JPH05267026A - Permanent magnet having excellent thermal stability and corrosion resistance and manufacture thereof - Google Patents

Permanent magnet having excellent thermal stability and corrosion resistance and manufacture thereof

Info

Publication number
JPH05267026A
JPH05267026A JP4065855A JP6585592A JPH05267026A JP H05267026 A JPH05267026 A JP H05267026A JP 4065855 A JP4065855 A JP 4065855A JP 6585592 A JP6585592 A JP 6585592A JP H05267026 A JPH05267026 A JP H05267026A
Authority
JP
Japan
Prior art keywords
thermal stability
corrosion resistance
permanent magnet
composition
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4065855A
Other languages
Japanese (ja)
Inventor
Minoru Endo
実 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP4065855A priority Critical patent/JPH05267026A/en
Publication of JPH05267026A publication Critical patent/JPH05267026A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve thermal stability by a low-cost element in place of Ga, and to enhance adhesive properties with Cu substrate plating. CONSTITUTION:A permanent magnet is composed of the composition of RaFebCocBdZneCufMgAlh (where R represents at least one kind of rare earth elements containing Nd, Pr and Ce and M at least one kind of V, Mo, Nb and W and the composition satisfies 5<=a<=18at.%, 65<=b<=85at.%, 0<=c<=20at.%, 4<=d<=15at.%, e<=7at.%, 0<=f<=7at.%, 0<=g<=5at.% and 0<=h<=2at.%).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、VCM(ボイスコイル
モータ),回転機器等に使用される高性能希土類永久磁
石に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-performance rare earth permanent magnet used for VCM (voice coil motor), rotating equipment and the like.

【0002】[0002]

【従来の技術】Nd−Fe−B系磁石(特許公告 昭6
3−65742)は飽和磁化が大きく、高エネルギ−積
が得られることから幅広い用途に使用されるようになっ
た。これまで問題とされていた耐熱性および耐食性とい
った問題はある程度解決され、実用上は問題ある程度解
決された。最大エネルギ−積も30ー40MGOeのも
のが生産されるになった。
2. Description of the Related Art Nd-Fe-B magnets (Patent Publication Sho 6)
3-65742) has a large saturation magnetization and can obtain a high energy product, and thus has come to be used in a wide range of applications. Problems such as heat resistance and corrosion resistance, which have been problems so far, have been solved to some extent, and practically, some problems have been solved. A maximum energy product of 30-40 MGOe has been produced.

【0003】[0003]

【発明が解決しようとする課題】上記Nd−Fe−B系
磁石の熱安定性を改善するため、Dyを添加して保磁力
を向上させる方法が一般的に用いられている。しかし、
Dyは高価なため使用量を最小限にする必要がある。こ
のため、Al及びNbなどをDyと一緒に添加してい
る。この他に、さらに熱安定性を向上させるために、G
aを添加する場合もある。しかし、Gaは高価であるた
め、安価な元素で熱安定性を向上することが望まれてい
た。また、従来、耐食性を向上させるために、加工を終
えた試料に酸エッチングを施した後、Cu下地メッキと
Niメッキを一般的に行っている。しかし、製造工程を
短縮するために酸エッチングの工程を省略することが望
ましいが、Ndリッチ相とCu下地メッキとの密着性が
悪いことが問題となっている。
In order to improve the thermal stability of the Nd-Fe-B magnet, the method of adding Dy to improve the coercive force is generally used. But,
Since Dy is expensive, it is necessary to minimize the amount used. Therefore, Al and Nb are added together with Dy. In addition to this, in order to further improve thermal stability, G
In some cases, a may be added. However, since Ga is expensive, it has been desired to improve the thermal stability with an inexpensive element. Further, conventionally, in order to improve the corrosion resistance, after the processed sample is subjected to acid etching, Cu underlayer plating and Ni plating are generally performed. However, it is desirable to omit the acid etching step in order to shorten the manufacturing process, but there is a problem that the adhesion between the Nd-rich phase and the Cu undercoat is poor.

