JPH04318152A - Rare earth magnetic material and its manufacture - Google Patents

Rare earth magnetic material and its manufacture

Info

Publication number
JPH04318152A
JPH04318152A JP3112601A JP11260191A JPH04318152A JP H04318152 A JPH04318152 A JP H04318152A JP 3112601 A JP3112601 A JP 3112601A JP 11260191 A JP11260191 A JP 11260191A JP H04318152 A JPH04318152 A JP H04318152A
Authority
JP
Japan
Prior art keywords
rare earth
alloy
iron
alloy powder
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3112601A
Other languages
Japanese (ja)
Inventor
Masahito Kawasaki
川崎 正仁
Toshiharu Suzuki
俊治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP3112601A priority Critical patent/JPH04318152A/en
Publication of JPH04318152A publication Critical patent/JPH04318152A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a rare earth magnetic material having magnetic characteristics equivalent to Nd-Fe-B system permanent magnet and keeping excellent temp. characteristics better than the above magnet even when it does not contain hydrogen. CONSTITUTION:Metallic alloy power essentially consisting of a rare earth metal(R) and Fe or rare earth metal(R), Fe and Co is manufactured, and this metallic alloy powder is allowed to contact with cementating gas at 600-1200 deg.C to form a rare earth magnetic material consisting of 5-15% Sm-5-25% C - the balance Fe or 5-15% Sm-5-25% C-1-40% Co - the balance Fe.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、希土類金属、鉄および
炭素を主成分とする希土類磁石材料およびその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth magnet material whose main components are rare earth metals, iron and carbon, and a method for producing the same.

【0002】0002

【従来の技術】近年、各種電子部品・機器の小型化に伴
って高性能な永久磁石が要求されている。1980年代
に開発されたNd −Fe −B系永久磁石は高い磁気
性能を有し、かつそれ以前のSm −Co 系永久磁石
と比較して豊富で安価な原料で構成されているなどの理
由により広く工業的に使用されつゝある。
2. Description of the Related Art In recent years, with the miniaturization of various electronic components and equipment, high-performance permanent magnets have been required. The Nd-Fe-B permanent magnets developed in the 1980s have high magnetic performance and are made of abundant and inexpensive raw materials compared to the previous Sm-Co permanent magnets. It is being widely used industrially.

【0003】ところで、このNd −Fe −B系永久
磁石は、耐食性が悪く、高温・高湿度下では容易に錆を
発生して磁気特性の劣化を招くため、通常は磁石表面に
耐食性に優れたニッケルあるいはエポキシ樹脂などのコ
ーティング膜を設けることによって実用に供されている
。また、他の欠点としてはキュリ−点が約 300℃と
低いために温度特性が悪く、 150℃以上となるよう
な雰囲気での使用は不向きとされている。この対策とし
て、Fe の一部をCo で置換することも行われてい
るが、Co の置換によってキュリー点の上昇とそれに
伴う温度特性の若干の改良とが見られる反面、保磁力の
低下を生じるという問題がある。別の対策として、Nd
 の一部をDy(ジスプロシウム)で置換することも行
われているが、ごく少量の置換でも飽和磁束密度の低下
を生じるため、実際上温度特性の改良は困難な状況にあ
った。
[0003] However, this Nd-Fe-B permanent magnet has poor corrosion resistance and easily rusts under high temperature and high humidity, leading to deterioration of magnetic properties. It is put into practical use by providing a coating film of nickel or epoxy resin. Another drawback is that it has poor temperature characteristics due to its low Curie point of about 300°C, making it unsuitable for use in an atmosphere where the temperature is 150°C or higher. As a countermeasure to this problem, replacing a portion of Fe with Co has been carried out, but although replacing Co increases the Curie point and slightly improves the temperature characteristics, it also causes a decrease in coercive force. There is a problem. As another measure, Nd
Although it has been attempted to partially replace Dy (dysprosium), even a small amount of substitution causes a decrease in the saturation magnetic flux density, making it difficult to improve the temperature characteristics in practice.

【0004】そこで最近、希土類金属、鉄、窒素および
水素を主成分とする合金が磁石材料になり得ることが報
告されている(例えば、特開平2−57663号公報参
照)。これによれば、合金中に窒素と水素とが共存した
場合に、Nd −Fe −B系永久磁石と同等の飽和磁
束密度と、それ以上の高い結晶磁気異方性およびキュリ
ー点とが期待できるとしている。
Recently, it has been reported that alloys containing rare earth metals, iron, nitrogen, and hydrogen as main components can be used as magnet materials (for example, see Japanese Patent Laid-Open No. 2-57663). According to this, when nitrogen and hydrogen coexist in the alloy, it can be expected to have a saturation magnetic flux density equivalent to that of Nd-Fe-B permanent magnets, as well as higher magnetocrystalline anisotropy and Curie point. It is said that

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記希
土類金属−鉄−窒素−水素系永久磁石によれば、合金中
の水素が温度や圧力の変化によって比較的容易に放出、
吸蔵現象を起こすため、長期的に磁気特性が不安定にな
り易いという問題があり、その上、製造過程で爆発の危
険のある水素ガスあるいはアンモニヤ分解ガスを取り扱
うため、製造性に難点があるという問題があった。
However, according to the above-mentioned rare earth metal-iron-nitrogen-hydrogen permanent magnet, hydrogen in the alloy is relatively easily released due to changes in temperature and pressure.
There is a problem in that the magnetic properties tend to become unstable over a long period of time due to the occlusion phenomenon.Furthermore, there are difficulties in manufacturing as the manufacturing process involves handling hydrogen gas or ammonia decomposition gas, which has the risk of explosion. There was a problem.

【0006】本発明は、上記従来の問題に鑑みてなされ
たもので、水素を含まなくてもNd−Fe −B系永久
磁石と同等の磁気性能およびそれより優れた温度特性を
確保できる希土類磁石材料を提供し併せてその製造方法
を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and provides a rare earth magnet that can secure magnetic performance equivalent to that of Nd-Fe-B permanent magnets and superior temperature characteristics even without hydrogen. The purpose is to provide materials and methods for their production.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
、本発明にかゝる希土類磁石材料は、希土類金属(R)
、炭素および鉄が原子百分率で 5〜15%R− 5〜
25%C−残部Fe の割合で含まれるか、希土類金属
(R)、炭素、コバルトおよび鉄が原子百分率で 5〜
15%R− 5〜25%C−1〜40%Co −残部F
e の割合で含まれていることを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, a rare earth magnet material according to the present invention is made of rare earth metal (R).
, carbon and iron in atomic percentage 5-15%R-5-
Contains 25% C-balance Fe, or contains rare earth metals (R), carbon, cobalt and iron in atomic percentages of 5 to 5%.
15%R-5~25%C-1~40%Co-Remainder F
It is characterized by being contained in a proportion of e.

【0008】また本発明にかゝる希土類磁石材料の製造
方法は、希土類金属(R)および鉄、または希土類金属
(R)、コバルトおよび鉄を主成分とする合金粉末を得
、次に、この合金粉末を 600〜1200℃で浸炭性
ガスと接触させるようにしたことを特徴とする。
[0008] Furthermore, the method for producing rare earth magnet materials according to the present invention involves obtaining rare earth metal (R) and iron, or alloy powder containing rare earth metal (R), cobalt, and iron as main components, and then producing this powder. It is characterized in that the alloy powder is brought into contact with carburizing gas at 600 to 1200°C.

【0009】本発明にかゝる希土類磁石材料において、
希土類金属(R)としてはLa ,Ce ,Pr ,N
d ,Sm ,Eu ,Gd ,Tb ,Dy ,Ho
 ,Er ,Tm ,Yb およびLu の中の少なく
とも一種を選択することができるが、これらの中でもP
r ,Nd ,Sm 等を選択した場合に特に優れた磁
気特性が得られる。この希土類金属(R)については、
その含有量が原子百分率(at%)で5%未満では保磁
力が減少し、15%を越えると飽和磁束密度あるいは残
留磁束密度が小さくなって実用的な永久磁石となり難い
ので、これを5〜15at%とした。Cについては、そ
の含有量が5at%未満では結晶磁気異方性が小さくな
って保磁力がきわめて小さくなり、25at%を越える
と軟磁性のαFe の増加によって保磁力が小さくなる
ので、これを5〜25at%とした。
[0009] In the rare earth magnet material according to the present invention,
Rare earth metals (R) include La, Ce, Pr, N
d, Sm, Eu, Gd, Tb, Dy, Ho
, Er, Tm, Yb and Lu. Among these, P
Particularly excellent magnetic properties can be obtained when r, Nd, Sm, etc. are selected. Regarding this rare earth metal (R),
If the content is less than 5% in atomic percent (at%), the coercive force will decrease, and if it exceeds 15%, the saturation magnetic flux density or residual magnetic flux density will decrease, making it difficult to make a practical permanent magnet. It was set to 15 at%. Regarding C, if the content is less than 5 at%, the crystal magnetic anisotropy will be small and the coercive force will be extremely small, and if it exceeds 25 at%, the coercive force will be small due to the increase in soft magnetic αFe. ~25at%.

