JPH06100993A - Permanent magnet material - Google Patents

Permanent magnet material

Info

Publication number
JPH06100993A
JPH06100993A JP4251689A JP25168992A JPH06100993A JP H06100993 A JPH06100993 A JP H06100993A JP 4251689 A JP4251689 A JP 4251689A JP 25168992 A JP25168992 A JP 25168992A JP H06100993 A JPH06100993 A JP H06100993A
Authority
JP
Japan
Prior art keywords
permanent magnet
elements
present
rare earth
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4251689A
Other languages
Japanese (ja)
Inventor
Yoshiteru Nakagawa
川 吉 輝 中
Yasutoshi Suzuki
木 保 敏 鈴
Kazuo Matsui
井 一 雄 松
Teruo Kiyomiya
宮 照 夫 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP4251689A priority Critical patent/JPH06100993A/en
Publication of JPH06100993A publication Critical patent/JPH06100993A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To stably provide an inexpensive permanent magnet material by constituting the composition of the permanent magnet material of one more kinds among specific atomic percentages of rare earth elements, Zr, Hf, Nb, Ta, Mo, and W, C, and the balance Fe. CONSTITUTION:This permanent magnet material has a composition consisting of, by atom, 1-8% R (where R means one or >=2 kinds among the rate earth elements including Y), 19-33% M(where M means one or >=2 elements among Zr, Hf, Nb, Ta, Mo, and W), 9-27% C, and the balance Fe. As the rate earth elements, arbitrary elements, such as Nd, Sm, Pr, and Ce, are used. By this method, high magnetic properties can obtained while minimizing the use of expensive rare earth elements and obviating the necessity of the use of Co unstable in supply.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は新規な永久磁石、特に希
土類−鉄−M−炭素系(以下「R−Fe−M−C系」と
いう)永久磁石材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel permanent magnet, and more particularly to a rare earth-iron-M-carbon (hereinafter referred to as "R-Fe-MC") permanent magnet material.

【0002】[0002]

【従来の技術】永久磁石としては従来Fe−Cr−Co
磁石、Al、Ni、Co、Cu、Feを主成分とするア
ルニコ磁石、Feの酸化物を主成分とするハードフェラ
イト磁石、Smを含む希土類コバルト磁石、Ndを含む
Nd−Fe−B磁石が代表的なものとして知られてい
る。
2. Description of the Related Art Conventional permanent magnets are Fe--Cr--Co.
A magnet, an Alnico magnet containing Al, Ni, Co, Cu, and Fe as a main component, a hard ferrite magnet containing an oxide of Fe as a main component, a rare earth cobalt magnet containing Sm, and an Nd-Fe-B magnet containing Nd are typical. It is known as

【0003】但し、Fe−Cr−Co磁石やアルニコ磁
石や希土類コバルト磁石に使用されるCoの原料事情が
不安定化し、また希土類磁石に使用される希土類元素の
埋蔵量は少なく極めて高価である等の理由によりハード
フェライト磁石が永久磁石の主流を占めている。
However, the situation of the raw material of Co used in Fe—Cr—Co magnets, alnico magnets and rare earth cobalt magnets becomes unstable, and the reserve amount of rare earth elements used in rare earth magnets is small and extremely expensive. For this reason, hard ferrite magnets occupy the mainstream of permanent magnets.

【0004】フェライト磁石は最も一般的に使用されて
いる磁石である。残留磁束密度(Br)が最大4KG、
保磁力(iHc)が最大4KOeである(特公昭58−
41645)。
Ferrite magnets are the most commonly used magnets. Maximum residual magnetic flux density (Br) is 4KG,
The maximum coercive force (iHc) is 4 KOe (Japanese Patent Publication 58-
41645).

【0005】高価なCoを15〜35重量%含むFe−
Cr−Co磁石、アルニコ磁石のBrは10KG以上、
iHcは1KOe程度である(特公昭57−2374
7、特公昭54−43450)。
Fe-containing 15 to 35% by weight of expensive Co
The Br of the Cr-Co magnet and the alnico magnet is 10 KG or more,
iHc is about 1 KOe (Japanese Patent Publication No. 57-2374).
7, Japanese Patent Publication No. 54-43450).

【0006】[0006]

【発明が解決しようとする課題】上述したフェライト磁
石はiHcは大きいがBrが4KGと小さい。Fe−C
r−Co磁石、アルニコ磁石は高価なCoを15〜35
重量%も含み、Brは10KG以上と大きいがiHcが
1KOe程度と小さい。iHcの小さい磁石は減磁しや
すく、しかもいわゆる軽薄短小、例えばFM型ステッピ
ングモーター等には向かず汎用性に乏しい。
The above ferrite magnet has a large iHc but a small Br of 4 KG. Fe-C
The r-Co magnet and the alnico magnet contain expensive Co of 15 to 35
Including weight%, Br is as large as 10 KG or more, but iHc is small as about 1 KOe. A magnet having a small iHc is easily demagnetized, and is not suitable for a so-called light, thin, short and small type, for example, an FM type stepping motor or the like, and is not versatile.

