741B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1398800A1 (en) * 2001-06-19 2004-03-17 Mitsubishi Denki Kabushiki Kaisha Rare earth element permanent magnet material
WO2014148353A1 (en) 2013-03-18 2014-09-25 インターメタリックス株式会社 RFeB-BASED MAGNET PRODUCTION METHOD, RFeB-BASED MAGNET, AND COATING MATERIAL FOR GRAIN BOUNDARY DIFFUSION PROCESS
DE102014004513A1 (en) 2013-03-29 2014-10-02 Daido Steel Co., Ltd. Method for producing a magnet based on RFeB
US9324485B2 (en) 2008-02-29 2016-04-26 Daido Steel Co., Ltd. Material for anisotropic magnet and method of manufacturing the same
JP2017216778A (en) * 2016-05-30 2017-12-07 Tdk株式会社 motor
US9859055B2 (en) 2012-10-18 2018-01-02 Toyota Jidosha Kabushiki Kaisha Manufacturing method for rare-earth magnet
JP2018153008A (en) * 2017-03-13 2018-09-27 Tdk株式会社 motor
US10199145B2 (en) 2011-11-14 2019-02-05 Toyota Jidosha Kabushiki Kaisha Rare-earth magnet and method for producing the same
US10468165B2 (en) 2013-06-05 2019-11-05 Toyota Jidosha Kabushiki Kaisha Rare-earth magnet and method for manufacturing same
WO2020184724A1 (en) 2019-03-14 2020-09-17 国立研究開発法人産業技術総合研究所 Metastable single-crystal rare earth magnet fine powder and method for producing same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1398800A4 (en) * 2001-06-19 2004-11-03 Mitsubishi Electric Corp Rare earth element permanent magnet material
US7175718B2 (en) 2001-06-19 2007-02-13 Mitsubishi Denki Kabushiki Kaisha Rare earth element permanent magnet material
EP1398800A1 (en) * 2001-06-19 2004-03-17 Mitsubishi Denki Kabushiki Kaisha Rare earth element permanent magnet material
US9324485B2 (en) 2008-02-29 2016-04-26 Daido Steel Co., Ltd. Material for anisotropic magnet and method of manufacturing the same
US10199145B2 (en) 2011-11-14 2019-02-05 Toyota Jidosha Kabushiki Kaisha Rare-earth magnet and method for producing the same
US9859055B2 (en) 2012-10-18 2018-01-02 Toyota Jidosha Kabushiki Kaisha Manufacturing method for rare-earth magnet
WO2014148353A1 (en) 2013-03-18 2014-09-25 インターメタリックス株式会社 RFeB-BASED MAGNET PRODUCTION METHOD, RFeB-BASED MAGNET, AND COATING MATERIAL FOR GRAIN BOUNDARY DIFFUSION PROCESS
US10475561B2 (en) 2013-03-18 2019-11-12 Intermetallics Co., Ltd. RFeB system magnet production method, RFeB system magnet, and coating material for grain boundary diffusion treatment
DE102014004513A1 (en) 2013-03-29 2014-10-02 Daido Steel Co., Ltd. Method for producing a magnet based on RFeB
US10468165B2 (en) 2013-06-05 2019-11-05 Toyota Jidosha Kabushiki Kaisha Rare-earth magnet and method for manufacturing same
US10748684B2 (en) 2013-06-05 2020-08-18 Toyota Jidosha Kabushiki Kaisha Rare-earth magnet and method for manufacturing same
JP2017216778A (en) * 2016-05-30 2017-12-07 Tdk株式会社 motor
JP2018153008A (en) * 2017-03-13 2018-09-27 Tdk株式会社 motor
WO2020184724A1 (en) 2019-03-14 2020-09-17 国立研究開発法人産業技術総合研究所 Metastable single-crystal rare earth magnet fine powder and method for producing same

Also Published As

Publication number Publication date
JP4678741B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
JP7214041B2 (en) High Cu high Al neodymium iron boron magnet and its manufacturing method
JP3033127B2 (en) Rare earth magnet alloy with good hot workability
JPH11329810A (en) Magnetic alloy and anisotropic magnet using alloy thereof
JP2893265B2 (en) Rare earth permanent magnet alloy and its manufacturing method
JP2861074B2 (en) Permanent magnet material
JP2794496B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JPH1070023A (en) Permanent magnet and manufacture thereof
JP2739525B2 (en) R-Fe-BC permanent magnet alloy with low irreversible demagnetization and excellent thermal stability
JPH08181009A (en) Permanent magnet and its manufacturing method
JPS63178505A (en) Anisotropic r-fe-b-m system permanent magnet
JPH06302419A (en) Rare earth permanent magnet and its manufacture
JPH06112026A (en) Permanent magnet with excellent thermal stability and corrosion-resisting property and manufacture thereof
JP2740901B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
CN104112558A (en) R-t-b based sintered magnet
JP4120035B2 (en) Magnet alloy
JP2794494B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JPH02138706A (en) Anisotropic permanent magnet
JP3854948B2 (en) R-T-B type alloy dehydrogenation furnace for anisotropic bonded magnets
JP2794497B2 (en) R-Fe-BC permanent magnet alloy with low irreversible demagnetization and excellent thermal stability
JPH06251917A (en) Rare earth element permanent magnet
JPH01247A (en) Permanent magnet material and its manufacturing method
JPH0739618B2 (en) Alloying of low level additives to heat processed Nd-Fe-B magnets
JPH03295202A (en) Hot-worked magnet and manufacture thereof
JPH01239901A (en) Rare-earth magnet and its manufacture
JPH0555581B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071210

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees