JPH0525592A - Rare earth magnet material - Google Patents

Rare earth magnet material

Info

Publication number
JPH0525592A
JPH0525592A JP3200128A JP20012891A JPH0525592A JP H0525592 A JPH0525592 A JP H0525592A JP 3200128 A JP3200128 A JP 3200128A JP 20012891 A JP20012891 A JP 20012891A JP H0525592 A JPH0525592 A JP H0525592A
Authority
JP
Japan
Prior art keywords
rare earth
magnet material
alloy
earth magnet
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3200128A
Other languages
Japanese (ja)
Inventor
Toshihiko Miura
敏彦 三浦
Toshiharu Suzuki
俊治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP3200128A priority Critical patent/JPH0525592A/en
Publication of JPH0525592A publication Critical patent/JPH0525592A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0596Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a rare earth magnet material capable of securing excellent magnetic performance and temp. properties even if hydrogen is not contained. CONSTITUTION:This material is a one having a compsn. of general formula RxFe(1-x-y-z)MyCz as well as consisting of R2Fe17 type tetragonal crystals as a main phase and in which the above R denotes at least one of rare earth metals, Sm, Ce, Nb and Pr, the above M denotes at least one of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Ni, Pd, Cu, Ag, Zn, Mg, B, Al, Ga, In, Si, and Sn, the above (x), (y) and (z) lie in the range of, by atom, 5<=x<=15% 0.1<=y<=20% and 5<=z<=25% and, furthermore, a part of Fe is substituted by Co by <=40at% of the total content and a part of C by N.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、R2 Fe 17型菱面体晶
化合物を主相とする希土類金属−鉄−炭素または窒素系
の希土類磁石材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth metal-iron-carbon or nitrogen-based rare earth magnet material containing an R 2 Fe 17 type rhombohedral compound as a main phase.

【0002】[0002]

【従来の技術】近年、各種電子部品・機器の小型化にと
もなって高性能な永久磁石が要求されている。1980
年代に開発されたNd −Fe −B系永久磁石は高い磁気
性能を有し、かつそれ以前に開発されたSm −Co系永
久磁石と比較して豊富で安価な原料で構成されているな
どの理由により工業的に広く利用されつつある。
2. Description of the Related Art In recent years, with the miniaturization of various electronic parts and equipment, high-performance permanent magnets have been required. 1980
The Nd-Fe-B system permanent magnets developed in the 1980s have high magnetic performance and are composed of abundant and inexpensive raw materials as compared with the Sm-Co system permanent magnets developed before that. It is being widely used industrially for the reason.

【0003】ところで、このNd −Fe −B系永久磁石
は、そのキュリー点が約 300℃と低いために温度特性が
悪く、150 ℃以上となるような雰囲気での使用は不向き
とされている。この対策としてFe の一部をCo で置換
することも行われているが、キュリー点が若干上昇する
反面、ごく少量のCo 置換でも保磁力が大きく低下する
という問題がある。また温度特性の別の対策として、N
d の一部をDy で置換することも行われているが、Dy
は高価でありしかも飽和磁束密度の低下を招くために、
実際上温度特性の改良は困難な状況にあった。
By the way, the Nd-Fe-B system permanent magnet has a low Curie point of about 300.degree. C. and thus has poor temperature characteristics, and is not suitable for use in an atmosphere of 150.degree. C. or higher. As a countermeasure against this, a part of Fe is replaced with Co, but the Curie point is slightly increased, but there is a problem that the coercive force is significantly reduced even with a very small amount of Co replacement. As another measure for temperature characteristics, N
It is also done to replace part of d with Dy, but Dy
Is expensive and causes a decrease in saturation magnetic flux density,
In reality, it was difficult to improve the temperature characteristics.

【0004】そこで最近、R2 Fe 17型化合物を主相と
する希土類元素−鉄−窒素−水素系合金が磁石材料にな
り得ることが報告されている(例えば、特開平2−57
663号公報参照)。これによれば、合金中に窒素と水
素とが共存した場合に、Nd−Fe −B系永久磁石と同
等の飽和磁束密度、およびそれ以上の高いキュリー点が
期待できるとしている。
Therefore, it has been recently reported that a rare earth element-iron-nitrogen-hydrogen alloy having a R 2 Fe 17 type compound as a main phase can be used as a magnet material (for example, Japanese Patent Laid-Open No. 2-57).
663). According to this, when nitrogen and hydrogen coexist in the alloy, a saturation magnetic flux density equivalent to that of an Nd-Fe-B system permanent magnet and a higher Curie point can be expected.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記希土類元
素−鉄−窒素−水素系永久磁石によれば、合金中の水素
が温度や圧力の変化によって比較的容易に放出、吸蔵現
象を起こすため、磁気特性の長期安定性が損なわれ易
く、その上、引火爆発の危険性のある水素ガスあるいは
アンモニヤ分解ガスを取り扱うために、製造性に難点が
あるという問題があった。
However, according to the above-mentioned rare earth element-iron-nitrogen-hydrogen permanent magnet, hydrogen in the alloy is relatively easily released and occludes due to changes in temperature and pressure. The long-term stability of magnetic properties is easily impaired, and in addition, there is a problem in that manufacturability is difficult because hydrogen gas or ammonia decomposition gas, which has a risk of ignition and explosion, is handled.

【0006】本発明は上記従来の問題に鑑みてなされた
もので、水素を含まなくてもNd −Fe −B系永久磁石
と同等の磁気性能およびそれより優れた温度特性を確保
できる希土類磁石材料を提供することを目的とする。
The present invention has been made in view of the above conventional problems, and it is a rare earth magnet material capable of ensuring the magnetic performance equivalent to that of the Nd-Fe-B system permanent magnet and the temperature characteristics superior thereto even without containing hydrogen. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、一般式Rx Fe (1-x-y-z)yz の組
成を有し、かつR2 Fe 17型菱面体晶化合物を主相とす
る希土類磁石材料であって、RはSm ,Ce ,Nd ,P
r の少なくとも一種を含む希土類金属からなり、MはT
i ,Zr ,Hf ,V,Nb ,Ta ,Cr ,Mo ,W,M
n ,Ni ,Pd ,Cu ,Ag ,Zn ,Mg ,B,Al ,
Ga ,In ,Si ,Snの少なくとも一種からなり、前
記x,y,zは原子百分率で下記の範囲 5%≦x≦15% 0.1%≦y≦20% 5%≦z≦25% にあるように構成したことを特徴とする。
To achieve the above object, the present invention provides a R 2 Fe 17 type rhombohedral compound having a composition of the general formula R x Fe (1-xyz) M y C z . R is a rare earth magnet material whose main phase is R, and R is Sm, Ce, Nd, P
Made of a rare earth metal containing at least one of r, M is T
i, Zr, Hf, V, Nb, Ta, Cr, Mo, W, M
n, Ni, Pd, Cu, Ag, Zn, Mg, B, Al,
It is composed of at least one of Ga, In, Si and Sn, and x, y and z are expressed in atomic percentage in the following range 5% ≦ x ≦ 15% 0.1% ≦ y ≦ 20% 5% ≦ z ≦ 25%. It is characterized in that it is configured in.

【0008】本発明は、上記Fe の一部を総量の40at
%以下のCo で置換し、あるいは上記Cの一部を適量の
Nで置換しても良いものである。また、本発明はMの炭
化物がマトリックス中に分散析出させるようにするのが
望ましい。
In the present invention, a part of the above Fe is added to the total amount of 40 at.
% Or less Co, or a part of the above C may be replaced with an appropriate amount of N. Further, in the present invention, it is desirable that the carbide of M is dispersed and precipitated in the matrix.

【0009】本発明は、上記したように希土類金属
(R)としてSm ,Ce ,Nd ,Pr の少なくとも一種
を選択したことを特徴とするが、磁気性能やコストの調
整のため、La ,Eu ,Gd ,Tb ,Dy ,Ho ,Er
,Tm ,Yb ,Lu ,Nd の少なくとも一種を合わせ
て選択しても良いものである。この希土類金属の総量
は、原子百分率(at%)で5%未満では保磁力が減少
し、15%を越えると飽和磁束密度あるいは残留磁束密
度が小さくなって実用的な永久磁石になりにくい。また
上記含有量の範囲を越える場合には、合金中にR2 Fe
17化合物以外の、例えばαFe もしくはRFe 3 化合物
等が多く現れて磁気特性の低下をもたらすために、これ
を5〜15at%とした。
The present invention is characterized in that at least one of Sm, Ce, Nd, and Pr is selected as the rare earth metal (R) as described above, but La, Eu, and Gd, Tb, Dy, Ho, Er
, Tm, Yb, Lu and Nd may be selected in combination. When the total amount of the rare earth metal is less than 5% in atomic percentage (at%), the coercive force decreases, and when it exceeds 15%, the saturation magnetic flux density or the residual magnetic flux density becomes small and it is difficult to be a practical permanent magnet. If the content exceeds the above range, R 2 Fe in the alloy
Other than the 17 compound, for example, αFe or RFe 3 compound appears in large quantity and causes deterioration of magnetic properties, so this is set to 5 to 15 at%.

【0010】Cについては、R2 Fe 17型化合物の結晶
格子内に侵入して、飽和磁束密度、キュリー点および結
晶磁気異方性を増大させる働きがある。またNについて
もCと同様な働きがあり、したがってCの一部をNで置
換しても良い。Cの合金中に閉める割合は、5at%未満
では結晶磁気異方性が小さく保磁力がきわめて小さくな
り、一方25at%を越えると軟磁性のα−Fe の増加に
よって保磁力が小さくなるので、これを5〜25at%と
した。
C has the function of penetrating into the crystal lattice of the R 2 Fe 17 type compound and increasing the saturation magnetic flux density, the Curie point and the crystal magnetic anisotropy. Further, N also has the same function as C, so that part of C may be replaced with N. If the proportion of C to be closed in the alloy is less than 5 at%, the crystal magnetic anisotropy is small and the coercive force becomes extremely small. On the other hand, if it exceeds 25 at%, the coercive force becomes small due to an increase in α-Fe of soft magnetic property. Was 5 to 25 at%.

【0011】上記一般式中における添加金属Mについて
は、遷移金属や低融点金属あるいは軽金属から選ばれ
た、Ti ,Zr ,Hf ,V,Nb ,Ta ,Cr ,Mo ,
W,Mn ,Ni ,Pd ,Cu ,Ag ,Zn ,Mg ,B,
Al,Ga ,In ,Si ,Snの少なくとも一種を選択す
るものとするが、これらは磁石材料の磁気特性の改良特
に保磁力の向上に効果がある。これら金属のうち、例え
ばTi ,Ni ,Al ,Ga 等は、R2 Fe 17型化合物の
RまたはFe の一部を置換して結晶磁気異方性を高める
効果があり、またZn ,Sn 等は、合金中に少量含まれ
るαFe と反応して化合物を生成し保磁力の低下を抑制
する効果がある。さらにTi ,Zr ,Ta 等は、いずれ
も炭化物や窒化物を生成しやすいために、合金中にこれ
らが分散析出して保磁力を高める働きがある。しかし
て、前記した効果を最大限に発揮させるには、このMを
0.1〜20at%の範囲とする必要がある。
Regarding the additive metal M in the above general formula, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, selected from transition metals, low melting metals or light metals,
W, Mn, Ni, Pd, Cu, Ag, Zn, Mg, B,
At least one of Al, Ga, In, Si, and Sn is selected, and these are effective in improving the magnetic characteristics of the magnet material, particularly in improving the coercive force. Among these metals, for example, Ti, Ni, Al, Ga and the like have the effect of substituting a part of R or Fe of the R 2 Fe 17 type compound to enhance the magnetocrystalline anisotropy, and Zn, Sn and the like are , Has an effect of suppressing a decrease in coercive force by reacting with αFe contained in a small amount in the alloy to form a compound. Further, Ti, Zr, Ta, etc. all tend to form carbides and nitrides, so they have the function of dispersing and precipitating in the alloy to enhance the coercive force. However, in order to maximize the above-mentioned effects, it is necessary to set this M in the range of 0.1 to 20 at%.

【0012】Co については、キュリー点を上昇させて
温度特性を向上させかつ耐食性を改善させる効果を有す
るが、磁石材料に対する総量として40at%を越える場
合には結晶磁気異方性が減少して充分な保磁力が得られ
なくなるので、これを40at%以下とした。
[0012] Co has the effect of raising the Curie point to improve temperature characteristics and corrosion resistance, but if the total amount with respect to the magnet material exceeds 40 at%, the crystal magnetic anisotropy decreases and it is sufficient. Since no sufficient coercive force can be obtained, this is set to 40 at% or less.

【0013】本発明にかかる希土類磁石材料を製造する
には、一例として希土類金属と、鉄とその他の添加金属
(M)とからなる合金粉末を得、この合金粉末を所定の
温度で浸炭性ガスと接触させ、Cを合金中に侵入させて
所定の組成とする方法を採用することができる。この場
合、前記合金粉末を得る方法として、例えば希土類金属
と鉄(およびコバルト)とを所定比率で配合した原料を
高周波誘導炉で溶解・鋳造し、得られた合金インゴット
をジョークラッシャーなどにより機械的に粉砕する方
法、合金溶湯を回転するロール面へ直接射出する急冷
法、合金溶湯をガスや液中に高速で噴射させるアトマイ
ズ法、溶解に代えて固体金属同士の相互拡散を利用する
メカニカルアロイング法等を選択することができる。ま
た、上記合金粉末にCを侵入させる方法も任意であり、
吸熱型変成ガスを用いる汎用のガス浸炭法、固体浸炭剤
を用いる浸炭法、有機溶剤滴下式浸炭法、減圧された真
空炉に炭化水素系ガスを導入して行う真空浸炭法等を用
いることができる。なお、これらの浸炭処理後、所望に
より500 ℃以下の温度で熱処理を行って合金内部の組織
の改良調整を行うようにしても良い。また窒素も含有さ
せる場合には、前記合金粉末を、例えば400 〜600 ℃に
おいて窒化ガスと接触させる、いわゆる窒化処理を行う
方法を採用することができる。また炭素、窒素は前記浸
炭処理、窒化処理によらず、出発合金中に含有させて良
いことはもちろんである。
In order to manufacture the rare earth magnet material according to the present invention, as an example, an alloy powder composed of a rare earth metal, iron and another additive metal (M) is obtained, and the alloy powder is subjected to a carburizing gas at a predetermined temperature. It is possible to employ a method of bringing C into contact with the alloy and invading C into the alloy to obtain a predetermined composition. In this case, as a method for obtaining the alloy powder, for example, a raw material in which a rare earth metal and iron (and cobalt) are mixed at a predetermined ratio is melted and cast in a high frequency induction furnace, and the obtained alloy ingot is mechanically cut by a jaw crusher or the like. Crushing method, quenching method that directly injects molten alloy onto the rotating roll surface, atomizing method that injects molten alloy at high speed into gas or liquid, mechanical alloying that uses mutual diffusion of solid metals instead of melting The law etc. can be selected. Also, the method of infiltrating C into the alloy powder is optional,
General-purpose gas carburizing method using endothermic metamorphic gas, carburizing method using solid carburizing agent, organic solvent dropping type carburizing method, vacuum carburizing method by introducing hydrocarbon gas into depressurized vacuum furnace it can. After these carburizing treatments, if desired, a heat treatment may be performed at a temperature of 500 ° C. or lower to improve and adjust the structure inside the alloy. When nitrogen is also contained, it is possible to employ a method in which the alloy powder is brought into contact with a nitriding gas at 400 to 600 ° C., that is, a so-called nitriding treatment is performed. Needless to say, carbon and nitrogen may be contained in the starting alloy regardless of the carburizing and nitriding treatments.

【0014】本発明にかゝる希土類磁石材料は、ボンド
磁石あるいは焼結磁石として用いて良いものである。ボ
ンド磁石として用いる場合は、上記の浸炭または窒化処
理後の合金粉末にエポキシ樹脂あるいはフェノール樹脂
などの熱硬化性樹脂を混合し、金型により圧縮成形した
後、所定温度( 100〜170 ℃)でキュアして磁石とする
方法、該合金粉末に亜鉛、錫、鉛などの金属を混合成形
した後、所定温度( 200〜500 ℃)で焼成して磁石とす
る方法、あるいは該合金粉末にナイロン樹脂などの熱可
塑性樹脂を混合し、射出成形を行って磁石とする方法を
採用することができる。一方、焼結磁石として用いる場
合は、該合金粉末にステアリン酸等の潤滑剤を混合して
成形し、不活性ガスあるいは真空中で焼結し、必要に応
じて熱処理を追加することができる。なおいずれの場合
も、成形時に磁場を作用させることによって異方性磁石
を得ることができる。
The rare earth magnet material according to the present invention may be used as a bonded magnet or a sintered magnet. When it is used as a bonded magnet, thermosetting resin such as epoxy resin or phenol resin is mixed with the above alloy powder after carburizing or nitriding treatment, and compression molding is performed with a mold, and then at a predetermined temperature (100 to 170 ° C). A method of curing to a magnet, a method of mixing and molding a metal such as zinc, tin or lead into the alloy powder, and then firing at a predetermined temperature (200 to 500 ° C.) to form a magnet, or a nylon resin to the alloy powder. It is possible to employ a method in which a thermoplastic resin such as the above is mixed and injection molding is performed to obtain a magnet. On the other hand, when used as a sintered magnet, the alloy powder may be mixed with a lubricant such as stearic acid, shaped, sintered in an inert gas or vacuum, and optionally heat-treated. In any case, an anisotropic magnet can be obtained by applying a magnetic field during molding.

