JPH06112026A - Permanent magnet with excellent thermal stability and corrosion-resisting property and manufacture thereof - Google Patents

Permanent magnet with excellent thermal stability and corrosion-resisting property and manufacture thereof

Info

Publication number
JPH06112026A
JPH06112026A JP4254395A JP25439592A JPH06112026A JP H06112026 A JPH06112026 A JP H06112026A JP 4254395 A JP4254395 A JP 4254395A JP 25439592 A JP25439592 A JP 25439592A JP H06112026 A JPH06112026 A JP H06112026A
Authority
JP
Japan
Prior art keywords
thermal stability
permanent magnet
corrosion resistance
corrosion
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4254395A
Other languages
Japanese (ja)
Inventor
Minoru Endo
実 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP4254395A priority Critical patent/JPH06112026A/en
Publication of JPH06112026A publication Critical patent/JPH06112026A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Abstract

PURPOSE:To improve thermal stability using an inexpensive element instead of Ga, and also to improve the close adhesiveness between the base layer Cu and plating. CONSTITUTION:This permanent magnet consists of the composition of (Nd1-x-y-zCexPryDyz)aFebCocBdZneCufMgAlho (in the form of 0.001<=X<=0.1, 0.05<=Y<=0.5, 0.001<=Z<=0.25, M indicates at least a kind selected from V, Mo, Nb and W, 5<=a<=18wt.%, 65<=b<=85wt.%, 0<=c<=20wt.%, 4<=d<=15wt.%, 0<=e<=7wt.%, 0<=f<=7wt.%, 0<=g<=5wt.% and 0<=h<=2wt.%).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、VCM(ボイスコイル
モータ)、回転機器等に使用される高性能希土類永久磁
石に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-performance rare earth permanent magnet used for VCM (voice coil motor), rotating equipment and the like.

【0002】[0002]

【従来の技術】Nd−Fe−B系磁石(特許公告 昭6
3−65742)は飽和磁化が大きく、高エネルギ−積
が得られることから幅広い用途に使用されるようになっ
た。これまで問題とされていた耐熱性および耐食性とい
った問題はある程度解決された。最大エネルギ−積も3
0ー40MGOeのものが生産されるようになった。
2. Description of the Related Art Nd-Fe-B magnets (Patent Publication Sho 6)
3-65742) has a large saturation magnetization and can obtain a high energy product, and thus has come to be used in a wide range of applications. Problems such as heat resistance and corrosion resistance, which have been problems so far, have been solved to some extent. Maximum energy product is also 3
The product of 0-40 MGOe came to be produced.

【0003】[0003]

【発明が解決しようとする課題】上記Nd−Fe−B系
磁石の熱安定性を改善するため、Dyを添加して保磁力
を向上させる方法が一般的に用いられている。しかし、
Dyは高価なため使用量を最小限にする必要がある。こ
のため、Al及びNbなどをDyと一緒に添加してい
る。この他に、さらに熱安定性を向上させるために、G
aを添加する場合もある。しかし、Gaは高価であるた
め、安価な元素で熱安定性を向上することが望まれてい
た。また、従来、耐食性を向上させるために、加工を終
えた試料に酸エッチングを施した後、Cu下地メッキと
Niメッキを一般的に行っている。しかし、製造工程を
短縮するために酸エッチングの工程を省略することが望
ましいが、Ndリッチ相とCu下地メッキとの密着性が
悪いことが問題となっている。
In order to improve the thermal stability of the Nd-Fe-B magnet, the method of adding Dy to improve the coercive force is generally used. But,
Since Dy is expensive, it is necessary to minimize the amount used. Therefore, Al and Nb are added together with Dy. In addition to this, in order to further improve thermal stability, G
In some cases, a may be added. However, since Ga is expensive, it has been desired to improve thermal stability with an inexpensive element. Further, conventionally, in order to improve the corrosion resistance, after the processed sample is subjected to acid etching, Cu undercoating and Ni plating are generally performed. However, it is desirable to omit the acid etching process in order to shorten the manufacturing process, but there is a problem that the adhesion between the Nd-rich phase and the Cu undercoat is poor.