【0007】かくて、本発明の目的は安定供給の面から
難点のあるコバルトを含まず、フェライト磁石のBr以
上つまり4KG以上、アルニコ、Fe−Cr−Co磁石
のiHc以上、つまり1KOe以上、好ましくは4KO
e以上の磁気特性を有する、実用的で汎用性に富む永久
磁石材料を提供することにある。
Thus, the object of the present invention does not include cobalt, which is difficult in terms of stable supply, and is Br or more, that is, 4 KG or more of ferrite magnets, iHc or more, that is, 1 KOe or more, of alnico and Fe-Cr-Co magnets, preferably. Is 4KO
The object of the present invention is to provide a practical and versatile permanent magnet material having magnetic characteristics of e or higher.

【0008】[0008]

【課題を解決するための手段】近年Fe系化合物にC、
N、Bのような侵入型元素が入ると磁気特性が変化する
ことがわかってきた。そこで本発明者は多くのFe系化
合物に侵入型元素を入れた結果、鉄にラーベス相を形成
する特定の元素M(MはZr、Hf、Nb、Ta、M
o、Wの1種または2種以上)にCを加えるとともに希
土類元素R(RはYを含む希土類元素の1種または2種
以上)を少量添加することにより特に保磁力が改善され
た永久磁石材料を提供しうることを見出し、本発明に至
ったものである。
[Means for Solving the Problems] In recent years, C has been added to Fe compounds.
It has been found that the magnetic characteristics change when an interstitial element such as N or B enters. Therefore, as a result of adding an interstitial element to many Fe-based compounds, the present inventors have found that a specific element M (M is Zr, Hf, Nb, Ta, M) that forms a Laves phase in iron.
Permanent magnet whose coercive force is particularly improved by adding C to 1 or 2 or more of o and W) and a small amount of rare earth element R (R is 1 or 2 or more of rare earth elements including Y). The inventors of the present invention have found that they can provide materials and have reached the present invention.

【0009】よって、本発明は、R(但し、RはYを含
む希土類元素のうちの少なくとも1種または2種以
上):1〜8at%、M(但し、MはZr、Hf、N
b、Ta、Mo、Wのうち少なくとも1種または2種以
上):19〜33at%、C:9〜27at%、Fe:
残部からなることを特徴とする永久磁石材料を提供する
ものである。
Therefore, in the present invention, R (where R is at least one or two or more of rare earth elements including Y): 1 to 8 at%, M (where M is Zr, Hf, N)
b, Ta, Mo, W, at least one kind or two or more kinds): 19 to 33 at%, C: 9 to 27 at%, Fe:
The present invention provides a permanent magnet material characterized by comprising the balance.

【0010】以下、本発明について詳しく説明する。The present invention will be described in detail below.

【0011】本発明の永久磁石材料ではイットリウムY
を含む希土類元素Rを用いるがその量は極力少量とし1
〜8at%の範囲の量用いる。希土類元素としてはN
d、Sm、Pr、Ce等任意の元素が用いられる。これ
らは1種単独で用いてもよく、また2種以上適宜組合わ
せて用いることもできる。
In the permanent magnet material of the present invention, yttrium Y is used.
The rare earth element R containing is used, but the amount is as small as possible 1
An amount in the range of ~ 8 at% is used. N as a rare earth element
Arbitrary elements such as d, Sm, Pr and Ce are used. These may be used alone or in an appropriate combination of two or more.

【0012】希土類元素Rの量を1〜8at%としたの
は、Rが1at%以上となると磁気特性(特に保磁力:
iHc)がiHc≧1.0KOeとなるためである。ま
た、Rが8at%を超えると磁気特性のうち、残留磁束
密度:Br、最大エネルギー積:(BH)max が低下し
てしまい、高磁気特性が得られなくなる。よって、Rは
1〜8at%の組成とする。好ましくは、3〜6at%
とする。
The amount of the rare earth element R is set to 1 to 8 at% because the magnetic characteristics (especially coercive force: R) when R is 1 at% or more.
This is because iHc) is iHc ≧ 1.0 KOe. When R exceeds 8 at%, the residual magnetic flux density: Br and the maximum energy product: (BH) max of the magnetic properties are reduced, and high magnetic properties cannot be obtained. Therefore, R has a composition of 1 to 8 at%. Preferably 3 to 6 at%
And

【0013】次にラーベス相を形成する元素Mを19〜
33at%の量用いる。この元素MとしてはZr、H
f、Nb、Ta、Mo、Wが挙げられるが、その中1種
単独で用いてもよく2種以上適宜組合わせて用いること
もできる。これらの元素は安定的に入手することができ
る。
Next, the element M for forming the Laves phase is added to 19-
Amount of 33 at% is used. The element M is Zr, H
Examples thereof include f, Nb, Ta, Mo and W. Among them, one kind may be used alone, or two or more kinds may be used in an appropriate combination. These elements can be stably obtained.