【0015】[0015]

【作用】上記のように構成した希土類磁石材料において
は、CまたNがR2 Fe 17型菱面体晶化合物の結晶格子
内に侵入し、飽和磁束密度、キュリー点および結晶磁気
異方性を増大させる作用をする。また、合金中に水素を
含まないので長期的に安定した性能を確保することがで
き、しかも製造過程で水素を取り扱うことが無いので安
全性も高まる。
In the rare earth magnet material constructed as described above, C or N penetrates into the crystal lattice of the R 2 Fe 17 type rhombohedral compound to increase the saturation magnetic flux density, the Curie point and the crystal magnetic anisotropy. Acts to cause. Further, since the alloy does not contain hydrogen, stable performance can be ensured for a long period of time, and since hydrogen is not handled in the manufacturing process, safety is improved.

【0016】[0016]

【実施例】以下、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0017】実施例1 純度99.9%のサマリウム(Sm )と電解鉄(Fe )、そ
れに純度99.5%のスポンジチタン(Ti )と4.3 %の炭
素を含む銑鉄を所定の比率で配合し、アルミナルツボに
装入して高周波誘導炉によって溶解し、鋳型内に鋳込ん
で各種成分組成の合金インゴットを製作した。この合金
インゴット内部には多くの場合成分偏析がみられるた
め、これをアルゴンガス雰囲気下で1000℃、12時間保持
してその後急冷する熱処理を行った。次に、この合金イ
ンゴットをジョークラッシャーに供して数mmの大きさに
粗粉砕し、続いてスタンプミルによってさらに粉砕して
平均粒径20μm の磁石材試料1〜20を得、これらを結
晶構造、磁気特性、キュリー点、および成分の測定試験
に供した。各試料の結晶構造をX線回折法によって解析
した結果、本発明にかゝる試料はいずれも主相としての
2 Fe17化合物の存在が認められた。磁気特性の測定
は、これらの磁石材試料を15kOe の磁界中で所定のホ
ルダーに詰めた後、振動試料型磁力計(略称VSM)を
用いて行い、キュリー点の測定もVSMによった。また
成分分析は、Sm 、Fe およびTi についてはICP発
光分析法により、Cは燃焼法によりそれぞれ行った。
EXAMPLE 1 Samarium (Sm) having a purity of 99.9%, electrolytic iron (Fe), titanium sponge (Ti) having a purity of 99.5%, and pig iron containing 4.3% of carbon were blended in a predetermined ratio to form an alumina crucible. It was charged, melted in a high frequency induction furnace, and cast in a mold to produce alloy ingots of various composition. In many cases, segregation of the components was observed inside the alloy ingot. Therefore, the alloy ingot was heat-treated by holding it in an argon gas atmosphere at 1000 ° C for 12 hours and then rapidly cooling it. Next, this alloy ingot is subjected to a jaw crusher to be roughly crushed to a size of several mm, and then further crushed by a stamp mill to obtain magnet material samples 1 to 20 having an average particle diameter of 20 μm. It was subjected to a measurement test of magnetic properties, Curie points, and components. As a result of analyzing the crystal structure of each sample by the X-ray diffraction method, the presence of the R 2 Fe 17 compound as the main phase was confirmed in all the samples according to the present invention. The magnetic characteristics were measured by packing these magnet material samples in a predetermined holder in a magnetic field of 15 kOe and then using a vibrating sample magnetometer (abbreviated as VSM), and the Curie point was also measured by VSM. The component analysis was carried out by ICP emission spectrometry for Sm, Fe and Ti, and by combustion method for C.

【0018】これらの試験結果を表1に一括して示す。
なお、表中の試料番号1〜7はCで整理した結果を、試
料番号8〜12はSm で整理した結果をそれぞれ示して
いる。また表中、4πIm は最大磁束密度を、iHc は
保磁力を、Tc はキュリー点をそれぞれ表している。ま
た最大磁束密度は、飽和磁束密度の測定が困難なため最
大測定磁界20kOe での磁束密度を採用した。さらに表
中、試料番号に付した符号#は比較例を表している。
Table 1 collectively shows the results of these tests.
In the table, sample numbers 1 to 7 show the results sorted by C, and sample numbers 8 to 12 show the results sorted by Sm. In the table, 4πIm represents the maximum magnetic flux density, iHc represents the coercive force, and Tc represents the Curie point. As the maximum magnetic flux density, it is difficult to measure the saturation magnetic flux density, so the magnetic flux density at the maximum measuring magnetic field of 20 kOe was adopted. Further, in the table, the symbol # added to the sample number represents a comparative example.