【0004】そこで、本発明は、Gaに代わって安価な
元素で熱安定性を向上した永久磁石の提供を課題とす
る。さらに、本発明は、前記Cu下地メッキとの密着性
を向上した永久磁石の提供を課題とする。
Therefore, an object of the present invention is to provide a permanent magnet whose thermal stability is improved by using an inexpensive element instead of Ga. Another object of the present invention is to provide a permanent magnet having improved adhesion to the Cu undercoat.

【0005】[0005]

【問題を解決するための手段】本発明者はGaに代わっ
て熱安定性を向上させる元素を探索したところ、以下の
知見を得るにいたった。 即ち、Nd−Fe−B三元系
へのZn添加は保磁力向上にある程度の効果はあるが、
ZnとCoを同時に添加した場合にさらに保磁力が大き
く向上し、熱安定性も改善されることがわかった。ま
た、ZnとCoを同時添加すると耐食性の改善にも有効
であった。これはZnが亜鉛メッキに使用されるように
耐酸化性に強い元素で、さらにこのZnは本系磁石のN
dリッチを相に多く入るため、腐食されやすい相を保護
するため耐食性の改善に有効であった。また、このZn
添加はCu下地メッキとの密着性の改善に効果も有して
いた。さらに、この組成系にCuを磁気特性と熱安定性
が悪くならない範囲で使用するとCu下地メッキとの密
着性が良くなり、耐食性が向上することを見いだした。
しかし、量産においては原料価格を下げるためにCe、
Prといった希土類元素も使用する。この中でPrの使
用はさらなる磁石特性の改善に有効であることが判明し
た。このため原料的に安価で熱安定性と耐食性に優れる
磁石が得られた。本発明は以上の知見にもとづきなされ
たものであり、 (Nd1-X-Y-ZCeXPrYDyZaFebCocdZne
CufgAlh (ここで、0.001≦X≦0.1、0.05≦Y≦
0.5、0.001≦Z≦0.25、MはV,Mo,N
b,Wのうち少なくとも1種で、5≦a≦18at%、
65≦b≦85at%、0≦c≦20at% 4≦d≦15at%、0≦e≦7at%、0≦f≦7a
t%、0≦g≦5at%、0≦h≦2at%)の組成か
らなることを特徴とする熱安定性と耐食性の良好な永久
磁石である。
[Means for Solving the Problem] The present inventor has obtained the following findings as a result of searching for an element which improves thermal stability in place of Ga. That is, although addition of Zn to the Nd-Fe-B ternary system has some effect on improving coercive force,
It was found that when Zn and Co were added at the same time, the coercive force was further greatly improved and the thermal stability was also improved. Further, simultaneous addition of Zn and Co was effective in improving corrosion resistance. This is an element that has strong resistance to oxidation so that Zn is used for galvanizing. Furthermore, this Zn is the N of the present magnet.
Since a large amount of d-rich was included in the phase, it was effective in improving the corrosion resistance because it protects the phase that is easily corroded. Also, this Zn
The addition also had the effect of improving the adhesion to the Cu undercoat. Further, they have found that when Cu is used in this composition system in a range where magnetic properties and thermal stability are not deteriorated, adhesion with Cu undercoating is improved and corrosion resistance is improved.
However, in mass production, Ce,
Rare earth elements such as Pr are also used. Among these, it was found that the use of Pr is effective for further improving the magnet characteristics. Therefore, a magnet that is inexpensive as a raw material and has excellent thermal stability and corrosion resistance was obtained. The present invention has been made based on the above findings, (Nd 1-XYZ Ce X Pr Y Dy Z) a Fe b Co c B d Zn e
Cu f M g Al h (where 0.001 ≦ X ≦ 0.1, 0.05 ≦ Y ≦
0.5, 0.001 ≦ Z ≦ 0.25, M is V, Mo, N
at least one of b and W, 5 ≦ a ≦ 18 at%,
65 ≦ b ≦ 85 at%, 0 ≦ c ≦ 20 at% 4 ≦ d ≦ 15 at%, 0 ≦ e ≦ 7 at%, 0 ≦ f ≦ 7a
t%, 0 ≦ g ≦ 5 at%, 0 ≦ h ≦ 2 at%), which is a permanent magnet having excellent thermal stability and corrosion resistance.