【0014】Mを19〜33at%としたのは、19a
t%未満となると磁気特性のうちiHc、(BH)max
が低下してしまう。また、Mが33at%を超えると磁
気特性のうちBr、(BH)max が低下してしまう。よ
って、Mは19〜33at%の組成とする。好ましく
は、22〜30at%とする。
The reason for M being 19 to 33 at% is 19a.
Below t%, iHc, (BH) max of magnetic characteristics
Will decrease. Further, when M exceeds 33 at%, Br and (BH) max of the magnetic characteristics are deteriorated. Therefore, M has a composition of 19 to 33 at%. Preferably, it is 22 to 30 at%.

【0015】炭素Cは9〜27at%用いる。Cを9〜
27at%としたのは、9at%以上のC添加がBr≧
4.0KGに寄与しているためである。また、Cが27
at%を超えると逆にBr<4.0KGとなってしま
う。よって、Cは9〜27at%の組成とする。好まし
くは12〜21at%である。
Carbon C is used in an amount of 9 to 27 at%. 9 to 9
The amount of 27 at% is set so that when 9 at% or more of C is added, Br ≧.
This is because it contributes to 4.0 KG. Also, C is 27
On the other hand, when it exceeds at%, Br <4.0 KG. Therefore, C has a composition of 9 to 27 at%. It is preferably 12 to 21 at%.

【0016】Feは、磁気特性のうちBr、(BH)ma
x を得るうえで必須な元素であるが、保磁力を得るため
に必要な他の3元素(R、M、C)との量的関係上、残
部組成となる。
Fe is a magnetic characteristic of Br and (BH) ma.
Although it is an essential element for obtaining x, it has a balance composition due to the quantitative relationship with other three elements (R, M, C) necessary for obtaining coercive force.

【0017】以上の理由によって、R、Fe、M、Cの
組成を限定した。
For the above reasons, the composition of R, Fe, M and C is limited.

【0018】このような本発明にかかるR−Fe−M−
C永久磁石は、通常の磁石の製造法に従って製造され
る。即ち、まず第一工程では必要とする合金元素(R、
Fe、Ti、C)材料を溶解炉で溶解して所定の組成の
合金を作製し、これを粉砕機で平均粒径約3ミクロンの
大きさに粉砕する。得られた微粉体を磁場中で加圧成形
する。ついで第二工程ではその成型体をアルゴンガス等
の不活性雰囲気中でまず1250〜1320℃の温度で
数時間加熱して焼結し、さらに同じ不活性雰囲気中で約
700℃で数時間熱処理して製品とする。焼結条件は含
有する元素の種類や含有量によって上記範囲内で変動す
る。希土類元素Rの含有量の増加によって温度はやや低
めとなる。しかし後段の熱処理条件はそれらの種類、含
有量に事実上関係なくほぼ一定である。
The R-Fe-M- according to the present invention as described above
The C permanent magnet is manufactured according to a normal magnet manufacturing method. That is, first, in the first step, the necessary alloy elements (R,
Fe, Ti, C) materials are melted in a melting furnace to prepare an alloy having a predetermined composition, and the alloy is crushed by a crusher to an average particle size of about 3 microns. The obtained fine powder is pressure-molded in a magnetic field. Then, in the second step, the molded body is first heated in an inert atmosphere such as argon gas at a temperature of 1250 to 1320 ° C. for several hours to be sintered, and further heat-treated in the same inert atmosphere at about 700 ° C. for several hours. Product. The sintering conditions vary within the above range depending on the type and content of the elements contained. The temperature becomes slightly lower due to the increase in the content of the rare earth element R. However, the heat treatment conditions in the latter stage are virtually constant regardless of their types and contents.

【0019】かくて、本発明によれば、安定供給の面か
ら難点のあるコバルトを含有せず、高い保磁力、残留磁
束密度等良好な磁気特性を有し、例えばPM型ステッピ
ングモーター等に広く用いることができる実用的、汎用
性の永久磁石材料を安定的に入手し得る材料から容易に
得ることができるのである。
Thus, according to the present invention, it does not contain cobalt, which is difficult in terms of stable supply, has good magnetic properties such as high coercive force and residual magnetic flux density, and is widely used in, for example, PM type stepping motors. Practical and versatile permanent magnet materials that can be used can be easily obtained from materials that can be stably obtained.