【0019】[0019]

【表1】 [Table 1]

【0020】表1から明らかなように、本発明にかかる
磁石材試料2〜6および9〜11は、いずれも最大磁束
密度4πIm 、保磁力iHc 、キュリー点Tc とも高い
値が得られた。特にキュリー点Tc については340 〜53
0 と高い値を示し、Nd −Fe −B系永久磁石のキュリ
ー点約310 ℃と比較しても十分に高い値となることが明
らかになった。なお、Cを含有の低い比較例試料1およ
びSm 含有量の少ない比較例試料8は、保磁力iHc が
他に比してきわめて小さくなっているが、この理由は、
X線回折によれば合金中に多量に存在するαFe がその
原因になったものと推察される。またCまたはSm を過
剰に含有する比較例試料7、12は、保磁力iHc の低
下と共に、合金中のFe 含有率の減少のため最大磁束密
度4πIm も低下している。
As is clear from Table 1, in the magnetic material samples 2 to 6 and 9 to 11 according to the present invention, the maximum magnetic flux density 4πIm, the coercive force iHc and the Curie point Tc were high. Especially for the Curie point Tc 340-53
The value is as high as 0, and it is clear that the value is sufficiently high even when compared with the Curie point of the Nd-Fe-B system permanent magnet of about 310 ° C. The coercive force iHc of the comparative sample 1 containing a small amount of C and the comparative sample 8 containing a small amount of Sm is extremely smaller than the others, and the reason is as follows.
According to X-ray diffraction, it is presumed that a large amount of αFe present in the alloy was the cause. Further, in Comparative Example Samples 7 and 12 containing an excessive amount of C or Sm, the maximum magnetic flux density 4πIm also decreased due to the decrease of the Fe content in the alloy along with the decrease of the coercive force iHc.

【0021】実施例2 純度99.9%のサマリウムと電解鉄、純度99.5%のコバル
トとスポンジチタン、および4.3 %Cを含有する銑鉄と
を所定の比率で配合、溶解して合金インゴットを製作
し、この合金インゴットを実施例1と同様な手順により
粉砕して磁石材試料21〜25を製作し、これらを実施
例1と同様の磁気特性の測定試験に供した。結果を表2
に示す。
Example 2 Samarium having a purity of 99.9% and electrolytic iron, cobalt having a purity of 99.5% and titanium sponge, and pig iron containing 4.3% C were mixed at a predetermined ratio and melted to produce an alloy ingot. The alloy ingots were crushed by the same procedure as in Example 1 to produce magnet material samples 21 to 25, which were subjected to the same magnetic characteristic measurement test as in Example 1. The results are shown in Table 2.
Shown in.

【0022】[0022]

【表2】 [Table 2]

【0023】表2から明らかなように、本発明にかかる
磁石材試料21〜24は、いずれも最大磁束密度4πI
m 、保磁力iHc 、キュリー点Tc とも高い値が得ら
れ、特にキュリー点Tc は、Co 含有量の増加に従って
上昇すること分かった。なお、Co を過剰に含有する比
較例試料25は保磁力iHc の低下と共に、スレーター
ポーリング曲線から推測されるように最大磁束密度4π
Im もやや低下している。
As is clear from Table 2, the magnetic material samples 21 to 24 according to the present invention all have a maximum magnetic flux density of 4πI.
It was found that high values of m, coercive force iHc and Curie point Tc were obtained, and in particular the Curie point Tc increased as the Co content increased. The comparative sample 25 containing excessive Co has a decrease in the coercive force iHc and a maximum magnetic flux density of 4π as estimated from the Slater Pauling curve.
Im has also dropped slightly.

【0024】実施例3 純度99.9%のサマリウムと電解鉄、4.3 %Cを含有する
銑鉄および純度95%以上のCu,Al,Ga ,V,Ti
,Zr ,Ta ,Sn ,Zn のいずれか一種を所定の比
率で配合、溶解して、実施例1と同様の手順により磁石
材試料31〜45を製作し、これらを磁気特性の測定お
よび生成化合物分析試験に供した。磁気特性の測定試験
結果を表3に示す。
Example 3 Samarium and electrolytic iron having a purity of 99.9%, pig iron containing 4.3% C and Cu, Al, Ga, V and Ti having a purity of 95% or more.
, Zr, Ta, Sn, and Zn are mixed and dissolved at a predetermined ratio, and magnet material samples 31 to 45 are manufactured by the same procedure as in Example 1. It was subjected to an analytical test. Table 3 shows the measurement test results of the magnetic properties.

【0025】[0025]

【表3】 [Table 3]

【0026】表3から明らかなように、本発明にかかる
磁石材試料32〜35および37〜45は、いずれも最
大磁束密度4πIm 、保磁力iHc ともに高い値が得ら
れ、各種の添加元素Mがその適正な含有率の範囲内にお
いて有効であることが確認できた。また、試料34およ
び42についてX線回折による分析を実施した結果、そ
れぞれの試料においてCの侵入したR2 Fe 17型化合物
とともに、少量のTiCあるいはZr Cが認められ、従
ってこれら炭化物の析出がαFe の生成を抑制して合金
の保磁力を高めていると推定される。なお、添加金属M
が過少な比較例試料31は他と比較して保磁力iHc が
低く、またMが過剰な比較例試料36は、保持力iHc
の低下とともに最大磁束密度4πIm も低下している。
As is clear from Table 3, in the magnetic material samples 32 to 35 and 37 to 45 according to the present invention, both the maximum magnetic flux density 4πIm and the coercive force iHc are high, and various additive elements M are added. It was confirmed to be effective within the appropriate content range. Further, as a result of X-ray diffraction analysis of Samples 34 and 42, a small amount of TiC or ZrC was observed together with the R 2 Fe 17 type compound in which C invaded in each sample, and therefore precipitation of these carbides was αFe It is presumed that the coercive force of the alloy is increased by suppressing the generation of. The added metal M
Of the comparative example sample 31 having an excessively small amount of coercive force iHc is lower than that of the other sample, and the comparative sample 36 having an excessive amount of M has a coercive force of iHc.
The maximum magnetic flux density 4πIm also decreases with decreasing.