【0006】本発明において希土類元素Rは5at%以
上、18at%以下で、好ましくは10at%以上、1
6at%以下の範囲で含有される。Ceの過剰な添加は
好ましくなく、0.001≦X≦0.1が望ましい。P
rは0.05≦Y≦0.5の範囲で使用すれば保磁力・
耐熱性の向上に効果があるが、これ以上の添加は飽和磁
化を減少させ、耐食性も低下させる。Dyを含む場合に
大きい保磁力が得られ、NdとDyの比率としては9
9.95:0.05から80:20の範囲が飽和磁化を
大きく低下せずに、高保磁力が得られるため望ましい。
In the present invention, the rare earth element R is 5 at% or more and 18 at% or less, preferably 10 at% or more, 1
It is contained in the range of 6 at% or less. Excessive addition of Ce is not preferable, and 0.001 ≦ X ≦ 0.1 is desirable. P
If r is within the range of 0.05 ≦ Y ≦ 0.5, coercive force
Although it is effective in improving heat resistance, addition of more than that decreases saturation magnetization and corrosion resistance. A large coercive force is obtained when Dy is included, and the ratio of Nd and Dy is 9
The range of 9.95: 0.05 to 80:20 is desirable because a high coercive force can be obtained without significantly reducing the saturation magnetization.

【0007】Feは65≦b≦85at%の範囲で含ま
れる。65at%未満では飽和磁化が低く、また85a
t%を越えると保磁力が著しく低下するからである。
Fe is contained in the range of 65 ≦ b ≦ 85 at%. If it is less than 65 at%, the saturation magnetization is low, and 85 a
This is because if it exceeds t%, the coercive force remarkably decreases.

【0008】Coは前述のようにZnとともに熱安定性
向上に寄与する元素であり、20at%以下の範囲で含
まれる。20at%を越えると飽和磁化と保磁力が低下
するからである。なお、FeとCoの比率は、適度な角
型性と保磁力を保持するため99.95:0.05から
77:23の範囲にするのが望ましい。
Co is an element that contributes to the improvement of thermal stability together with Zn as described above, and is contained in the range of 20 at% or less. This is because when it exceeds 20 at%, the saturation magnetization and the coercive force decrease. The ratio of Fe to Co is preferably in the range of 99.95: 0.05 to 77:23 in order to maintain appropriate squareness and coercive force.

【0009】Bの量は4≦d≦15at%が好ましく、
この範囲外では残留磁束密度と保磁力が小さくなる。
The amount of B is preferably 4 ≦ d ≦ 15 at%,
Outside of this range, the residual magnetic flux density and coercive force become small.

【0010】ZnはCoとともに熱安定性向上に寄与す
る元素であるが、7at%を越えると残留磁束密度を低
下させるので7at%以下とする。0.01≦e≦4a
t%の範囲とするのが好ましい。
Zn is an element that contributes to the improvement of thermal stability together with Co, but if it exceeds 7 at%, the residual magnetic flux density is lowered, so it is made 7 at% or less. 0.01 ≦ e ≦ 4a
It is preferably in the range of t%.

【0011】M元素は結晶粒成長抑制および熱安定性向
上に効果のある元素であるが、過剰に含まれると飽和磁
化を低下させるので添加する場合は7at%以下とする
のが好ましい。
The M element is an element effective in suppressing the crystal grain growth and improving the thermal stability. However, if it is contained excessively, the saturation magnetization is lowered. Therefore, when it is added, its content is preferably 7 at% or less.