【0004】そこで、本発明は、Gaに代わって安価な
元素で熱安定性を向上した永久磁石の提供を課題とす
る。さらに、本発明は、前記Cu下地メッキとの密着性
を向上した永久磁石の提供を課題とする。
Therefore, an object of the present invention is to provide a permanent magnet whose thermal stability is improved by using an inexpensive element instead of Ga. A further object of the present invention is to provide a permanent magnet having improved adhesion with the Cu undercoat.

【0005】[0005]

【問題を解決するための手段】本発明者はGaに代わっ
て熱安定性を向上させる元素を探索したところ、以下の
知見を得るにいたった。即ち、Nd−Fe−B三元系へ
のZn添加は保磁力向上にある程度の項かはあるが、Z
nとCoを同時に添加した場合にさらに保磁力が大きく
向上し、熱安定性も改善されることがわかった。また、
ZnとCoを同時添加すると耐食性の改善にも有効であ
った。これはZnが亜鉛メッキに使用されるように耐酸
化性に強い元素で、さらにこのZnは本系磁石のNdリ
ッチ相に多く入るため、腐食されやすい相を保護するた
め耐食性の改善に有効であった。また、このZn添加は
Cu下地メッキとの密着性の改善に効果も有していた。
さらに、この組成系にCuを磁気特性と熱安定性が悪く
ならない範囲で使用するとCu下地メッキとの密着性が
良くなり、耐食性が向上することを見いだした。本発明
は以上の知見に基づきなされたものであり、RaFeb
cdZneCufgAlh (ここで、RはNd,Pr,Ceを含む希土類元素のう
ち少なくとも1種、MはV,Mo,Nb,Wのうち少な
くとも1種で、5≦a≦18at%、65≦b≦85
at%、0≦c≦20 at%、4≦d≦15at%、
e≦7at%、0≦f≦7at%、0≦g≦5at%、
0≦h≦2at%)の組成からなる永久磁石である。
Means for Solving the Problems The present inventor has searched for an element which improves thermal stability in place of Ga, and has obtained the following findings. That is, although adding Zn to the Nd-Fe-B ternary system has a certain degree of improvement in coercive force,
It was found that when n and Co were added at the same time, the coercive force was greatly improved and the thermal stability was also improved. Also,
The simultaneous addition of Zn and Co was also effective in improving the corrosion resistance. This is an element that has strong oxidation resistance as Zn is used for galvanizing. Furthermore, since this Zn often enters the Nd-rich phase of this system magnet, it protects the easily corroded phase and is effective in improving the corrosion resistance. there were. Further, the addition of Zn also had the effect of improving the adhesion with the Cu undercoat.
Further, they have found that when Cu is used in this composition system in a range where magnetic properties and thermal stability are not deteriorated, adhesion with Cu undercoating is improved and corrosion resistance is improved. The present invention has been made on the basis of the above findings, and R a Fe b C
In o c B d Zn e Cu f M g Al h ( wherein, R represents Nd, Pr, at least one of rare earth elements including Ce, M is V, Mo, Nb, at least one of W, 5 ≦ a ≦ 18 at%, 65 ≦ b ≦ 85
at%, 0 ≦ c ≦ 20 at%, 4 ≦ d ≦ 15 at%,
e ≦ 7 at%, 0 ≦ f ≦ 7 at%, 0 ≦ g ≦ 5 at%,
It is a permanent magnet having a composition of 0 ≦ h ≦ 2 at%).