【0027】実施例4 Sm −Fe −C−Sn 系合金をベースに、これにPr ,
Nd ,Ce ,Dy のいずれか一種または複数種を選択的
に添加し、実施例1と同様な手順により磁石材試料51
〜56を得、これらを磁気特性の測定試験に供した。結
果を表4に示す。表4に示す結果より、本発明にかかる
磁石材試料51〜55は、いずれも最大磁束密度4πI
m および保磁力iHc ともに高い値が得られ、Sm 以外
の希土類金属が併用できることが明らかとなった。なお
比較例試料56は、希土類金属の総量が過大であるため
に、最大磁束密度4πIm および保磁力iHc がともに
低下している。
Example 4 Based on Sm-Fe-C-Sn alloy, Pr,
Any one or more of Nd, Ce, and Dy is selectively added, and a magnet material sample 51 is prepared by the same procedure as in Example 1.
.About.56 were obtained, and these were subjected to a magnetic characteristic measurement test. The results are shown in Table 4. From the results shown in Table 4, all of the magnetic material samples 51 to 55 according to the present invention have a maximum magnetic flux density of 4πI.
High values of m and coercive force iHc were obtained, and it became clear that rare earth metals other than Sm can be used in combination. In the comparative sample 56, the maximum magnetic flux density 4πIm and the coercive force iHc are both low because the total amount of rare earth metals is excessive.

【0028】[0028]

【表4】 [Table 4]

【0029】実施例5 サマリウム、電解鉄およびバナジウムを所定の比率で配
合、溶解して、実施例1と同様な手順により50〜150 μ
m の合金粉末を得た。次にこの合金粉末をステンレス製
小皿にいれて真空炉に装入し、この真空炉にメタンガス
を0.1 Torr の圧力で連続導入して、1050℃で2時間保
持し、合金粉末にCを侵入せしめた。続いて、この粉末
をさらに加圧式電気炉に装入して窒素ガス雰囲気下で5
気圧、400 〜500 ℃、4時間保持してNを侵入せしめ、
さらにボールミルにより粉砕して平均粒径20μm の磁石
材試料61〜65を得、これらを磁気特性の測定試験に
供した。結果を表5に示す。
Example 5 Samarium, electrolytic iron and vanadium were mixed and dissolved in a predetermined ratio, and the same procedure as in Example 1 was applied to obtain 50 to 150 μm.
An alloy powder of m 3 was obtained. Next, put this alloy powder in a stainless steel small plate and load it into a vacuum furnace. Continuously introduce methane gas at a pressure of 0.1 Torr into this vacuum furnace and keep it at 1050 ° C for 2 hours to inject C into the alloy powder. It was Then, this powder was further charged into a pressure type electric furnace and was placed under a nitrogen gas atmosphere for 5
Atmospheric pressure, 400-500 ° C, hold for 4 hours to let in N,
Further, it was pulverized by a ball mill to obtain magnet material samples 61 to 65 having an average particle size of 20 μm, and these were subjected to a magnetic characteristic measurement test. The results are shown in Table 5.

【0030】[0030]

【表5】 [Table 5]

【0031】表5に示す結果より、本発明にかかる磁石
材試料61〜64は高い保磁力iHc が得られ、Sm −
Fe 合金にガス浸炭およびガス窒化によりCおよびNを
侵入させる方法によっても、優れた磁気特性を得られる
ことが明らかとなった。また、試料63について実施例
3と同様にX線回折による分析を実施した結果、Cの侵
入したR2 Fe 17型化合物とともに、少量のVCあるい
はVNが認められ、したがって本実施例においても、こ
れらVCあるいはVNがαFe の生成を抑制して保磁力
を高めていると推定される。なお、比較例試料65は、
CおよびNの総量が過剰であるために、最大磁束密度4
πIm および保磁力iHc ともに低下している。
From the results shown in Table 5, the magnet material samples 61 to 64 according to the present invention have high coercive force iHc, and Sm-
It has been clarified that excellent magnetic properties can also be obtained by the method of infiltrating C and N into the Fe alloy by gas carburizing and gas nitriding. Further, as a result of performing an X-ray diffraction analysis on the sample 63 in the same manner as in Example 3, a small amount of VC or VN was recognized together with the R 2 Fe 17 type compound having C invaded. It is presumed that VC or VN suppresses the generation of αFe and enhances the coercive force. The comparative sample 65 is
The maximum magnetic flux density is 4 because the total amount of C and N is excessive.
Both .pi.Im and coercive force iHc decrease.

【0032】実施例6 サマリウム、ネオジウム、電解鉄、銑鉄およびSn を所
定の比率で配合、溶解して、実施例1と同様な手順によ
り磁石材試料71〜74を得、これを磁気特性の測定試
験に供した。結果を表6に示す。これより、本発明にか
ゝる磁石材試料71〜74はいずれも優れた磁気特性を
示し、特に高い保磁力iHc が得られることが明らかと
なった。
Example 6 Samarium, neodymium, electrolytic iron, pig iron and Sn were mixed and dissolved at a predetermined ratio, and magnet material samples 71 to 74 were obtained in the same procedure as in Example 1, and the magnetic properties were measured. It was submitted to the test. The results are shown in Table 6. From this, it was revealed that the magnetic material samples 71 to 74 according to the present invention all showed excellent magnetic characteristics and particularly high coercive force iHc was obtained.