【0010】また、Co については、キュリー点を上
昇させて温度特性を向上させかつ耐食性を向上させる効
果を有するが、1at%未満ではその効果が小さく、4
0at%を越えると結晶磁気異方性が小さくなって十分
な保磁力が得られなくなるので、これを1〜40at%
とした。なお、Fe の一部をTi ,V,Cr ,M
n ,Cu ,Zn ,Zr ,Nb ,Mo ,W,
Hf ,Ta 等の他の遷移金属で置換したり、あるい
はCの一部をB,N,O,Si ,Al 等の他の元素
で置換することも、磁気特性の若干の改良に効果がある
[0010] Furthermore, Co has the effect of raising the Curie point, improving temperature characteristics, and improving corrosion resistance, but if it is less than 1 at%, the effect is small;
If it exceeds 0 at%, the magnetocrystalline anisotropy becomes small and sufficient coercive force cannot be obtained, so this should be set at 1 to 40 at%.
And so. Note that a part of Fe is replaced by Ti, V, Cr, M
n, Cu, Zn, Zr, Nb, Mo, W,
Substitution with other transition metals such as Hf, Ta, etc., or substituting a part of C with other elements such as B, N, O, Si, Al, etc. is also effective in slightly improving the magnetic properties. .

【0011】本発明にかゝる希土類磁石材料の製造方法
おいて、上記合金粉末を得る方法は任意であり、例えば
希土類金属と鉄、または希土類金属と、鉄とコバルトと
を所定比率で配合した原料あるいは母合金を高周波誘導
炉で溶解し、その合金溶湯を鋳型に注湯して一旦合金イ
ンゴットとした後、この合金インゴットをジョーククラ
ッシャーなどにより機械的に粉砕する粉砕法、合金溶湯
を回転するロール面へ直接射出する急冷法、合金溶湯を
ガスや液中に高速で噴射させるアトマイズ法、溶解に代
えて固体金属同士の相互拡散を利用するメカニカルアロ
イング法などを採用することができる。合金粉末として
は、後の浸炭処理を効率的に行うためにできるだけ細粒
とするのが良いが、あまり細粒とすると空気中での取り
扱いや保管過程での酸化が問題となるので、その粒径を
数十〜数百ミクロン(μm )とするのが望ましい。な
お、粉砕法や急冷法による場合は、そのまゝでは粉末の
粒径をこの範囲に収めるのが困難であるので、この粉末
を、例えばスタンプミルやアトライタに供してさらに粉
砕するようにする。
[0011] In the method for producing rare earth magnet materials according to the present invention, the above alloy powder can be obtained by any method. For example, rare earth metals and iron, or rare earth metals, iron, and cobalt are blended in a predetermined ratio. A pulverization method in which the raw material or master alloy is melted in a high-frequency induction furnace, the molten alloy is poured into a mold to form an alloy ingot, and then this alloy ingot is mechanically crushed using a jaw crusher, etc., and the molten alloy is rotated. Possible methods include a rapid cooling method in which the alloy is directly injected onto the roll surface, an atomization method in which the molten alloy is injected into a gas or liquid at high speed, and a mechanical alloying method in which interdiffusion between solid metals is used instead of melting. It is best to make the alloy powder as fine as possible in order to carry out the subsequent carburizing process efficiently, but if the powder is too fine, oxidation during handling and storage in the air will become a problem. It is desirable that the diameter be several tens to several hundred microns (μm). In addition, when using the pulverization method or the rapid cooling method, it is difficult to keep the particle size of the powder within this range as it is, so the powder is further pulverized by using, for example, a stamp mill or an attritor.

【0012】また本発明にかゝる希土類磁石材料の製造
方法おいて、合金粉末を浸炭性ガスと接触させる方法は
特に問うものでなく、例えば吸熱型変成ガスを用いる汎
用のガス浸炭法、固体浸炭剤を用いる浸炭法、有機溶剤
の熱分解で発生した雰囲気を用いる有機溶剤滴下式浸炭
法、真空炉により減圧下で行う真空浸炭法等を採用する
ことができる。炭素は、R2 Fe 17,RFe 1
2などの金属間化合物の結晶格子内に侵入する場合に、
飽和磁束密度やキュリー点、および結晶磁気異方性を大
幅に増大させる効果がある。しかし、温度が 600℃
未満では炭素の侵入に時間を要して生産性の低下を招き
、一方、1200℃を越えると合金の溶融が始まるので
、浸炭温度として 600〜1200℃を選択した。
Furthermore, in the method for producing rare earth magnet materials according to the present invention, the method of bringing the alloy powder into contact with the carburizing gas is not particularly limited. A carburizing method using a carburizing agent, an organic solvent dropping carburizing method using an atmosphere generated by thermal decomposition of an organic solvent, a vacuum carburizing method using a vacuum furnace under reduced pressure, etc. can be employed. Carbon is R2 Fe 17, RFe 1
When entering the crystal lattice of intermetallic compounds such as 2,
It has the effect of significantly increasing the saturation magnetic flux density, Curie point, and crystal magnetic anisotropy. However, the temperature is 600℃
If it is less than 1,200°C, it will take time for carbon to penetrate, leading to a decrease in productivity, while if it exceeds 1,200°C, the alloy will begin to melt, so 600 to 1,200°C was selected as the carburizing temperature.