【0020】[0020]

【実施例】本発明の実施例をあげる。ただし、本発明は
この実施例によって限定されるものではない。 「実施例1」この実施例では希土類元素Rとしてネオジ
ムNd、特定元素MとしてニオブNbを用い、Ndの量
を変化させ、その他(M、C)の量は一定とし残部Fe
の磁石を作った。即ち、下記の第1工程(前工程)、第
2工程(熱処理工程)を経て、Nd:0〜9at%の範
囲内で第1表に示すように種々変化させ、Nb:22a
t%、C:15at%、Fe:残部の組成を有する本発
明に係るR−Fe−M−C系永久磁石を調製した。 第1工程(前工程) 必要とする合金元素(Nd、Fe、Nb、C)をアーク
溶解炉で溶解し、その後、粉砕機で平均粒径約3μmに
粉砕した。次にその粉体を15KOeの磁場中で3ton
/cm2 圧力のもと成形した。 第2工程(熱処理工程) 第1工程で得た成形体をNd含有量に応じてArガス中
1250〜1300℃で4時間焼結した。その後、Ar
ガス中のもと700℃で2時間熱処理を行った。
EXAMPLES Examples of the present invention will be given. However, the present invention is not limited to this embodiment. Example 1 In this example, neodymium Nd is used as the rare earth element R, niobium Nb is used as the specific element M, the amount of Nd is changed, and the amount of other (M, C) is constant, and the balance Fe
Made a magnet. That is, through the following first step (previous step) and second step (heat treatment step), various changes were made as shown in Table 1 within the range of Nd: 0-9 at%, and Nb: 22a
An R-Fe-MC permanent magnet according to the present invention having a composition of t%, C: 15 at% and Fe: balance was prepared. First step (previous step) Necessary alloying elements (Nd, Fe, Nb, C) were melted in an arc melting furnace, and then pulverized by a pulverizer to an average particle size of about 3 μm. Next, the powder is heated to 3 tons in a magnetic field of 15 KOe.
Molded under a pressure of / cm 2 . Second step (heat treatment step) The compact obtained in the first step was sintered in Ar gas at 1250 to 1300 ° C for 4 hours depending on the Nd content. Then Ar
Heat treatment was carried out in gas at 700 ° C. for 2 hours.

【0021】以上のようにして得られた本発明に係るR
−Fe−M−C系永久磁石のBr、iHc、(BH)ma
x を測定し、その結果をNd含有量との対比で第1表に
示す。
R according to the present invention obtained as described above
Br, iHc, (BH) ma of -Fe-MC system permanent magnet
x was measured and the results are shown in Table 1 in comparison with the Nd content.

【0022】[0022]

【表1】 第1表よりNd=1at%未満では、iHc、(BH)
max が小さくNd=8at%を超えると磁気特性のうち
Br、(BH)max が得られなくなる。Nd1〜8at
%のときは各種磁気特性はともに高く良好である。 「実施例2」この例では、RとしてサマリウムSm、M
としてニオブNbを用いRの量を変化させ、その他
(M、C)の量は一定とし残部Feの磁石を作った。即
ち、下記の第1工程(前工程)、第2工程(熱処理工
程)を経て、Sm:0〜9at%の範囲内で第2表に示
すように種々変化させ、Nb:22at%、C:15a
t%、Fe:残部の組成を有する本発明に係るR−Fe
−M−C系永久磁石を調製した。 第1工程(前工程) 必要とする合金元素(Sm、Fe、Nb、C)をアーク
溶解炉で溶解し、その後、粉砕機で平均粒径約3μmに
粉砕した。次にその粉体を15KOeの磁場中で3ton
/cm2 圧力のもと成形した。 第2工程(熱処理工程) 第1工程で得た成形体をSm含有量に応じてArガス中
1250〜1300℃で4時間焼結した。その後、Ar
ガス中のもと700℃で2時間熱処理を行った。
[Table 1] From Table 1, iHc, (BH) is obtained when Nd is less than 1 at%.
When max is small and exceeds Nd = 8 at%, Br and (BH) max cannot be obtained among the magnetic characteristics. Nd1-8at
When it is%, various magnetic properties are high and good. "Example 2" In this example, R is samarium Sm, M
The amount of R was changed by using niobium Nb as the above, and the amount of the other (M, C) was made constant, and a magnet with the balance Fe was made. That is, through the following first step (previous step) and second step (heat treatment step), various changes were made as shown in Table 2 within the range of Sm: 0 to 9 at%, Nb: 22 at%, C: 15a
t%, Fe: R-Fe according to the present invention having the composition of the balance
A -MC permanent magnet was prepared. First step (previous step) Necessary alloying elements (Sm, Fe, Nb, C) were melted in an arc melting furnace, and then pulverized by a pulverizer to an average particle size of about 3 μm. Next, the powder is heated to 3 tons in a magnetic field of 15 KOe.
Molded under a pressure of / cm 2 . Second Step (Heat Treatment Step) The compact obtained in the first step was sintered in Ar gas at 1250 to 1300 ° C. for 4 hours depending on the Sm content. Then Ar
Heat treatment was carried out in gas at 700 ° C. for 2 hours.

【0023】以上のようにして得られた本発明に係るR
−Fe−M−C系永久磁石のBr、iHc、(BH)ma
x を測定し、その結果をSm含有量との対比で第2表に
示す。
The R according to the present invention obtained as described above
Br, iHc, (BH) ma of -Fe-MC system permanent magnet
x was measured and the results are shown in Table 2 in comparison with the Sm content.