【0012】Alは保磁力向上に効果があり、Ferroー
Bからおよび溶解時に混入してくる。しかし過剰に含ま
れるとキュリー温度を下げるので、添加する場合は5a
t%以下とする。
Al has an effect of improving coercive force, and is mixed from Ferro-B and at the time of melting. However, if it is added excessively, the Curie temperature is lowered.
t% or less.

【0013】CuはCu下地メッキとの密着性改善、さ
らに耐食性改善に寄与する元素であるが、過剰に含まれ
ると残留磁束密度と保磁力を下げるため、0≦f≦2a
t%の範囲とする。
Cu is an element that contributes to the improvement of the adhesion to the Cu undercoat and the improvement of the corrosion resistance. However, if it is contained excessively, the residual magnetic flux density and the coercive force are lowered, so that 0 ≦ f ≦ 2a.
The range is t%.

【0014】次に本発明磁石の製造方法について説明す
る。本発明磁石は、焼結法により作成することができ
る。その一つの方法として、最終目標組成と同一の組成
を有する溶融合金から、公知の超急冷法により合金粉末
を得るか、インゴットを作成しこのインゴットに水素吸
蔵・脱水素処理を施した後粉砕して合金粉末を得て、そ
の後に磁場中成形、焼結する方法がある。しかし、Zn
は融点および沸点が非常に低く、溶解時に上記を非常に
多く放出し、以上の方法によるとZn量の減少が著し
い。このため、低融点のNd−Fe−B−Zn−Co系
のNdリッチ合金を溶解により作成し、溶湯急冷もしく
は水素吸蔵+脱水素を行った後、粉砕し、別途準備した
Nd−Fe−B−Nb合金粉末と混合し、成形、焼結、
熱処理するという手段を採用するとZnの減少を少なく
することができる。
Next, a method for manufacturing the magnet of the present invention will be described. The magnet of the present invention can be produced by a sintering method. As one of the methods, from a molten alloy having the same composition as the final target composition, an alloy powder is obtained by a known ultra-quenching method, or an ingot is prepared and hydrogen absorption / dehydrogenation treatment is applied to this ingot, followed by pulverization. There is a method in which an alloy powder is obtained by using the above method, and thereafter, it is molded and sintered in a magnetic field. However, Zn
Has a very low melting point and boiling point, and releases a large amount of the above when dissolved, and the above method causes a remarkable decrease in the amount of Zn. Therefore, an Nd-Fe-B-Zn-Co-based Nd-rich alloy having a low melting point is prepared by melting, melt quenching or hydrogen storage + dehydrogenation is performed, and then crushed and separately prepared Nd-Fe-B. -Mixing with Nb alloy powder, molding, sintering,
By adopting a means of heat treatment, the decrease of Zn can be suppressed.

【0015】[0015]

【実施例】【Example】

(実施例1) 組成1:(Nd0.9-xPrxDy0.114.4Fe71.5Co
5.06.6Zn1.0Nb1.0 Al0.5 (x=0,0.
1,0.2,0.3,0.4,0.5) なる合金を作製し、水素吸蔵させた後、400ー600
℃の温度に加熱しながら脱水素した。得られた合金粉を
粗粉砕・微粉砕した後横磁場成形により成形し、109
0℃で焼結した。得られた焼結体を600℃で熱処理
し、磁気特性を評価した。
 (Example 1) Composition 1: (Nd0.9-xPrxDy0.1)14.4Fe71.5Co
5.0B6.6Zn1.0Nb1.0 Al0.5 (X = 0,0.
1, 0.2, 0.3, 0.4, 0.5) was prepared, and hydrogen was occluded, then 400-600
It was dehydrogenated while heating to a temperature of ° C. The obtained alloy powder
After coarsely pulverizing and finely pulverizing, it is molded by transverse magnetic field molding.
Sintered at 0 ° C. Heat treatment of the obtained sintered body at 600 ° C
Then, the magnetic characteristics were evaluated.