【0013】本発明にかゝる希土類磁石材料は、ボンド
磁石または焼結磁石の原料粉として用いられるが、粒子
径を単磁区粒子径に近ずけて保磁力を向上させることを
目的に、上記窒化処理後、例えばジェットミルやボール
ミルによりさらに粉砕し、所望により500 ℃以下の
温度で歪とり焼きなましを行うようにしても良い。
The rare earth magnet material according to the present invention is used as raw material powder for bonded magnets or sintered magnets. After the nitriding treatment, the material may be further pulverized using, for example, a jet mill or a ball mill, and, if desired, may be subjected to strain relief annealing at a temperature of 500° C. or less.

【0014】[0014]

【作用】上記のように構成した希土類磁石材料において
は、炭素が希土類金属と鉄との金属間化合物の結晶格子
内に侵入し、基本の磁気特性を高めかつキュリー点を上
昇させる。しかも、水素を含まないので長期にわたって
磁気特性が安定する。また上記製造方法によれば、合金
粉末を高温下で浸炭性ガスに接触させるようにしたので
、合金中への炭素の侵入は容易となり、その上、水素を
取り扱うこともないので製造過程での安全性も高まる。
[Operation] In the rare earth magnet material constructed as described above, carbon penetrates into the crystal lattice of the intermetallic compound of rare earth metal and iron, thereby enhancing the basic magnetic properties and raising the Curie point. Moreover, since it does not contain hydrogen, its magnetic properties are stable over a long period of time. Furthermore, according to the above manufacturing method, since the alloy powder is brought into contact with carburizing gas at high temperatures, it is easy for carbon to penetrate into the alloy.Furthermore, since hydrogen is not handled, there is no need to handle it during the manufacturing process. It also increases safety.

【0015】[0015]

【実施例】以下、本発明の実施例を添付図面にもとづい
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the accompanying drawings.

【0016】実施例1 すべて純度99.9%のサマリウム(Sm )、電解鉄
および電解コバルトを所定の比率で配合し、アルミナル
ツボに装入して高周波誘導炉によって溶解し、鋳型内に
鋳込んで合金インゴットを製造した。この合金インゴッ
ト内部には多くの場合成分偏析が見られるため、これを
アルゴンガス雰囲気下で1000℃、12時間保持し、
その後急冷する熱処理を行った。次に、この合金インゴ
ットをジョークラッシャーに供して数mmの大きさに粗
粉砕し、続いて、スタンプミルによってさらに粉砕し、
これをふるいにかけて平均粒径が約50〜300 μm
 の合金粉末を得た。 次に、この合金粉末をステンレス鋼製小皿に入れて真空
炉に装入し、この真空炉にメタンガスを0.1 Tor
rの圧力で連続導入して、1050℃で2時間保持し、
合金粉末に炭素を侵入せしめた後、再度ボールミルによ
り粉砕して平均粒径が約20μm の磁石材料を得た。
Example 1 Samarium (Sm), electrolytic iron, and electrolytic cobalt, all with a purity of 99.9%, were mixed in a predetermined ratio, charged into an alumina crucible, melted in a high-frequency induction furnace, and poured into a mold. An alloy ingot was produced. Since component segregation is often observed inside this alloy ingot, it is held at 1000°C for 12 hours in an argon gas atmosphere.
After that, a heat treatment of rapid cooling was performed. Next, this alloy ingot was coarsely crushed into a size of several mm by using a jaw crusher, and then further crushed by a stamp mill.
This is sieved to obtain an average particle size of approximately 50 to 300 μm.
An alloy powder was obtained. Next, this alloy powder was placed in a small stainless steel plate and charged into a vacuum furnace, and methane gas was introduced into the vacuum furnace at 0.1 Torr.
Continuously introduced at a pressure of r and held at 1050°C for 2 hours,
After carbon was infiltrated into the alloy powder, it was ground again using a ball mill to obtain a magnet material with an average particle size of about 20 μm.