【0024】[0024]

【表2】 第2表よりSm=1at%未満では、iHc、(BH)
max が小さくSm=8at%を超えるとBr、(BH)
max が得られなくなる。R(Sm)の量を1〜8at%
の範囲内とすると磁気特性はともに高く良好である。 「実施例3」この実施例では、希土類元素Rとしてプラ
セオジムPrとセリウムCeの2種を種々の量組合わせ
て用い、またMとしてニオブNbを用い、M、Cの量は
一定とし残部Feとした磁石を作った。即ち、下記の第
1工程(前工程)、第2工程(熱処理工程)を経て、R
=Pr、R=Ceとして、R+R=5at%で
第3表に示すように種々変化させ、Nb:26at%、
C:15at%、Fe:残部の組成を有する本発明に係
るR−Fe−M−C系永久磁石を調製した。 第1工程(前工程) 必要とする合金元素(Pr、Ce、Fe、Nb、C)を
アーク溶解炉で溶解し、その後、粉砕機で平均粒径約3
μmに粉砕した。次にその粉体を15KOeの磁場中で
3ton /cm2 圧力のもと成形した。 第2工程(熱処理工程) 第1工程で得た成形体をNb含有量に応じてArガス中
1250〜1300℃で4時間焼結した。その後、Ar
ガス中のもと700℃で2時間熱処理を行った。
[Table 2] From Table 2, iHc, (BH) is obtained when Sm is less than 1 at%.
Br, (BH) when max is small and exceeds Sm = 8 at%.
max cannot be obtained. The amount of R (Sm) is 1 to 8 at%
Within the range, the magnetic properties are both high and good. [Example 3] In this example, two kinds of praseodymium Pr and cerium Ce were used in combination in various amounts as the rare earth element R, niobium Nb was used as M, the amounts of M and C were made constant, and the balance Fe and Made a magnet that did. That is, after the following first step (previous step) and second step (heat treatment step), R
1 = Pr, R 2 = Ce, various changes were made as shown in Table 3 at R 1 + R 2 = 5 at%, Nb: 26 at%,
An R-Fe-MC permanent magnet according to the present invention having a composition of C: 15 at% and Fe: balance was prepared. First step (previous step) Necessary alloying elements (Pr, Ce, Fe, Nb, C) are melted in an arc melting furnace and then an average particle size of about 3 is obtained by a pulverizer.
It was pulverized to μm. Next, the powder was molded in a magnetic field of 15 KOe under a pressure of 3 ton / cm 2 . Second step (heat treatment step) The compact obtained in the first step was sintered in Ar gas at 1250 to 1300 ° C for 4 hours depending on the Nb content. Then Ar
Heat treatment was carried out in gas at 700 ° C. for 2 hours.

【0025】以上のようにして得られた本発明に係るR
−Fe−M−C系永久磁石のBr、iHc、(BH)ma
x を測定し、その結果をPr、Ce含有量との対比で第
1表に示す。
The R according to the present invention obtained as described above
Br, iHc, (BH) ma of -Fe-MC system permanent magnet
x was measured and the results are shown in Table 1 in comparison with the Pr and Ce contents.

【0026】[0026]

【表3】 第3表よりR元素を2種類添加した場合でも高磁気特性
が得られる。このことは、R元素を2種類以上添加して
も高磁気特性が得られることを示唆している。
[Table 3] From Table 3, high magnetic characteristics can be obtained even when two kinds of R elements are added. This suggests that high magnetic characteristics can be obtained even if two or more R elements are added.

【0027】実施例1、2及び3よりR(希土類)元素
全般において、高磁気特性が得られることが明示され
る。 「実施例4」この例ではMとしてニオブNb、Rとして
ネオジムNdを用い、Mの量を変化させ、一方その他
(M、C)の量は一定にFeを残部とした永久磁石を作
った。即ち、下記の第1工程(前工程)、第2工程(熱
処理工程)を経て、Nb=18〜34at%の範囲内で
第4表に示すように種々変化させ、Nd:5at%、
C:15at%、Fe:残部の組成を有する本発明に係
るR−Fe−M−C系永久磁石を調製した。 第1工程(前工程) 必要とする合金元素(Nd、Fe、Nb、C)をアーク
溶解炉で溶解し、その後、粉砕機で平均粒径約3μmに
粉砕した。次にその粉体を15KOeの磁場中で3ton
/cm2 圧力のもと成形した。 第2工程(熱処理工程) 第1工程で得た成形体をNb含有量に応じてArガス中
1270〜1320℃で4時間焼結した。その後、Ar
ガス中のもと700℃で2時間熱処理を行った。
From Examples 1, 2 and 3, it is clarified that high magnetic properties can be obtained in all R (rare earth) elements. [Example 4] In this example, niobium Nb was used as M, neodymium Nd was used as R, the amount of M was changed, while the amount of other (M, C) was constant, and a permanent magnet was made with the balance being Fe. That is, through the following first step (previous step) and second step (heat treatment step), various changes were made as shown in Table 4 within the range of Nb = 18 to 34 at%, Nd: 5 at%,
An R-Fe-MC permanent magnet according to the present invention having a composition of C: 15 at% and Fe: balance was prepared. First step (previous step) Necessary alloying elements (Nd, Fe, Nb, C) were melted in an arc melting furnace, and then pulverized by a pulverizer to an average particle size of about 3 μm. Next, the powder is heated to 3 tons in a magnetic field of 15 KOe.
Molded under a pressure of / cm 2 . Second step (heat treatment step) The compact obtained in the first step was sintered in Ar gas at 1270 to 1320 ° C for 4 hours depending on the Nb content. Then Ar
Heat treatment was carried out in gas at 700 ° C. for 2 hours.