【0016】図1に組成1の磁気特性の評価結果を示
す。明らかに、Pr量の増加に伴い保磁力が増加してい
る。また、磁石をPc=2の形状に加工し、200℃に
加熱後の不可逆減磁率の変化を調べた。その結果、保磁
力が大きいほど熱安定性も良い結果が得られた。
FIG. 1 shows the evaluation results of the magnetic characteristics of composition 1. Apparently, the coercive force increases with the increase of the Pr amount. Further, the magnet was processed into a shape of Pc = 2, and the change in the irreversible demagnetization rate after heating to 200 ° C. was examined. As a result, the larger the coercive force, the better the thermal stability.

【0017】(実施例2) 組成2:(Nd0.9Dy0.114.8Fe77.16.6Mo1.0
Al0.5, 組成3:(Nd0.9Dy0.114.8Fe76.16.6Zn1.0
Mo1.0Al0.5, 組成4:(Nd0.9Dy0.114.8Fe71.1Co5.06.6
Zn1.0Mo1.0Al0.5 ,組成5:(Nd0.5Pr0.3Dy0.114.8Fe71.1
5.06.6Zn1.0Mo1. 0Al0.5 の4種類の溶解合金を作成し、実施例1の条件で焼結磁
石を作成した。これらの磁石にCu下地メッキとNiメ
ッキを施し、温度:80℃、湿度:90%の環境に放置
し、耐食性を調べた。表面に赤錆を生じる放置時間を調
べたところ、表1に示す結果が得られた。
(Example 2) Composition 2: (Nd 0.9 Dy 0.1 ) 14.8 Fe 77.1 B 6.6 Mo 1.0
Al 0.5 , composition 3: (Nd 0.9 Dy 0.1 ) 14.8 Fe 76.1 B 6.6 Zn 1.0
Mo 1.0 Al 0.5 , composition 4: (Nd 0.9 Dy 0.1 ) 14.8 Fe 71.1 Co 5.0 B 6.6
Zn 1.0 Mo 1.0 Al 0.5 , composition 5: (Nd 0.5 Pr 0.3 Dy 0.1 ) 14.8 Fe 71.1 C
Create a o 5.0 4 kinds of dissolution Alloy B 6.6 Zn 1.0 Mo 1. 0 Al 0.5, and create a sintered magnet under the conditions of Example 1. Cu undercoat and Ni plating were applied to these magnets, and the magnets were left in an environment of temperature: 80 ° C. and humidity: 90% to examine the corrosion resistance. When the standing time for producing red rust on the surface was examined, the results shown in Table 1 were obtained.

【0018】[0018]

【表1】 [Table 1]