【0033】[0033]

【表6】 [Table 6]

【0034】実施例7 実施例1における磁石材試料4に、一液性エポキシ樹脂
を3重量%混合したものを所定の金型に充填し、15kO
e の磁界を印加しながら5Ton/cm2 の圧力で圧縮成形
し、窒素ガス中で150 ℃、1時間のキュア処理を行って
磁石体試料を製作した。この試料を、60kOe のパルス
磁界を印加した後、直流式BHトレーサーによって磁気
特性の測定を行った。その結果、最大磁束密度4πIm
=9780(G)、残留磁束密度Br=9660(G)、保磁力
iHc =4013(Oe )となり、優れた磁石特性が得られ
ることが明らかとなった。
Example 7 The magnet material sample 4 in Example 1 was mixed with 3% by weight of a one-pack type epoxy resin in a predetermined mold and filled with 15 kO.
A magnetic body sample was manufactured by performing compression molding at a pressure of 5 Ton / cm 2 while applying a magnetic field of e, and performing a curing treatment in nitrogen gas at 150 ° C. for 1 hour. After applying a pulse magnetic field of 60 kOe to this sample, the magnetic characteristics were measured with a DC BH tracer. As a result, the maximum magnetic flux density is 4πIm
= 9780 (G), the residual magnetic flux density Br = 9660 (G), and the coercive force iHc = 4013 (Oe), it was revealed that excellent magnet characteristics can be obtained.

【0035】実施例8 実施例1における磁石材試料4に、10重量%の亜鉛粉末
を配合してボールミルで混合した後、15kOe の磁界を
印加しながら4Ton/cm2 の圧力で圧縮成形し、続いて
窒素ガス中で 350〜450 ℃、2時間の熱処理を行って磁
石体試料81〜83を製作し、これらを磁気特性の測定
試験に供した。表7は、その測定試験結果を示したもの
であり、本実施例では特に保磁力iHc の向上が著し
い。これにより樹脂の代わりに亜鉛のような低融点金属
を磁石粉末に混合しても良好な磁気特性が得られること
が明らかとなった。
Example 8 The magnet material sample 4 in Example 1 was mixed with 10% by weight of zinc powder and mixed in a ball mill, and then compression molded at a pressure of 4 Ton / cm 2 while applying a magnetic field of 15 kOe, Subsequently, heat treatment was performed in nitrogen gas at 350 to 450 ° C. for 2 hours to manufacture magnet body samples 81 to 83, which were subjected to a magnetic characteristic measurement test. Table 7 shows the results of the measurement test, and in this example, the coercive force iHc was remarkably improved. From this, it became clear that good magnetic characteristics can be obtained even when a low melting point metal such as zinc is mixed with the magnet powder instead of the resin.

【0036】[0036]

【表7】 [Table 7]

【0037】実施例8 実施例1における磁石材試料4に、1重量%のステアリ
ン酸亜鉛を混合した後、15kOe の磁界を印加しながら
1Ton/cm2 の圧力で圧縮成形し、続いてホットプレス
を用いて窒素ガス中で450 ℃、圧力1Ton/cm2 、30分
間の焼結を行って磁石体試料を製作し、これを磁気特性
の測定試験に供した。この結果、最大磁束密度4πIm
=11760 (G)、残留磁束密度Br=11420 (G)、保
磁力iHc =5137(Oe )となり、優れた磁石特性が得
られることが明らかとなった。
Example 8 1% by weight of zinc stearate was mixed with the magnet material sample 4 in Example 1, compression-molded at a pressure of 1 Ton / cm 2 while applying a magnetic field of 15 kOe, and then hot pressed. Was sintered in nitrogen gas at 450 ° C. under a pressure of 1 Ton / cm 2 for 30 minutes to prepare a magnet body sample, which was subjected to a magnetic characteristic measurement test. As a result, the maximum magnetic flux density is 4πIm
= 11760 (G), residual magnetic flux density Br = 11420 (G), and coercive force iHc = 5137 (Oe), it was revealed that excellent magnet characteristics can be obtained.

【0038】[0038]