【0028】以上のようにして得られた本発明に係るR
−Fe−M−C系永久磁石のBr、iHc、(BH)ma
x を測定し、その結果をNb含有量との対比で第4表に
示す。
The R according to the present invention obtained as described above
Br, iHc, (BH) ma of -Fe-MC system permanent magnet
x was measured and the results are shown in Table 4 in comparison with the Nb content.

【0029】[0029]

【表4】 第4表より、Nb=19at%未満では、iHc、(B
H)max の低下が生じ、また、Nb=33at%を超え
るとBr、(BH)max に低下が生ずる、しかし、Nb
=19〜33at%の範囲では夫々の磁気特性は良好で
ある。 「実施例5」この例では、Mとして規定された6つの元
素、Nb、Zr、Hf、Ta、Mo、Wの中の一つを、
RとしてNdを用い、Fe、R、M、C夫々の含有量が
一定である磁石を作った。即ち、下記の第1工程(前工
程)、第2工程(熱処理工程)を経て、M=26at
%、Nd=5at%、C=15at%、Fe=残部の組
成を有する本発明に係るR−Fe−M−C系永久磁石を
調製した。 第1工程(前工程) 必要とする合金元素(Nd、Fe、M、C)をアーク溶
解炉で溶解し、その後、粉砕機で平均粒径約3μmに粉
砕した。次にその粉体を15KOeの磁場中で3ton /
cm2 圧力のもと成形した。 第2工程(熱処理工程) 第1工程で得た成形体をMに応じてArガス中1270
〜1320℃で4時間焼結した。その後、Arガス中の
もと700℃で2時間熱処理を行った。
[Table 4] From Table 4, iHc, (B
H) max decreases, and when Nb = 33at% is exceeded, Br and (BH) max decrease, but Nb
In the range of 19 to 33 at%, the respective magnetic properties are good. Example 5 In this example, one of the six elements defined as M, Nb, Zr, Hf, Ta, Mo and W,
Using Nd as R, a magnet having a constant content of each of Fe, R, M and C was made. That is, after the following first step (previous step) and second step (heat treatment step), M = 26 at
%, Nd = 5 at%, C = 15 at%, Fe = remainder composition, and an R-Fe-MC permanent magnet according to the present invention was prepared. First Step (Previous Step) Necessary alloying elements (Nd, Fe, M, C) were melted in an arc melting furnace, and then pulverized by a pulverizer to an average particle size of about 3 μm. Next, the powder is 3 ton / in a magnetic field of 15 KOe.
Molded under cm 2 pressure. Second step (heat treatment step) The molded body obtained in the first step is 1270 in Ar gas depending on M.
Sintered at ~ 1320 ° C for 4 hours. Then, heat treatment was performed at 700 ° C. for 2 hours in Ar gas.

【0030】以上のようにして得られた本発明に係るR
−Fe−M−C系永久磁石のBr、iHc、(BH)ma
x を測定し、その結果をMとの対比で第5表に示す。
R according to the present invention obtained as described above
Br, iHc, (BH) ma of -Fe-MC system permanent magnet
x was measured and the result is shown in Table 5 in comparison with M.

【0031】[0031]