【0017】次に、上記のようにして得た磁石材料にエ
ポキシ樹脂を3重量%配合し、15kOe の磁界を印
加しながら5Ton /cm2 の圧力で粉末成形し、
続いて150 ℃で1時間キュアして磁石体試料1〜1
3を製作し、これらを磁気特性、キュリー点および成分
の測定試験に供した。磁気特性の測定は、60kOe 
のパルス磁界を印加した後、直流BHトレーサによって
行い、キュリー点の測定は振動試料型磁力計(略称VS
M)のホルダーに粉末試料を充填して加熱しながら行っ
た。また成分測定(分析)は、希土類金属、鉄、コバル
トについてはICP発光分析法により、炭素については
燃焼法によりそれぞれ行った。
Next, 3% by weight of epoxy resin was blended into the magnet material obtained as described above, and the mixture was powder-molded at a pressure of 5Ton/cm2 while applying a magnetic field of 15kOe.
Subsequently, it was cured at 150 °C for 1 hour to form magnet samples 1 to 1.
3 were manufactured and subjected to tests to measure magnetic properties, Curie points, and components. Measurement of magnetic properties was performed at 60 kOe.
After applying a pulsed magnetic field, the Curie point was measured using a DC BH tracer.
The test was carried out by filling the powder sample into the holder M) and heating it. Component measurement (analysis) was performed for rare earth metals, iron, and cobalt by ICP emission spectrometry, and for carbon by combustion method.

【0018】各試験結果を表1に一括して示す。なお表
中、4πImは最大磁束密度(G)を、iHc は保磁
力を、Tc はキュリー点をそれぞれ表している。また
最大磁束密度は、飽和磁束密度の測定が困難なため、直
流BHトレーサの最大測定磁界20kOe での磁束密
度を採用した。さらに表中、試料番号に付した記号#は
比較例を表している。
[0018] The results of each test are summarized in Table 1. In the table, 4πIm represents the maximum magnetic flux density (G), iHc represents the coercive force, and Tc represents the Curie point. Furthermore, since it is difficult to measure the saturation magnetic flux density, the maximum magnetic flux density at the maximum measurement magnetic field of 20 kOe of the DC BH tracer was adopted. Furthermore, in the table, the symbol # attached to the sample number represents a comparative example.

【0019】[0019]

【表1】[Table 1]

【0020】表1から明らかなように、本発明にかゝる
磁石体試料3、4、5および8、9、10は何れも比較
例のものに比して保磁力iHc 、キュリー点Tc と
もに高い値が得られた。特にキュリー点Tc について
は、炭素を含まない試料(比較例)1および6のものが
約 110〜130 ℃であるのに対し、本発明の範囲
に含まれるものは約 350〜600 ℃と高い値を示
し、Nd −Fe −B系永久磁石のキュリー点、約3
10 ℃と比較しても十分に高い値となることが確認で
きた。なお、サマリウム含有量の少ない比較例試料12
において保磁力iHc が著しく小さくなっているが、
これは合金中に多量のαFe が存在して軟磁性化した
ためである。またサマリウム含有量の多い比較例試料1
3ではキュリー点Tcが大幅に低下しており、希土類金
属の含有量として少な過ぎでも多すぎても問題を有する
ことが明らかとなった。また試料1〜6の比較より、炭
素がキュリー点Tc の上昇に対して効果を有すること
が明らかであるが、その含有量が少な過ぎる場合(試料
2)あるいは多過ぎる場合(試料6)には保磁力iHc
が著しく低下している。これは、炭素含有量が少な過ぎ
る場合は結晶磁気異方性が小さくなり、逆に多過ぎる場
合は軟磁性のαFe が増加したためと推量される。さ
らに、試料8〜11の比較から鉄の一部をコバルトで置
換した場合にキュリー点Tc の上昇に対してより一層
の効果を有することが明らかであるが、比較例試料11
からコバルト含有量が多過ぎる場合には保磁力iHcが
著しく低下している。これは結晶磁気異方性が小さくな
ったためと推量される。
As is clear from Table 1, magnet samples 3, 4, 5, 8, 9, and 10 according to the present invention all have lower coercive force iHc and Curie point Tc than those of the comparative examples. A high value was obtained. In particular, regarding the Curie point Tc, samples that do not contain carbon (comparative examples) 1 and 6 have a value of approximately 110 to 130°C, whereas those included in the scope of the present invention have a high value of approximately 350 to 600°C. The Curie point of the Nd-Fe-B permanent magnet is approximately 3.
It was confirmed that the value was sufficiently high compared to 10°C. In addition, comparative example sample 12 with low samarium content
The coercive force iHc is significantly smaller in
This is due to the presence of a large amount of αFe in the alloy, making it soft magnetic. Comparative sample 1 with high samarium content
In No. 3, the Curie point Tc was significantly lowered, and it became clear that there would be problems if the rare earth metal content was too small or too large. Furthermore, from a comparison of Samples 1 to 6, it is clear that carbon has an effect on raising the Curie point Tc, but if its content is too low (Sample 2) or too high (Sample 6), Coercive force iHc
has decreased significantly. This is presumed to be because when the carbon content is too low, the magnetocrystalline anisotropy becomes small, and when the carbon content is too high, the soft magnetic αFe increases. Furthermore, from a comparison of Samples 8 to 11, it is clear that replacing a part of iron with cobalt has an even greater effect on raising the Curie point Tc; however, Comparative Sample 11
Therefore, when the cobalt content is too large, the coercive force iHc decreases significantly. This is presumed to be because the magnetocrystalline anisotropy has become smaller.