【0006】本発明において希土類元素Rは5at%以
上、18at%以下で、好ましくは10at%以上、1
6at%以下の範囲で含有される。RはPr,Ndの場
合に高い磁気特性が得られ、TbやDyを含む場合に大
きい保磁力が得られる。特にDyを用いた場合がコスト
的に好ましく、NdとDyの比率としては99.95:
0.05から80:20の範囲が飽和磁化を大きくせず
に、高保磁力が得られるため望ましい。
In the present invention, the rare earth element R is 5 at% or more and 18 at% or less, preferably 10 at% or more, 1
It is contained in a range of 6 at% or less. When R is Pr or Nd, high magnetic characteristics are obtained, and when Tb or Dy is contained, a large coercive force is obtained. In particular, the use of Dy is preferable in terms of cost, and the ratio of Nd and Dy is 99.95:
The range of 0.05 to 80:20 is desirable because a high coercive force can be obtained without increasing the saturation magnetization.

【0007】Feは65≦b≦85at%の範囲で含ま
れる。65at%未満では飽和磁化が低く、また85a
t%を越えると保磁力が著しく低下するからである。
Fe is contained in the range of 65 ≦ b ≦ 85 at%. If it is less than 65 at%, the saturation magnetization is low, and
This is because the coercive force is remarkably reduced when it exceeds t%.

【0008】Coは前述のようにZnとともに熱安定性
向上に寄与する元素であり、20at%以下の範囲で含
まれる。20at%を越えると飽和磁化と保磁力が低下
するからである。なお、FeとCoの比率は、適度な角
型性と保磁力を保持するため99.95:0.05から
77:23の範囲にするのが望ましい。
As described above, Co is an element that contributes to the improvement of thermal stability together with Zn, and is contained in the range of 20 at% or less. This is because when it exceeds 20 at%, the saturation magnetization and the coercive force decrease. The ratio of Fe and Co is preferably in the range of 99.95: 0.05 to 77:23 in order to maintain appropriate squareness and coercive force.

【0009】Bの量は4≦d≦15at%が好ましく、
この範囲外では残留磁束密度と保磁力が小さくなる。
The amount of B is preferably 4 ≦ d ≦ 15 at%,
Outside of this range, the residual magnetic flux density and coercive force become small.

【0010】ZnはCoとともに熱安定性向上に寄与す
る元素であるが、7at%を越えると残留磁束密度を低
下させるので7at%以下とする。0.01≦e≦4a
t%の範囲とするのが好ましい。
Zn is an element that contributes to the improvement of thermal stability together with Co, but if it exceeds 7 at%, the residual magnetic flux density is lowered, so it is made 7 at% or less. 0.01 ≦ e ≦ 4a
It is preferably in the range of t%.

【0011】M元素は結晶粒成長抑制および熱安定性向
上に高かのある元素であるが、過剰に含まれると飽和磁
化を低下させるので添加する場合は7at%以下とする
のが好ましい。
The M element is an element highly effective in suppressing crystal grain growth and improving thermal stability. However, if it is contained excessively, the saturation magnetization is lowered. Therefore, when it is added, its content is preferably 7 at% or less.

【0012】Alは保磁力向上に高かがあり、Ferroー
Bからおよび溶解時に混入してくる。しかし過剰に含ま
れるとキュリー温度を下げるので、添加する場合は5a
t%以下とする。
Al has a high improvement in coercive force, and is mixed from Ferro-B and at the time of melting. However, if it is added excessively, the Curie temperature is lowered.
t% or less.

【0013】CuはCu下地メッキとの密着性改善、さ
らに耐食性改善に寄与する元素であるが、過剰に含まれ
ると残留磁束密度と保磁力を下げるため、0≦f≦2a
t%の範囲とする。
Cu is an element that contributes to the improvement of the adhesion to the Cu undercoat and the improvement of the corrosion resistance. However, if it is contained excessively, the residual magnetic flux density and the coercive force are lowered, so 0 ≦ f ≦ 2a
The range is t%.