【表5】 MとしてNbを用いた磁石の磁気特性は実施例4のとお
りいずれも良好であったが、第5表よりNb以外のM元
素においても、高磁気特性が得られることが示される。 「実施例6」この例ではMとして規定された元素Zr、
Hf、Ta、Mo、W、Nb、の中の夫々2種、一定量
ずつ組合わせて用い、またRとしてNdを用い、Fe、
R、M、Cを一定量含有する磁石を作った。即ち、下記
の第1工程(前工程)、第2工程(熱処理工程)を経
て、M=Zr、Hf、Ta、Mo、W、Nbのうち2種
類を第6表に示すような配合を行い、Nd:5at%、
C:15at%、Fe:残部の組成を有する本発明に係
るR−Fe−M−C系永久磁石を調製した。 第1工程(前工程) 必要とする合金元素(Nd、Fe、M、C)をアーク溶
解炉で溶解し、その後、粉砕機で平均粒径約3μmに粉
砕した。次にその粉体を15KOeの磁場中で3ton /
cm2 圧力のもと成形した。 第2工程(熱処理工程) 第1工程で得た成形体をNd含有量に応じてArガス中
1250〜1300℃で4時間焼結した。その後、Ar
ガス中のもと700℃で2時間熱処理を行った。
[Table 5] The magnetic properties of the magnet using Nb as M were all good as in Example 4, but Table 5 shows that high magnetic properties can be obtained also with M elements other than Nb. Example 6 In this example, the element Zr defined as M,
Two kinds each of Hf, Ta, Mo, W, and Nb are used in combination at a fixed amount, Nd is used as R, Fe,
A magnet containing a certain amount of R, M and C was made. That is, through the following first step (previous step) and second step (heat treatment step), two kinds of M = Zr, Hf, Ta, Mo, W, and Nb are mixed as shown in Table 6. , Nd: 5 at%,
An R-Fe-MC permanent magnet according to the present invention having a composition of C: 15 at% and Fe: balance was prepared. First Step (Previous Step) Necessary alloying elements (Nd, Fe, M, C) were melted in an arc melting furnace, and then pulverized by a pulverizer to an average particle size of about 3 μm. Next, the powder is 3 ton / in a magnetic field of 15 KOe.
Molded under cm 2 pressure. Second step (heat treatment step) The compact obtained in the first step was sintered in Ar gas at 1250 to 1300 ° C for 4 hours depending on the Nd content. Then Ar
Heat treatment was carried out in gas at 700 ° C. for 2 hours.

【0032】以上のようにして得られた本発明に係るR
−Fe−M−C系永久磁石のBr、iHc、(BH)ma
x を測定し、その結果を第6表に示す。
The R according to the present invention obtained as described above
Br, iHc, (BH) ma of -Fe-MC system permanent magnet
x was measured and the results are shown in Table 6.

【0033】[0033]

【表6】 第6表よりMのうち2種類以上の元素を添加しても、高
磁気特性が得られることが示唆される。 「実施例7」この例ではRとしてNd、MとしてNbを
用い、R、Mの量を夫々一定量とし、Feを残量として
Cの量を変化させた磁石を作った。即ち、下記の第1工
程(前工程)、第2工程(熱処理工程)を経て、C=6
〜30at%の範囲内で第7表に示すように種々変化さ
せ、Nd=5at%、Nb=26at%、Fe=残部の
組成を有する本発明に係るR−Fe−M−C系永久磁石
を調製した。 第1工程(前工程) 必要とする合金元素(Nd、Fe、Nb、C)をアーク
溶解炉で溶解し、その後、粉砕機で平均粒径約3μmに
粉砕した。次にその粉体を15KOeの磁場中で3ton
/cm2 圧力のもと成形した。 第2工程(熱処理工程) 第1工程で得た成形体をC含有量に応じてArガス中1
270〜1320℃で4時間焼結した。その後、Arガ
ス中のもと700℃で2時間熱処理を行った。
[Table 6] Table 6 suggests that even if two or more elements of M are added, high magnetic properties can be obtained. [Example 7] In this example, Nd was used as R and Nb was used as M, the amounts of R and M were made constant, respectively, and the amount of C was changed with Fe as the remaining amount. That is, after the following first step (previous step) and second step (heat treatment step), C = 6
The R-Fe-MC permanent magnet according to the present invention having a composition of Nd = 5 at%, Nb = 26 at% and Fe = balance is variously changed within the range of ˜30 at% as shown in Table 7. Prepared. First step (previous step) Necessary alloying elements (Nd, Fe, Nb, C) were melted in an arc melting furnace, and then pulverized by a pulverizer to an average particle size of about 3 μm. Next, the powder is heated to 3 tons in a magnetic field of 15 KOe.
Molded under a pressure of / cm 2 . Second step (heat treatment step) The molded body obtained in the first step is added in Ar gas according to the C content to 1
Sintered at 270 to 1320 ° C. for 4 hours. Then, heat treatment was performed at 700 ° C. for 2 hours in Ar gas.

【0034】以上のようにして得られた本発明に係るR
−Fe−M−C系永久磁石のBr、iHc、(BH)ma
x を測定し、その結果をC含有量との対比で第7表に示
す。
R according to the present invention obtained as described above
Br, iHc, (BH) ma of -Fe-MC system permanent magnet
x was measured and the results are shown in Table 7 in comparison with the C content.

【0035】[0035]

【表7】 表7よりC添加がBr向上に寄与している。C含有量が
9at%未満ではBrが小さく、C含有量が27at%
を超えるとBr、(BH)max が小さくなってしまう。
従ってCが9〜27at%の範囲内では良好な磁気特性
を有していることが第7表から明らかである。
[Table 7] From Table 7, addition of C contributes to the improvement of Br. When the C content is less than 9 at%, Br is small and the C content is 27 at%.
If it exceeds, Br and (BH) max will be small.
Therefore, it is clear from Table 7 that C has a good magnetic property in the range of 9 to 27 at%.

