JP2861074B2 - Permanent magnet material - Google Patents

Permanent magnet material

Info

Publication number
JP2861074B2
JP2861074B2 JP1173845A JP17384589A JP2861074B2 JP 2861074 B2 JP2861074 B2 JP 2861074B2 JP 1173845 A JP1173845 A JP 1173845A JP 17384589 A JP17384589 A JP 17384589A JP 2861074 B2 JP2861074 B2 JP 2861074B2
Authority
JP
Japan
Prior art keywords
permanent magnet
rare earth
magnet
ratio
magnet material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1173845A
Other languages
Japanese (ja)
Other versions
JPH0339451A (en
Inventor
慎一郎 矢萩
孝幸 西尾
吉田  裕
俊哉 木南
紀夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP1173845A priority Critical patent/JP2861074B2/en
Publication of JPH0339451A publication Critical patent/JPH0339451A/en
Application granted granted Critical
Publication of JP2861074B2 publication Critical patent/JP2861074B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は永久磁石材料に関し、詳しくは従来にない
新規な永久磁石材料に関する。
Description: TECHNICAL FIELD The present invention relates to a permanent magnet material, and more particularly, to a novel permanent magnet material that has not existed before.

(発明の背景) 固有保磁力が5000(Oe)以上の逆減磁に強い磁石とし
て、Sm−Co系磁石、Nd−Fe−B系磁石等の希土類磁石が
知られている。この希土類磁石は、電気,電子機器に用
いられるモータの小型化,高性能化を支える永久磁石と
してその生産量も増大しているが、かかる希土類磁石の
構成成分である希土類元素は高価なものであり、そこで
近年希土類元素の量を減らすことが検討されている。
(Background of the Invention) Rare earth magnets such as Sm-Co-based magnets and Nd-Fe-B-based magnets are known as magnets having a specific coercive force of 5000 (Oe) or more and strong against reverse demagnetization. The production of this rare earth magnet is increasing as a permanent magnet that supports the miniaturization and high performance of motors used in electric and electronic equipment. However, the rare earth element that is a component of such a rare earth magnet is expensive. Therefore, reduction of the amount of rare earth elements has been studied in recent years.

(課題を解決するための手段) 本発明はこのような事情を背景としてなされたもので
あって、第一発明の要旨は、原子比率で、(イ)希土類
元素としてのY,La,Ce,Pr,Nd,Sm,Eu,Gd,Td,Dyの1種又は
2種以上の比率が3%以下(ロ)Fe,Co,Ni,Mnの1種又
は2種以上の比率が50〜90%、(ハ)Ti,Zr,Hf,V,Nb,T
a,Cr,Mo,W,Cu,Znの1種又は2種以上の比率が4〜30
%、(ニ)B,Al,Ga,In,Tl,C,Si,Ge,N,Pの1種又は2種
以上の比率が0.5〜5%から成る各成分を以て永久磁石
材料を組成したことにある。
(Means for Solving the Problems) The present invention has been made in view of such circumstances, and the gist of the first invention is as follows: (a) Y, La, Ce, as rare earth elements; The ratio of one or more of Pr, Nd, Sm, Eu, Gd, Td, and Dy is 3% or less (b) The ratio of one or more of Fe, Co, Ni, and Mn is 50 to 90%. , (C) Ti, Zr, Hf, V, Nb, T
The ratio of one or more of a, Cr, Mo, W, Cu, Zn is 4 to 30.
%, And (d) the composition of the permanent magnet material is such that one or more of B, Al, Ga, In, Tl, C, Si, Ge, N, P have a ratio of 0.5 to 5%. It is in.

また第二発明の要旨は、原子比率で、(イ)Fe,Co,N
i,Mnの1種又は2種以上の比率が50〜90%、(ロ)Ti,Z
r,Hf,V,Nb,Ta,Cr,Mo,W,Cu,Znの1種又は2種以上の比率
が4〜30%、(ハ)B,Al,Ga,In,Tl,C,Si,Ge,N,Pの1種
又は2種以上の比率が0.5〜5%から成る各成分を以て
永久磁石材料を組成したことにある。
The gist of the second invention is that (a) Fe, Co, N
The ratio of one or more of i, Mn is 50 to 90%, (b) Ti, Z
The ratio of one or more of r, Hf, V, Nb, Ta, Cr, Mo, W, Cu, Zn is 4 to 30%, and (C) B, Al, Ga, In, Tl, C, Si , Ge, N, and P are composed of a permanent magnet material with each component having a ratio of one or more of 0.5 to 5%.