【0021】実施例2 何れも純度99.9%のSm ,Pr ,Nd ,Ce
 またはDy と電解鉄とを所定の比率で配合、溶解し
て、実施例1と同様な手順により合金粉末を得、さらに
実施例1と同様な手順により浸炭処理および粉末成形を
行って磁石体試料21〜27を製作し、これらを磁気特
性および成分の測定試験に供した。表2は、その測定試
験結果を示したものである。これより本発明にかゝる磁
石体試料21〜26は、何れも最大磁束密度4πImお
よび保磁力iHc 共に高い値を示し、Sm の一部を
他の希土類金属に置換しても良好な磁気特性が得られる
ことが明らかとなった。なお、比較例試料27は希土類
金属の含有量が過多であるため、最大磁束密度4πIm
および保磁力iHc の低下が見られる。
Example 2 Sm, Pr, Nd, Ce, all with a purity of 99.9%
Alternatively, Dy and electrolytic iron are blended and melted in a predetermined ratio to obtain an alloy powder in the same manner as in Example 1, and then carburized and powder compacted in the same manner as in Example 1 to obtain a magnet sample. Nos. 21 to 27 were manufactured and subjected to tests to measure magnetic properties and components. Table 2 shows the measurement test results. From this, magnet samples 21 to 26 according to the present invention all exhibit high values of maximum magnetic flux density 4πIm and coercive force iHc, and have good magnetic properties even if a part of Sm is replaced with other rare earth metals. It has become clear that it can be obtained. Note that Comparative Example Sample 27 has an excessive content of rare earth metals, so the maximum magnetic flux density is 4πIm.
Also, a decrease in coercive force iHc is observed.

【0022】[0022]

【表2】[Table 2]

【0023】実施例3 実施例1と同様にサマリウムと電解鉄とを所定の比率で
配合、溶解して合金インゴットを製作し、次にこの合金
インゴットを石英管に装入して高周波炉により再溶解し
、溶解後、石英管の下部の細孔から合金溶湯を回転する
銅製ロール表面に射出急冷した。得られた急冷合金は厚
さ約0.05mm、幅約2mm、長さ20〜100mm
の薄片状をしていた。なお、ロールの回転速度は得られ
る合金薄片の結晶化度と磁気特性に密接に関係してくる
ため、ロールの周速度を20〜35m/秒の範囲で変化
させ、X線回折法とSEM観察により結晶粒径0.1 
〜5μm を有する合金薄片を分類し、これを実施例1
と同様な手順により浸炭処理および粉末成形を行って磁
石体試料31〜34を製作し、これらを磁気特性、キュ
リー点および成分の測定試験に供した。なお、本実施例
においては合金薄片が磁気的に等方性であるため、粉末
成形は磁界を印加せずに行った。表3は、その測定試験
結果を示したものである。これより、本発明にかゝる磁
石体試料32〜34は、何れも最大磁束密度4πIm、
保磁力iHc およびキュリー点Tc とも高い値が得
られ、合金粉末の製造に急冷法を適用しても問題ないこ
とが明らかとなった。なお、比較例試料31は、窒素を
含まないため、保磁力iHc およびキュリー点Tc 
共に著しく小さくなっている。
Example 3 Similar to Example 1, samarium and electrolytic iron were mixed in a predetermined ratio and melted to produce an alloy ingot.Then, this alloy ingot was charged into a quartz tube and recycled in a high frequency furnace. After melting, the molten alloy was injected from the pores at the bottom of the quartz tube onto the surface of a rotating copper roll and rapidly cooled. The obtained rapidly solidified alloy has a thickness of about 0.05 mm, a width of about 2 mm, and a length of 20 to 100 mm.
It was flaky. In addition, since the rotational speed of the roll is closely related to the crystallinity and magnetic properties of the obtained alloy flakes, the peripheral speed of the roll was varied in the range of 20 to 35 m/s, and the X-ray diffraction method and SEM observation were performed. Therefore, the grain size is 0.1
The alloy flakes having a diameter of ~5 μm were classified and used in Example 1.
Magnet samples 31 to 34 were produced by carburizing and powder compacting in the same manner as above, and were subjected to tests to measure magnetic properties, Curie points, and components. In this example, since the alloy flakes are magnetically isotropic, powder compaction was performed without applying a magnetic field. Table 3 shows the measurement test results. From this, all of the magnet samples 32 to 34 according to the present invention have a maximum magnetic flux density of 4πIm,
High values were obtained for both the coercive force iHc and the Curie point Tc, and it became clear that there would be no problem even if the rapid cooling method was applied to the production of alloy powder. In addition, since Comparative Example Sample 31 does not contain nitrogen, the coercive force iHc and Curie point Tc
Both are significantly smaller.