【0019】(実施例3)実施例2で作成した組成2ー
5の磁石に、同じくCu下地メッキをNiメッキを施
し、ピンテストを行った。テストはピンをメッキ膜に能
勢、樹脂で接着した後、ピンを引っ張り、メッキ膜が剥
離する強度を測定した。得られた結果を表2に示す。
(Example 3) The pin having the composition 2-5 prepared in Example 2 was subjected to a pin test by similarly plating a Cu undercoat with Ni. In the test, after the pins were bonded to the plating film with a resin, the pins were pulled and the strength of peeling of the plating film was measured. The obtained results are shown in Table 2.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【発明の効果】Nd−Fe−B系磁石にZnとCoを添
加することにより、熱安定性と耐食性を改善し、Cuを
非常に微量添加することによりCu下地メッキとの密着
性を良くし、耐食性を改善することができた。さらに、
Prを添加することにより原料的に安価で、保磁力・耐
熱性に優れる磁石が得られた。
The thermal stability and corrosion resistance are improved by adding Zn and Co to the Nd-Fe-B system magnet, and the adhesion to the Cu undercoat is improved by adding a very small amount of Cu. , Could improve the corrosion resistance. further,
By adding Pr, a magnet which is inexpensive as a raw material and has excellent coercive force and heat resistance was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】組成1の磁石のPr量によるBr,iHc,
(BH)maxの変化および200℃に加熱後の不可逆
減磁率を示すグラフである。
FIG. 1 shows Br, iHc, and Pr depending on the Pr content of a magnet of composition 1.
It is a graph which shows the change of (BH) max and an irreversible demagnetization rate after heating at 200 degreeC.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】(Nd1-X-Y-ZCeXPrYDyZaFeb
cdZneCufgAlh (ここで、0.001≦X≦0.1、0.05≦Y≦
0.5、0.001≦Z≦0.25、MはV,Mo,N
b,Wのうち少なくとも1種で、 5≦a≦18at%、65≦b≦85 at%、0≦c
≦20 at% 4≦d≦15at%、0≦e≦7at%、0≦f≦7a
t%、0≦g≦5at%、0≦h≦2at%)の組成か
らなることを特徴とする熱安定性と耐食性の良好な永久
磁石。
1. (Nd 1 -XYZ Ce X Pr Y Dy Z ) a Fe b C
In o c B d Zn e Cu f M g Al h ( where, 0.001 ≦ X ≦ 0.1,0.05 ≦ Y ≦
0.5, 0.001 ≦ Z ≦ 0.25, M is V, Mo, N
at least one of b and W, 5 ≦ a ≦ 18 at%, 65 ≦ b ≦ 85 at%, 0 ≦ c
≦ 20 at% 4 ≦ d ≦ 15 at%, 0 ≦ e ≦ 7 at%, 0 ≦ f ≦ 7a
t%, 0 ≦ g ≦ 5 at%, 0 ≦ h ≦ 2 at%). A permanent magnet having good thermal stability and corrosion resistance.
【請求項2】 上記組成式において、10≦a≦15a
t%、5≦d≦15at%、f≦2at%である請求項
1に記載の熱安定性と耐食性の良好な永久磁石。
2. In the above composition formula, 10 ≦ a ≦ 15a
The permanent magnet excellent in thermal stability and corrosion resistance according to claim 1, wherein t%, 5 ≦ d ≦ 15 at%, and f ≦ 2 at%.
【請求項3】 FeとCoの比率が99.95:0.0
5から77:23の範囲にある請求項1ないし2のいず
れかに記載の熱安定性と耐食性の良好な永久磁石。
3. The ratio of Fe and Co is 99.95: 0.0.
The permanent magnet having good thermal stability and good corrosion resistance according to any one of claims 1 to 2, which is in the range of 5 to 77:23.
【請求項4】 RリッチなNd−Fe−B−Zn−Co
合金粉末と、Nd−Fe−B−Nb合金粉末とを請求項
1記載の組成になるように混合した後に焼結することを
特徴とする永久磁石の製造方法。
4. R-rich Nd-Fe-B-Zn-Co
A method for producing a permanent magnet, comprising mixing an alloy powder and an Nd-Fe-B-Nb alloy powder so as to have a composition according to claim 1 and then sintering the mixture.
JP4254395A 1992-09-24 1992-09-24 Permanent magnet with excellent thermal stability and corrosion-resisting property and manufacture thereof Pending JPH06112026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4254395A JPH06112026A (en) 1992-09-24 1992-09-24 Permanent magnet with excellent thermal stability and corrosion-resisting property and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4254395A JPH06112026A (en) 1992-09-24 1992-09-24 Permanent magnet with excellent thermal stability and corrosion-resisting property and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06112026A true JPH06112026A (en) 1994-04-22