【0014】次に本発明磁石の製造方法について説明す
る。本発明磁石は、焼結法により作成することができ
る。その一つの方法として、最終目標組成と同一の組成
を有する溶融合金から、公知の超急冷法により合金粉末
を得るか、インゴットを作成しこのインゴットに水素吸
蔵・脱水素処理を施した後粉砕して合金粉末を得て、そ
の後に磁場中成形、焼結する方法がある。しかし,Zn
は融点および沸点が非常に低く、溶解時に上記を非常に
多く放出し、以上の方法によるとZn量の減少が著し
い。このため、低融点のNd−Fe−B−Zn−Co系
のNdリッチ合金を溶解により作成し、溶湯急冷もしく
は水素吸蔵+脱水素を行った後、粉砕し、別途準備した
Nd−Fe−B−Nb合金粉末と混合し、成形、焼結、
熱処理するという手段を採用するとZnの減少を少なく
することができる。
Next, a method for manufacturing the magnet of the present invention will be described. The magnet of the present invention can be produced by a sintering method. As one of the methods, from a molten alloy having the same composition as the final target composition, an alloy powder is obtained by a well-known ultra-quenching method, or an ingot is prepared and subjected to hydrogen storage / dehydrogenation treatment and then crushed. There is a method in which an alloy powder is obtained, and thereafter, the powder is molded and sintered in a magnetic field. However, Zn
Has a very low melting point and boiling point, and releases a large amount of the above when dissolved, and according to the above method, the Zn content is significantly reduced. Therefore, a Nd-Fe-B-Zn-Co-based Nd-rich alloy having a low melting point is prepared by melting, and the melt is rapidly cooled or hydrogen storage + dehydrogenation is performed, and then crushed and separately prepared Nd-Fe-B. -Mixing with Nb alloy powder, molding, sintering,
By adopting the means of heat treatment, the decrease of Zn can be suppressed.

【0015】[0015]

【実施例】【Example】

(実施例1) 組成1:(Nd0.9Dy0.114.8Fe76.1-xCox6.6
Zn1.0Nb1.0Al0.5(x=0,1.0,2.0,
3.0,4.0,5.0,6.0,7.0),組成2:
(Nd0.9Dy0.114.8Fe73.1-xCo3.06.6Zn
1.0Nb1.0Al0.5Cux(x=0,0.05,0.1,
0.15,0.2,0.25)なる合金を作製し、水素
吸蔵させた後、400ー600℃の温度に加熱しながら
脱水素した。得られた合金粉を粗粉砕・微粉砕した後横
磁場成形により成形し、1090℃で焼結した。得られ
た焼結体を600℃で熱処理し、磁気特性を評価した。
Example 1 Composition 1: (Nd 0.9 Dy 0.1 ) 14.8 Fe 76.1-x Co x B 6.6
Zn 1.0 Nb 1.0 Al 0.5 (x = 0, 1.0, 2.0,
3.0, 4.0, 5.0, 6.0, 7.0), composition 2:
(Nd 0.9 Dy 0.1 ) 14.8 Fe 73.1-x Co 3.0 B 6.6 Zn
1.0 Nb 1.0 Al 0.5 Cu x (x = 0, 0.05, 0.1,
0.15, 0.2, 0.25) was prepared, hydrogen was absorbed, and then dehydrogenated while heating at a temperature of 400 to 600 ° C. The obtained alloy powder was coarsely pulverized and finely pulverized, then formed by transverse magnetic field forming, and sintered at 1090 ° C. The obtained sintered body was heat-treated at 600 ° C. to evaluate the magnetic characteristics.

【0016】図1に組成1、図2は組成2の磁気特性の
評価結果を示す。明らかに、Co量の増加に伴い保磁力
が増加し、Co量が6at%以上では減少している。ま
た、Cu量の増加に伴い、保磁力の微増が見られるが、
すぐに減少している。さらに、組成1のx=0,3,7
の磁石をPc=2の形状に加工し、各温度に加熱後の不
可逆減磁率の変化を調べた。得られた結果は図3に示す
が、保磁力が大きいほど熱安定性も良い結果が得られ
た。
FIG. 1 shows the composition 1 and FIG. 2 shows the evaluation results of the magnetic properties of the composition 2. Apparently, the coercive force increases with the increase of the Co amount, and decreases when the Co amount is 6 at% or more. Also, a slight increase in coercive force can be seen with an increase in the amount of Cu,
It is decreasing soon. Furthermore, x = 0,3,7 of composition 1
The magnet was processed into a shape of Pc = 2, and the change in irreversible demagnetization rate after heating to each temperature was examined. The obtained results are shown in FIG. 3, and the larger the coercive force, the better the thermal stability.