上記のように第一の発明は、従来の希土類磁石におい
てY,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy等の希土類元素(以下
Rとする)の量を極端に少なくする一方、Ti,Zr,Hf,V,N
b,Ta,Cr,Mo,W,Cu,Zn(以下M2とする)を従来の希土類磁
石におけるそれより極端に多くしたものである。
As described above, in the first invention, the amount of rare earth elements (hereinafter referred to as R) such as Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, and Dy in the conventional rare earth magnet is extremely reduced. On the other hand, Ti, Zr, Hf, V, N
b, Ta, Cr, Mo, W, Cu, is obtained by extremely larger than that in the conventional rare earth magnet Zn (hereinafter referred to as M 2).

もともとRの一部をM2で一部置換し得ることは知られ
ている。しかしながら希土類磁石は、Sm−Co5,Sm2−Co
17,Nd2−Fe14−Bで代表されるように、(R)(M1
5,(R)(M117,(R)(M114(M3の如き
金属間化合物を形成して磁石としての特性を発現するも
のであり、Rを一定量以上、通常は10〜20%の量範囲で
磁石成分として含有させることは必須と考えられてい
た。
It is known that originally may replace some part of the R in the M 2. However rare earth magnet, Sm-Co 5, Sm 2 -Co
(R) 1 (M 1 ) as represented by 17 , Nd 2 -Fe 14 -B
5 , which forms an intermetallic compound such as (R) 2 (M 1 ) 17 , (R) 2 (M 1 ) 14 (M 3 ) 1 to exhibit properties as a magnet; As described above, it has been generally considered essential to include the magnet component in the amount range of 10 to 20%.

ところが本発明者がこうした常識に反してRに対する
M2の置換量を従来の枠を超えて極端に多くしたところ、
意外にも固有保磁力が5000(Oe)の優れた永久磁石が得
られることを知得した。そこで固有保持力5000(Oe)以
上の優れた磁石特性が得られるためのR,M1,M2,M3の所要
範囲を求めたところ、これら成分を上記範囲に抑えれば
良いことが判明した。本発明はこのような知見に基づい
て完成されたものである。
However, contrary to the common sense, the inventor
When the replacement amount of M 2 was extremely increased beyond the conventional frame,
Surprisingly, it has been found that an excellent permanent magnet having an intrinsic coercivity of 5000 (Oe) can be obtained. Then, when the required ranges of R, M 1 , M 2 , and M 3 were obtained to obtain excellent magnet properties with an intrinsic holding force of 5000 (Oe) or more, it was found that these components should be kept within the above range. did. The present invention has been completed based on such findings.

即ち本発明では、Rを原子比率で3%以下に抑える一
方、M2を4〜30%の範囲で多量に添加する。ここでM2
4〜30%と限定したのは、4%以下では望ましい特性が
得られず、またM2の添加効果は30%でほぼ飽和すること
による。
That is, in the present invention, while suppressing below 3% R in atomic ratio, addition of a large amount in the range of M 2 4 to 30%. Here The reason for limiting the M 2 and 4-30%, it not obtained desired properties is 4% or less, also the effect of adding M 2 is by nearly saturated at 30%.

本発明において、M3は減磁曲線の角形性,固有保磁力
改善のために添加されるもので、その量範囲は原子比率
で0.5〜5%の範囲である。0.5%未満では減磁曲線の望
ましい角形性が得られず、またその添加効果は5%で飽
和することによる。
In the present invention, M 3 is the loop squareness of the demagnetization curve, intended to be added to the intrinsic coercive force improvement, the amount range is from 0.5% to 5% by atomic ratio. If it is less than 0.5%, the desired squareness of the demagnetization curve cannot be obtained, and the effect of the addition is due to saturation at 5%.

このようにしてR,M2,M3を求めた後の残部の量がM1
量となり、その範囲は原子比率で50〜90%である。
The remaining amount after obtaining R, M 2 and M 3 in this manner is the amount of M 1 , and its range is 50 to 90% in atomic ratio.

本願の第二の発明は、従来の希土類磁石のRを全てM2
で置換した形、即ち希土類元素を全く含まない、言わば
全く新しい磁石材料というべきものであって、その成分
はM1,M2,M3から成り、その量範囲は第一発明におけるそ
れと同様である。
In the second invention of the present application, R of the conventional rare earth magnet is all M 2
In other words, it is a completely new magnet material which does not contain any rare earth element, that is, it is a completely new magnet material, and its components are composed of M 1 , M 2 , M 3 , and the amount range is the same as that in the first invention. is there.

かかる第二発明においても、固有保磁力5000(Oe)以
上の優れた特性を有する永久磁石材料が得られる。尚各
成分の限定理由は上記と同様である。
Also in the second invention, a permanent magnet material having excellent properties of an intrinsic coercive force of 5000 (Oe) or more can be obtained. The reasons for limiting each component are the same as described above.