Family

ID=17264385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4254395A Pending JPH06112026A (en) 1992-09-24 1992-09-24 Permanent magnet with excellent thermal stability and corrosion-resisting property and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06112026A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627102B2 (en) * 2000-05-22 2003-09-30 Seiko Epson Corporation Magnetic powder, manufacturing method of magnetic powder and bonded magnets
JP5370609B1 (en) * 2013-04-25 2013-12-18 Tdk株式会社 R-T-B permanent magnet
CN104124019A (en) * 2013-04-25 2014-10-29 Tdk株式会社 R-t-b based permanent magnet
US9070500B2 (en) 2013-04-25 2015-06-30 Tdk Corporation R-T-B based permanent magnet
US9082537B2 (en) 2013-04-25 2015-07-14 Tdk Corporation R-T-B based permanent magnet
JP2022542187A (en) * 2019-11-21 2022-09-29 フージャン チャンティン ゴールデン ドラゴン レア-アース カンパニー リミテッド Neodymium-iron-boron magnet material, raw material composition, manufacturing method, and application

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627102B2 (en) * 2000-05-22 2003-09-30 Seiko Epson Corporation Magnetic powder, manufacturing method of magnetic powder and bonded magnets
JP5370609B1 (en) * 2013-04-25 2013-12-18 Tdk株式会社 R-T-B permanent magnet
CN104124019A (en) * 2013-04-25 2014-10-29 Tdk株式会社 R-t-b based permanent magnet
CN104124017A (en) * 2013-04-25 2014-10-29 Tdk株式会社 R-t-b based permanent magnet
US9070500B2 (en) 2013-04-25 2015-06-30 Tdk Corporation R-T-B based permanent magnet
US9082537B2 (en) 2013-04-25 2015-07-14 Tdk Corporation R-T-B based permanent magnet
US9111674B2 (en) 2013-04-25 2015-08-18 Tdk Corporation R-T-B based permanent magnet
DE102014105798B4 (en) * 2013-04-25 2016-01-28 Tdk Corporation R-T-B-based permanent magnet
US9396852B2 (en) 2013-04-25 2016-07-19 Tdk Corporation R-T-B based permanent magnet
JP2022542187A (en) * 2019-11-21 2022-09-29 フージャン チャンティン ゴールデン ドラゴン レア-アース カンパニー リミテッド Neodymium-iron-boron magnet material, raw material composition, manufacturing method, and application

Similar Documents

Publication Publication Date Title
JPH0319296B2 (en)
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
JPH1053844A (en) (rare earth)-iron-boron magnetic alloy and its production and bond magnet using the (rare earth)-iron-boron magnetic alloy
KR100204256B1 (en) Rare-earth-element-fe-b permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet therefrom
JPH0316761B2 (en)
JP2774372B2 (en) Permanent magnet powder
JP2893265B2 (en) Rare earth permanent magnet alloy and its manufacturing method
JPH06112026A (en) Permanent magnet with excellent thermal stability and corrosion-resisting property and manufacture thereof
JP2794496B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JPS63313807A (en) Of highly efficient permanent magnet with high-anticorrosivity, and manufacture thereof
JP2739525B2 (en) R-Fe-BC permanent magnet alloy with low irreversible demagnetization and excellent thermal stability
JPH06188113A (en) Manufacture of permanent magnet composed mainly of ndfeb
JPH0146575B2 (en)
JPH05267026A (en) Permanent magnet having excellent thermal stability and corrosion resistance and manufacture thereof
JPH0146574B2 (en)
JPS59163803A (en) Permanent magnet
JPH0535211B2 (en)
JPH0152469B2 (en)
JPH09312230A (en) Manufacturing anisotropic bond magnet
JP3652751B2 (en) Anisotropic bonded magnet
JP3703903B2 (en) Anisotropic bonded magnet
JPH024939A (en) Rare earth-transition metallic magnetic alloy
JPH09115711A (en) Anisotropic bond magnet
JPH09320876A (en) Manufacture of anisotropic bond magnet
JPH09330842A (en) Manufacture of anisotropic bond magnet