【0017】(実施例2) 組成3:(Nd0.9Dy0.114.8Fe77.16.6Mo1.0
Al0.5, 組成4:(Nd0.9Dy0.114.8Fe76.16.6Zn1.0
Mo1.0Al0.5, 組成5:(Nd0.9Dy0.114.8Fe76.056.6Zn
1.0Mo1.0Al0.5−Cu0.05, 組成6:(Nd0.9Dy0.114.8Fe73.05Co3.0
6.6Zn1.0Mo1.0Al0.5Cu0.05 の4種類の溶解合金を作成し、実施例1の条件で焼結磁
石を作成した。これらの磁石にCu下地メッキとNiメ
ッキを施し、温度:80℃,湿度:90%の環境に放置
し、耐食性を調べた。表面に赤錆を生じる放置時間を調
べたところ、表1に示す結果が得られた。Zn,Coを
ともに添加した組成6,およびさらにCuを添加した組
成7が最も良い耐食性を示していることがわかる。
Example 2 Composition 3: (Nd 0.9 Dy 0.1 ) 14.8 Fe 77.1 B 6.6 Mo 1.0
Al 0.5 , composition 4: (Nd 0.9 Dy 0.1 ) 14.8 Fe 76.1 B 6.6 Zn 1.0
Mo 1.0 Al 0.5 , composition 5: (Nd 0.9 Dy 0.1 ) 14.8 Fe 76.05 B 6.6 Zn
1.0 Mo 1.0 Al 0.5 -Cu 0.05 , composition 6: (Nd 0.9 Dy 0.1 ) 14.8 Fe 73.05 Co 3.0 B
6.6 Zn 1.0 Mo 1.0 Al 0.5 Cu 0.05 four kinds of molten alloys were prepared, and a sintered magnet was prepared under the conditions of Example 1. These magnets were subjected to Cu undercoating and Ni plating and left in an environment of temperature: 80 ° C. and humidity: 90% to examine corrosion resistance. When the standing time for producing red rust on the surface was examined, the results shown in Table 1 were obtained. It can be seen that the composition 6 in which both Zn and Co are added and the composition 7 in which Cu is further added exhibit the best corrosion resistance.

【0018】[0018]

【表1】 [Table 1]

【0019】(実施例3)実施例2で作成した組成3ー
7の磁石に、同じくCu下地メッキをNiメッキを施
し、ピンテストを行った。テストはピンをメッキ膜に能
勢、樹脂で接着した後、ピンを引っ張り、メッキ膜が剥
離する強度を測定した。得られた結果を第2表に示す。
(Example 3) The pin having the composition 3-7 prepared in Example 2 was subjected to a pin test by similarly plating a Cu undercoat with Ni. In the test, the pin was attached to the plated film with a resin, and then the pin was pulled to measure the peeling strength of the plated film. The results obtained are shown in Table 2.

【0020】[0020]

【表2】 [Table 2]

【0021】(実施例4) 合金A:(Nd0.9Dy0.112.8Fe74.65Co3.0
8.01.0Al0.5Cu0.05, 合金B:Nd65Fe25Zn10 の2種類の溶解合金を作成し、水素吸蔵させた後、脱水
素した。両者を粉砕した後、ある比率で混合し、成形、
焼結した。得られた磁気特性を表3に示す。このよう
に、Ndリッチな合金を予め作成するとZnを著しく損
失する事なく、良い結果が得られた。
Example 4 Alloy A: (Nd 0.9 Dy 0.1 ) 12.8 Fe 74.65 Co 3.0 B
Two kinds of melted alloys of 8.0 V 1.0 Al 0.5 Cu 0.05 and alloy B: Nd 65 Fe 25 Zn 10 were prepared, hydrogen was absorbed, and then dehydrogenated. After crushing both, mixing at a certain ratio, molding,
Sintered. The magnetic properties obtained are shown in Table 3. As described above, when an Nd-rich alloy was prepared in advance, good results were obtained without significantly losing Zn.