(実施例) 次に本発明の特徴をより明確にすべく、以下にその実
施例を詳述する。
(Example) Next, in order to clarify the features of the present invention, examples thereof will be described in detail below.

[実施例1] (17−X)Sm,20Fe,62.5Co,XZr,0.5Si(各係数は原子
比率(%)を示す)なる組成の合金を誘導炉により製造
した。続いてその溶湯を周速20m/sで回転しているCuロ
ールに吹き付けて超急冷した。この超急冷試料の磁気特
性を振動試料型磁力計で調査した。結果を第1表に示
す。
Example 1 An alloy having a composition of (17-X) Sm, 20Fe, 62.5Co, XZr, 0.5Si (each coefficient indicates an atomic ratio (%)) was produced by an induction furnace. Subsequently, the molten metal was sprayed onto a Cu roll rotating at a peripheral speed of 20 m / s to perform ultra-quick cooling. The magnetic properties of this ultra-quenched sample were investigated with a vibrating sample magnetometer. The results are shown in Table 1.

[実施例2] 1Nd,68Fe,10Co,aCu,bZr,cGa,dB(各係数は原子比率
(%)を示し、このうちa,b,c,dは変数である)なる組
成の合金を実施例1と同様な方法で処理し、その超急冷
材の磁気特性を振動試料型磁力計で調査した。結果を第
2表に示す。また超急冷材に600℃×5時間の熱処理を
加えることにより得られた材料の磁気特性を第3表に示
す。
Example 2 An alloy having a composition of 1Nd, 68Fe, 10Co, aCu, bZr, cGa, dB (each coefficient indicates an atomic ratio (%), of which a, b, c, and d are variables) was implemented. The material was treated in the same manner as in Example 1, and the magnetic properties of the super-quenched material were investigated with a vibrating sample magnetometer. The results are shown in Table 2. Table 3 shows the magnetic properties of the material obtained by subjecting the ultra-quenched material to a heat treatment at 600 ° C. for 5 hours.

以上の結果から分かるように、M3元素は多過ぎても少
な過ぎてもBr,IHCが低下する。またM2元素の1つである
Cuの含有材は、熱処理によりBr,IHCともに大きく増加す
ることが分かった。
As it can be seen from the above results, even if too little even M 3 element too much Br, I H C decreases. It is also one of the M 2 elements
It was found that the content of Cu greatly increased both Br and I H C by the heat treatment.

尚本発明の磁石の製造方法としては焼結法,超急冷
法,メカニカルアローイング法,鋳造法等、従来磁石製
造方法として知られている何れの方法も適用可能であ
る。
As a method for manufacturing the magnet of the present invention, any method conventionally known as a method for manufacturing a magnet, such as a sintering method, a super-quenching method, a mechanical arranging method, and a casting method, can be applied.

(発明の効果) 以上のように、本発明によれば従来の希土類磁石にお
いて高価な希土類元素の添加量を著しく少なくし得、或
いは全く使用しなくても良くなる。
(Effects of the Invention) As described above, according to the present invention, it is possible to significantly reduce the amount of expensive rare earth elements added to conventional rare earth magnets, or not to use them at all.

しかも従来の高特性と言われるフェライト磁石でも得
られないような、固有保磁力5000(Oe)以上の優れた磁
石特性が得られる。
In addition, excellent magnet properties with a specific coercive force of 5000 (Oe) or more, which cannot be obtained with conventional ferrite magnets that are said to have high properties, can be obtained.