【0024】[0024]

【表3】[Table 3]

【0025】実施例4 原子百分率で12%Sm −88%Fe の母合金から
実施例1と同様の手順により粒子径50〜300 μm
 の合金粉末を得、この合金粉末をステンレス鋼製小皿
に入れて雰囲気炉に装入し、吸熱型変成ガス(ガス組成
:20%CO−40%N2 −40%H2)の下で、温
度を 400〜1200℃、時間を1〜36時間(h)
の範囲で種々変化させて浸炭処理を行い、続いて、真空
中で550 ℃、2時間熱処理をして合金粉末に吸蔵さ
れた水素を放出させた。次に、実施例1と同様な手順に
より磁石体試料41〜45を製作し、これらを磁気特性
および成分の測定試験に供した。表4は、その測定試験
結果を示したものである。これより、所望の磁気特性を
確保しかつ生産性を確保するには浸炭温度として少なく
とも600 ℃以上とする必要があることが明らかであ
る。
Example 4 From a master alloy of 12% Sm - 88% Fe in atomic percentage, the particle size was 50 to 300 μm using the same procedure as in Example 1.
An alloy powder of 400-1200℃, time 1-36 hours (h)
Carburizing was carried out with various changes within the range, followed by heat treatment at 550° C. for 2 hours in vacuum to release the hydrogen occluded in the alloy powder. Next, magnet samples 41 to 45 were manufactured by the same procedure as in Example 1, and subjected to tests to measure magnetic properties and components. Table 4 shows the measurement test results. From this, it is clear that the carburizing temperature must be at least 600° C. in order to ensure desired magnetic properties and productivity.

【0026】[0026]

【表4】[Table 4]

【0027】[0027]