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【発明の効果】Nd−Fe−B系磁石にZnとCoを添
加することにより、熱安定性と耐食性を改善し、Cuを
非常に微量添加することによりCu下地メッキとの密着
性を良くし、耐食性を改善することができた。
The thermal stability and corrosion resistance are improved by adding Zn and Co to the Nd-Fe-B system magnet, and the adhesion to the Cu undercoat is improved by adding a very small amount of Cu. , Could improve the corrosion resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】組成1の磁石のCo量によるBrとiHcの変
化を示すグラフである。
FIG. 1 is a graph showing changes in Br and iHc depending on the amount of Co in a magnet having a composition 1.

【図2】組成2の磁石のCu量によるBrとiHcの変
化を示すグラフである。
FIG. 2 is a graph showing changes in Br and iHc depending on the amount of Cu in a magnet having composition 2.

【図3】組成1のCo量(x=0,3,7)による不可
逆減磁率の変化を示すグラフである。
FIG. 3 is a graph showing changes in the irreversible demagnetization rate depending on the Co amount (x = 0, 3, 7) of composition 1.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 RaFebCocdZneCufgAlh (ここで、RはNd,Pr,Ceを含む希土類元素のう
ち少なくとも1種、MはV,Mo,Nb,Wのうち少な
くとも1種で、5≦a≦18at%、65≦b≦85
at%、0≦c≦20 at%4≦d≦15at%、e
≦7at%、0≦f≦7at%、0≦g≦5at%、0
≦h≦2at%)の組成からなることを特徴とする熱安
定性と耐食性の良好な永久磁石。
1. R a Fe b Co c B d Zn e Cu f M g Al h (wherein R is at least one of rare earth elements including Nd, Pr and Ce, M is V, Mo, Nb, At least one of W is 5 ≦ a ≦ 18 at%, 65 ≦ b ≦ 85.
at%, 0 ≦ c ≦ 20 at% 4 ≦ d ≦ 15 at%, e
≦ 7 at%, 0 ≦ f ≦ 7 at%, 0 ≦ g ≦ 5 at%, 0
≦ h ≦ 2 at%), and a permanent magnet having good thermal stability and corrosion resistance.
【請求項2】 RがNd,Pr,Dy,Ceの一種また
は二種以上であり、10≦a≦15at%、5≦d≦1
5at%、f≦2at%である請求項1に記載の熱安定
性と耐食性の良好な永久磁石。
2. R is one or more of Nd, Pr, Dy, and Ce, and 10 ≦ a ≦ 15 at% and 5 ≦ d ≦ 1.
The permanent magnet having good thermal stability and good corrosion resistance according to claim 1, wherein 5 at% and f ≦ 2 at%.
【請求項3】 RがNdとDyを含み、NdとDyの比
率が99.95:0.05から80:20の範囲にある
請求項1または2に記載の熱安定性と耐食性の良好な永
久磁石。
3. The thermal stability and corrosion resistance according to claim 1, wherein R contains Nd and Dy, and the ratio of Nd and Dy is in the range of 99.95: 0.05 to 80:20. permanent magnet.
【請求項4】 FeとCoの比率が99.95:0.0
5から77:23の範囲にである請求項1ないし3に記
載の熱安定性と耐食性の良好な永久磁石。
4. The ratio of Fe and Co is 99.95: 0.0.
The permanent magnet having good thermal stability and corrosion resistance according to claim 1, which is in the range of 5 to 77:23.
【請求項5】 NdリッチなNd−Fe−B−Zn−C
o合金粉末と、Nd−Fe−B−Nb合金粉末とを請求
項1記載の組成になるように混合した後に焼結すること
を特徴とする永久磁石の製造方法。
5. Nd-rich Nd-Fe-B-Zn-C
A method for producing a permanent magnet, which comprises mixing an o alloy powder and an Nd-Fe-B-Nb alloy powder so as to have the composition according to claim 1 and then sintering the mixture.
JP4065855A 1992-03-24 1992-03-24 Permanent magnet having excellent thermal stability and corrosion resistance and manufacture thereof Pending JPH05267026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4065855A JPH05267026A (en) 1992-03-24 1992-03-24 Permanent magnet having excellent thermal stability and corrosion resistance and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4065855A JPH05267026A (en) 1992-03-24 1992-03-24 Permanent magnet having excellent thermal stability and corrosion resistance and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05267026A true JPH05267026A (en) 1993-10-15