【0036】[0036]

【発明の効果】以上詳述したように、本発明に係るR−
Fe−M−C系永久磁石材料によれば、従来のように高
価なR(希土類元素)を極力使用せず、なお、かつ、供
給不安定なCoは、全く使用しないで高磁気特性が得ら
れるため、安価な永久磁石材料を供給面でも安定的に提
供することができる。
As described above in detail, the R-
According to the Fe-MC permanent magnet material, expensive R (rare earth element) unlike the conventional case is not used as much as possible, and Co whose supply is unstable is not used at all and high magnetic characteristics are obtained. Therefore, an inexpensive permanent magnet material can be stably provided on the supply side.

フロントページの続き (72)発明者 清 宮 照 夫 東京都港区新橋五丁目36番11号 富士電気 化学株式会社内Continued Front Page (72) Inventor Teruo Kiyomiya 5-11-3 Shimbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】R(但し、RはYを含む希土類元素の1種
または2種以上):1〜8at% M(但し、MはZr、Hf、Nb、Ta、Mo、Wの1
種または2種以上):19〜33at% C:9〜27at% Fe:残部 からなることを特徴とする永久磁石材料。
1. R (wherein R is one or more rare earth elements including Y): 1 to 8 at% M (where M is Zr, Hf, Nb, Ta, Mo or W)
1 or 2 or more types): 19 to 33 at% C: 9 to 27 at% Fe: The balance.
JP4251689A 1992-09-21 1992-09-21 Permanent magnet material Pending JPH06100993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4251689A JPH06100993A (en) 1992-09-21 1992-09-21 Permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4251689A JPH06100993A (en) 1992-09-21 1992-09-21 Permanent magnet material

Publications (1)

Publication Number Publication Date
JPH06100993A true JPH06100993A (en) 1994-04-12

Family

ID=17226549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4251689A Pending JPH06100993A (en) 1992-09-21 1992-09-21 Permanent magnet material

Country Status (1)

Country Link
JP (1) JPH06100993A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183503A (en) * 2003-12-17 2005-07-07 Chiba Inst Of Technology Material of permanent magnet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177158A (en) * 1986-01-29 1987-08-04 Daido Steel Co Ltd Permanent magnet material and its production
JPH0339451A (en) * 1989-07-04 1991-02-20 Daido Steel Co Ltd Permanent magnet material
JPH04241402A (en) * 1991-01-14 1992-08-28 Toshiba Corp Permanent magnet
JPH04318152A (en) * 1991-04-17 1992-11-09 Minebea Co Ltd Rare earth magnetic material and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177158A (en) * 1986-01-29 1987-08-04 Daido Steel Co Ltd Permanent magnet material and its production
JPH0339451A (en) * 1989-07-04 1991-02-20 Daido Steel Co Ltd Permanent magnet material
JPH04241402A (en) * 1991-01-14 1992-08-28 Toshiba Corp Permanent magnet
JPH04318152A (en) * 1991-04-17 1992-11-09 Minebea Co Ltd Rare earth magnetic material and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183503A (en) * 2003-12-17 2005-07-07 Chiba Inst Of Technology Material of permanent magnet
JP4635216B2 (en) * 2003-12-17 2011-02-23 学校法人千葉工業大学 Permanent magnet material

Similar Documents

Publication Publication Date Title
EP0184722B1 (en) Rare earth alloy powders and process of producing same
EP0134304B1 (en) Permanent magnets
EP0197712A1 (en) Rare earth-iron-boron-based permanent magnet
EP0175214A2 (en) Permanent magnetic alloy and method of manufacturing the same
Ormerod The physical metallurgy and processing of sintered rare earth permanent magnets
EP0237416B1 (en) A rare earth-based permanent magnet
JPH06275414A (en) Nd-fe-b based permanent magnet
US4891078A (en) Rare earth-containing magnets
JP2904571B2 (en) Manufacturing method of rare earth anisotropic sintered permanent magnet
JPH11251125A (en) Rare-earth-iron-boron sintered magnet and its manufacture
JPH0561345B2 (en)
JPH02266503A (en) Manufacture of rare earth permanent magnet
JPH0146575B2 (en)
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPH0461042B2 (en)
JPH06100993A (en) Permanent magnet material
JP2598558B2 (en) permanent magnet
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JPH0536495B2 (en)
JPH0422006B2 (en)
JPS61264133A (en) Permanent magnet alloy and its manufacture
JP3298220B2 (en) Rare earth-Fe-Nb-Ga-Al-B sintered magnet
JP2648422B2 (en) permanent magnet
JPH06100994A (en) Permanent magnet material
JPS62291903A (en) Permanent magnet and manufacture of the same