【発明の効果】以上、詳細に説明したように、本発明に
かゝる希土類磁石材料によれば、Nd−Fe −B系永
久磁石と同等の磁気特性を確保できるばかりか、温度特
性の大幅な向上が達成でき、さらには合金中に水素を含
まないため、長期安定性に優れたものとなり、適用範囲
が拡大する効果が得られる。また、本発明にかゝる希土
類磁石材料の製造方法によれば、合金中への炭素の侵入
は容易となって所望の生産性を確保できる効果が得られ
る。
Effects of the Invention As explained in detail above, the rare earth magnet material according to the present invention not only ensures magnetic properties equivalent to those of Nd-Fe-B permanent magnets, but also has significantly improved temperature characteristics. Furthermore, since the alloy does not contain hydrogen, it has excellent long-term stability and has the effect of expanding the range of applications. Further, according to the method for manufacturing rare earth magnet materials according to the present invention, carbon can easily penetrate into the alloy, thereby achieving the effect of ensuring desired productivity.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  希土類金属(R)、炭素および鉄が原
子百分率で 5〜15%R− 5〜25%C−残部Fe
 の割合で含まれていることを特徴とする希土類磁石材
料。
Claim 1: Rare earth metal (R), carbon and iron in atomic percentage: 5-15%R- 5-25%C-balance Fe
A rare earth magnetic material characterized by containing a proportion of .
【請求項2】  希土類金属(R)および鉄を主成分と
する合金粉末を得、次に、この合金粉末を 600〜1
200℃で浸炭性ガスと接触させて、請求項1に記載の
希土類磁石材料を得ることを特徴とする希土類磁石材料
の製造方法。
2. Obtain an alloy powder containing rare earth metal (R) and iron as main components, and then add this alloy powder to 600-1
A method for producing a rare earth magnet material, the method comprising obtaining the rare earth magnet material according to claim 1 by contacting it with a carburizing gas at 200°C.
【請求項3】  希土類金属(R)、炭素、コバルトお
よび鉄が原子百分率で5〜15%R− 5〜25%C−
1〜40%Co −残部Fe の割合で含まれているこ
とを特徴とする希土類磁石材料。
3. Rare earth metal (R), carbon, cobalt and iron in atomic percentages of 5 to 15% R- 5 to 25% C-
A rare earth magnet material containing 1 to 40% Co and the balance Fe.
【請求項4】  希土類金属(R)、コバルトおよび鉄
を主成分とする合金粉末を得、次に、この合金粉末を 
600〜1200℃で浸炭性ガスと接触させて、請求項
3に記載の希土類磁石材料を得ることを特徴とする希土
類磁石材料の製造方法。
4. Obtain an alloy powder containing rare earth metal (R), cobalt and iron as main components, and then process this alloy powder
A method for producing a rare earth magnet material, which comprises contacting with a carburizing gas at 600 to 1200°C to obtain the rare earth magnet material according to claim 3.
JP3112601A 1991-04-17 1991-04-17 Rare earth magnetic material and its manufacture Pending JPH04318152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3112601A JPH04318152A (en) 1991-04-17 1991-04-17 Rare earth magnetic material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3112601A JPH04318152A (en) 1991-04-17 1991-04-17 Rare earth magnetic material and its manufacture

Publications (1)

Publication Number Publication Date
JPH04318152A true JPH04318152A (en) 1992-11-09

Family

ID=14590819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3112601A Pending JPH04318152A (en) 1991-04-17 1991-04-17 Rare earth magnetic material and its manufacture

Country Status (1)

Country Link
JP (1) JPH04318152A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100994A (en) * 1992-09-21 1994-04-12 Fuji Elelctrochem Co Ltd Permanent magnet material
JPH06100993A (en) * 1992-09-21 1994-04-12 Fuji Elelctrochem Co Ltd Permanent magnet material
JP2016178213A (en) * 2015-03-20 2016-10-06 Tdk株式会社 Permanent magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100994A (en) * 1992-09-21 1994-04-12 Fuji Elelctrochem Co Ltd Permanent magnet material
JPH06100993A (en) * 1992-09-21 1994-04-12 Fuji Elelctrochem Co Ltd Permanent magnet material
JP2016178213A (en) * 2015-03-20 2016-10-06 Tdk株式会社 Permanent magnet

Similar Documents

Publication Publication Date Title
RU2377680C2 (en) Rare-earth permanaent magnet
RU2377681C2 (en) Rare-earth constant magnet
KR960008185B1 (en) Rare earth-iron system permanent magnet and process for producing the same
US7192493B2 (en) R-T-B system rare earth permanent magnet and compound for magnet
JPH0521218A (en) Production of rare-earth permanent magnet
JP2001093713A (en) Multi-element-based rare earth-iron lattice interstitial permanent magnet material, permanent magnet composed of the material and manufacture of the material and the permanent magnet
JPWO2002103719A1 (en) Rare earth permanent magnet material
JP2001189206A (en) Permanent magnet
JP3865180B2 (en) Heat-resistant rare earth alloy anisotropic magnet powder
EP0029071B1 (en) Process for producing permanent magnet alloy
JP2703281B2 (en) Magnetic anisotropic material and method of manufacturing the same
JPH04184901A (en) Rare earth iron based permanent magnet and its manufacture
EP0386286B1 (en) Rare earth iron-based permanent magnet
JPH04318152A (en) Rare earth magnetic material and its manufacture
US5470400A (en) Rare earth anisotropic magnetic materials for polymer bonded magnets
JP3645312B2 (en) Magnetic materials and manufacturing methods
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JPH0467324B2 (en)
JP2927987B2 (en) Manufacturing method of permanent magnet powder
JP2000216015A (en) Compressed type rigid magnetic material and manufacture thereof
JPH0525592A (en) Rare earth magnet material
JPH04365840A (en) Rare earth magnet material
JP3357381B2 (en) Magnet material, method of manufacturing the same, and bonded magnet
JPH0521219A (en) Production of rare-earth permanent magnet
JPH0475303B2 (en)