かかる本発明の磁石は、従来にない全く新しい磁石材
料ともいえるものであって、従来のフェライト磁石では
満足し得ない特性を要求さる部分,用途に好適に用い得
るものである。
Such a magnet of the present invention can be said to be a completely new magnet material that has never existed in the past, and can be suitably used for parts and applications that require characteristics that cannot be satisfied with conventional ferrite magnets.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 303 H01F 1/04──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) C22C 38/00 303 H01F 1/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原子比率で、 (イ)希土類元素としてのY,La,Ce,Pr,Nd,Sm,Eu,Gd,Td,
Dyの1種又は2種以上の比率が3%以下 (ロ)Fe,Co,Ni,Mnの1種又は2種以上の比率が50〜90
% (ハ)Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Cu,Znの1種又は2種
以上の比率が4〜30% (ニ)B,Al,Ga,In,Tl,C,Si,Ge,N,Pの1種又は2種以上
の比率が0.5〜5%から成ることを特徴とする永久磁石
材料。
(1) Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Td, as a rare earth element
The ratio of one or more of Dy is 3% or less. (B) The ratio of one or more of Fe, Co, Ni, and Mn is 50 to 90.
% (C) The ratio of one or more of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Cu, Zn is 4 to 30%. (D) B, Al, Ga, In, A permanent magnet material, wherein one or more of Tl, C, Si, Ge, N, and P comprises 0.5 to 5%.
【請求項2】原子比率で、 (イ)Fe,Co,Ni,Mnの1種又は2種以上の比率が50〜90
% (ロ)Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Cu,Znの1種又は2種
以上の比率が4〜30% (ハ)B,Al,Ga,In,Tl,C,Si,Ge,N,Pの1種又は2種以上
の比率が0.5〜5%から成ることを特徴とする永久磁石
材料。
(2) The atomic ratio of (a) one or more of Fe, Co, Ni, and Mn is 50 to 90.
% (B) The ratio of one or more of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Cu, Zn is 4 to 30%. (C) B, Al, Ga, In, A permanent magnet material, wherein one or more of Tl, C, Si, Ge, N, and P comprises 0.5 to 5%.
JP1173845A 1989-07-04 1989-07-04 Permanent magnet material Expired - Lifetime JP2861074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1173845A JP2861074B2 (en) 1989-07-04 1989-07-04 Permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1173845A JP2861074B2 (en) 1989-07-04 1989-07-04 Permanent magnet material

Publications (2)

Publication Number Publication Date
JPH0339451A JPH0339451A (en) 1991-02-20
JP2861074B2 true JP2861074B2 (en) 1999-02-24

Family

ID=15968227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1173845A Expired - Lifetime JP2861074B2 (en) 1989-07-04 1989-07-04 Permanent magnet material

Country Status (1)

Country Link
JP (1) JP2861074B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100993A (en) * 1992-09-21 1994-04-12 Fuji Elelctrochem Co Ltd Permanent magnet material
JPH06104105A (en) * 1992-09-21 1994-04-15 Fuji Elelctrochem Co Ltd Permanent magnet
JPH06100994A (en) * 1992-09-21 1994-04-12 Fuji Elelctrochem Co Ltd Permanent magnet material
JP2000003808A (en) 1997-12-02 2000-01-07 Alps Electric Co Ltd Hard magnetic material
KR20040022099A (en) * 2002-09-06 2004-03-11 기아자동차주식회사 Improved seat
JP4635216B2 (en) * 2003-12-17 2011-02-23 学校法人千葉工業大学 Permanent magnet material
JP4987514B2 (en) * 2007-03-08 2012-07-25 株式会社東芝 Magnetic refrigeration material and magnetic refrigeration apparatus
CN103280288B (en) * 2013-06-25 2016-03-02 新昌县辰逸服饰有限公司 A kind of preparation method of high-coercive force SmCo based permanent magnetic material
DE102014215399A1 (en) * 2014-08-05 2016-02-11 Hochschule Aalen Magnetic materials, their use, processes for their manufacture and electrical machine containing a magnetic material
CN105161282B (en) * 2015-10-08 2017-12-05 北京华太鑫鼎金属材料有限公司 The sintering method of neodymium iron boron magnetic body

Also Published As

Publication number Publication date
JPH0339451A (en) 1991-02-20

Similar Documents

Publication Publication Date Title
EP0242187B1 (en) Permanent magnet and method of producing same
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
JPH0510806B2 (en)
JP2861074B2 (en) Permanent magnet material
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
JP2774372B2 (en) Permanent magnet powder
JPH01219143A (en) Sintered permanent magnet material and its production
JP3118740B2 (en) Rare earth magnet materials and rare earth bonded magnets
US4382061A (en) Alloy preparation for permanent magnets
JPH04133406A (en) Rare earth-fe-b permanent magnet powder and bonded magnet having excellent magnetic anisotropy and corrosion-resisting property
JPH11329810A (en) Magnetic alloy and anisotropic magnet using alloy thereof
JPH0536495B2 (en)
JP2002124407A (en) Anisotropic sintered rare-earth manget and its manufacturing method
JP3072742B2 (en) permanent magnet
JPH05171323A (en) Permanent magnet material
JPH01274401A (en) Permanent magnet
JP2951006B2 (en) Permanent magnet material, manufacturing method thereof, and bonded magnet
JPH0536494B2 (en)
JPH08181010A (en) Rare earth sintered magnet
JPH04107243A (en) Permanent magnet alloy and its manufacture
JPH089752B2 (en) Method for manufacturing R1R2FeCoB-based permanent magnet
JP3300555B2 (en) Rare earth magnet manufacturing method
JPH06333715A (en) Rare earth magnet material and rare earth bonded magnet
JPH1022110A (en) Rare-earth permanent magnet and method for manufacturing the same, and rare-earth permanent bond magnet
JPH06322465A (en) Permanent magnet material