【発明の効果】以上、詳細に説明したように、本発明に
かゝる希土類磁石材料によれば、Nd−Fe −B系永久
磁石と同等の磁気特性を確保できるばかりか、キュリー
点の上昇による温度特性の大幅な向上を達成でき、さら
には磁石合金中に水素を含まないため長期的に性能が安
定するものとなる。また製造過程で水素を取り扱うこと
が無いので安全性も高まる。
As described above in detail, according to the rare earth magnet material of the present invention, not only the magnetic characteristics equivalent to those of the Nd-Fe-B system permanent magnet can be secured, but also the Curie point is increased. The temperature characteristics can be greatly improved by the above, and further, since the magnet alloy does not contain hydrogen, the performance will be stable in the long term. Moreover, since hydrogen is not handled in the manufacturing process, safety is improved.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一般式Rx Fe (1-x-y-z)yz の組
成を有し、かつR2Fe 17型正方晶化合物を主相とする
希土類磁石材料であって、前記RはSm ,Ce ,Nd ,
Pr の少なくとも一種を含む希土類金属からなり、前記
MはTi,Zr,Hf ,V,Nb ,Ta ,Cr ,Mo ,
W,Mn ,Ni ,Pd ,Cu ,Ag,Zn ,Mg ,B,
Al ,Ga ,In ,Si ,Sn の少なくとも一種からな
り、前記x,y,zは原子百分率で下記の範囲 5%≦x≦15% 0.1%≦y≦20% 5%≦z≦25% にあることを特徴とする希土類磁石材料。
1. A rare earth magnet material having a composition of the general formula R x Fe (1-xyz) M y C z and having an R 2 Fe 17 type tetragonal compound as a main phase, wherein R is Sm. , Ce, Nd,
It is made of a rare earth metal containing at least one of Pr, wherein M is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo,
W, Mn, Ni, Pd, Cu, Ag, Zn, Mg, B,
And at least one of Al, Ga, In, Si and Sn, wherein x, y and z are atomic percentages within the following range: 5% ≦ x ≦ 15% 0.1% ≦ y ≦ 20% 5% ≦ z ≦ 25% A rare earth magnet material characterized by being present.
【請求項2】 Fe の一部を、総量の40原子%以下の
Co で置換したことを特徴とする請求項1に記載の希土
類磁石材料。
2. The rare earth magnet material according to claim 1, wherein a part of Fe is replaced with Co of 40 atomic% or less of the total amount.
【請求項3】 Cの一部をNで置換したことを特徴とす
る請求項1または2に記載の希土類磁石材料。
3. The rare earth magnet material according to claim 1, wherein part of C is replaced with N.
【請求項4】 Mの炭化物がマトリックス中に分散析出
していることを特徴とする請求項1乃至3のいずれか1
項に記載の希土類磁石材料。
4. The carbide of M is dispersed and precipitated in a matrix, according to any one of claims 1 to 3.
The rare earth magnet material according to the item.
【請求項5】 Mの窒化物がマトリックス中に分散析出
していることを特徴とする請求項1乃至3のいずれか1
項に記載の希土類磁石材料。
5. The nitride of M is dispersed and precipitated in a matrix, according to any one of claims 1 to 3.
The rare earth magnet material according to the item.
JP3200128A 1991-07-15 1991-07-15 Rare earth magnet material Pending JPH0525592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3200128A JPH0525592A (en) 1991-07-15 1991-07-15 Rare earth magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3200128A JPH0525592A (en) 1991-07-15 1991-07-15 Rare earth magnet material

Publications (1)

Publication Number Publication Date
JPH0525592A true JPH0525592A (en) 1993-02-02

Family

ID=16419281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3200128A Pending JPH0525592A (en) 1991-07-15 1991-07-15 Rare earth magnet material

Country Status (1)

Country Link
JP (1) JPH0525592A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004996A1 (en) * 1993-08-06 1995-02-16 Ins^¿Titut 'joz^¿Ef Stefan' Sm2Fe17 ALLOY WITH Ta ADDITION AND THE PREPARATION PROCEDURE
WO2013164202A1 (en) * 2012-05-02 2013-11-07 Robert Bosch Gmbh Magnetic material, use thereof and method for producing same
CN104465063A (en) * 2014-12-20 2015-03-25 陈红 Method for preparing anti-corrosion iron-silicon-based magnetic core
US10480052B2 (en) 2014-03-19 2019-11-19 Kabushiki Kaisha Toshiba Permanent magnet, and motor and generator using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004996A1 (en) * 1993-08-06 1995-02-16 Ins^¿Titut 'joz^¿Ef Stefan' Sm2Fe17 ALLOY WITH Ta ADDITION AND THE PREPARATION PROCEDURE
EP0712532B1 (en) * 1993-08-06 1997-05-02 Institut Jozef Stefan SmFeTa alloy with 4-5 at% Ta addition and the process of its preperation
WO2013164202A1 (en) * 2012-05-02 2013-11-07 Robert Bosch Gmbh Magnetic material, use thereof and method for producing same
CN104520945A (en) * 2012-05-02 2015-04-15 罗伯特·博世有限公司 Magnetic material, use thereof and method for producing same
JP2015523462A (en) * 2012-05-02 2015-08-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Magnetic material, its use and method for producing said magnetic material
US10480052B2 (en) 2014-03-19 2019-11-19 Kabushiki Kaisha Toshiba Permanent magnet, and motor and generator using the same
CN104465063A (en) * 2014-12-20 2015-03-25 陈红 Method for preparing anti-corrosion iron-silicon-based magnetic core

Similar Documents

Publication Publication Date Title
KR960008185B1 (en) Rare earth-iron system permanent magnet and process for producing the same
EP0249973B1 (en) Permanent magnetic material and method for producing the same
JP2000114017A (en) Permanent magnet and material thereof
EP0362805B1 (en) Permanent magnet and method for producing the same
EP0386286B1 (en) Rare earth iron-based permanent magnet
JP3118740B2 (en) Rare earth magnet materials and rare earth bonded magnets
JPH0525592A (en) Rare earth magnet material
JPH04365840A (en) Rare earth magnet material
JPH06279915A (en) Rare earth magnet material and rare earth bonded magnet
JP3735502B2 (en) Manufacturing method of magnet material
JPH04318152A (en) Rare earth magnetic material and its manufacture
JP2581179B2 (en) Method for producing rare earth-B-Fe sintered magnet with excellent corrosion resistance
JPH05315114A (en) Manufacture of rare earth magnet material
JP3202830B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH051356A (en) Rare earth magnet material
JPH05230502A (en) Production of rare-earth element bond magnet
JPH05121221A (en) Production of rare earth bonded magnet
JPH0521217A (en) Production of rare-earth bond magnet
JPH0620815A (en) Manufacture of rare earth bonded magnet
JPH05234735A (en) Manufacture of rare earth element bonded magnet
JPH08111305A (en) Rare earth magnet material and rare earth bonded magnet
JPH10241923A (en) Rare-earth magnet material, its manufacture, and rare-earth bond magnet using it
JPH06251918A (en) Magnet and manufacturing method thereof as well as bonded magnet
JPH10289812A (en) Rare-earth magnet material, method of manufacturing rare-earth magnet material and rare-earth bonded magnet by the method
JPH07197102A (en) Rare earth alloy powder and its bonded magnet