Family

ID=13299050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4065855A Pending JPH05267026A (en) 1992-03-24 1992-03-24 Permanent magnet having excellent thermal stability and corrosion resistance and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05267026A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237168A (en) * 2005-02-23 2006-09-07 Tdk Corp R-t-b-based sintered magnet and manufacturing method thereof
JP2006278990A (en) * 2005-03-30 2006-10-12 Tdk Corp Rare earth permanent magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237168A (en) * 2005-02-23 2006-09-07 Tdk Corp R-t-b-based sintered magnet and manufacturing method thereof
JP4702522B2 (en) * 2005-02-23 2011-06-15 Tdk株式会社 R-T-B system sintered magnet and manufacturing method thereof
JP2006278990A (en) * 2005-03-30 2006-10-12 Tdk Corp Rare earth permanent magnet
JP4529180B2 (en) * 2005-03-30 2010-08-25 Tdk株式会社 Rare earth permanent magnet

Similar Documents

Publication Publication Date Title
EP0898778B1 (en) Bonded magnet with low losses and easy saturation
USRE37666E1 (en) Iron-based permanent magnets and their fabrication as well as iron-based permanent magnet alloy powders for permanent bonded magnets and iron-based bonded magnets
US6019859A (en) Iron-based permanent magnets and their fabrication as well as iron-based permanent magnet alloy powders for permanent bonded magnets and iron-based bonded magnets
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
JPH1053844A (en) (rare earth)-iron-boron magnetic alloy and its production and bond magnet using the (rare earth)-iron-boron magnetic alloy
JP2774372B2 (en) Permanent magnet powder
KR100204256B1 (en) Rare-earth-element-fe-b permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet therefrom
JP2893265B2 (en) Rare earth permanent magnet alloy and its manufacturing method
JPH0616445B2 (en) Permanent magnet material and manufacturing method thereof
EP0386286B1 (en) Rare earth iron-based permanent magnet
JPH06112026A (en) Permanent magnet with excellent thermal stability and corrosion-resisting property and manufacture thereof
JPS63313807A (en) Of highly efficient permanent magnet with high-anticorrosivity, and manufacture thereof
JP2739525B2 (en) R-Fe-BC permanent magnet alloy with low irreversible demagnetization and excellent thermal stability
JP2001217112A (en) R-t-b sintered magnet
JPH05267026A (en) Permanent magnet having excellent thermal stability and corrosion resistance and manufacture thereof
JPH01100242A (en) Permanent magnetic material
JPH06188113A (en) Manufacture of permanent magnet composed mainly of ndfeb
JP3209380B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2720039B2 (en) Rare earth magnet material with excellent corrosion resistance
JPH0521216A (en) Permanent magnet alloy and its production
JPH10130796A (en) Production of fine crystal permanent magnet alloy and isotropic permanent magnet powder
JPH09312230A (en) Manufacturing anisotropic bond magnet
JPH024939A (en) Rare earth-transition metallic magnetic alloy
JPH08181010A (en) Rare earth sintered magnet
JPH05315119A (en) Rare earth permanent magnetic and its manufacture