JPH05121221A - Production of rare earth bonded magnet - Google Patents

Production of rare earth bonded magnet

Info

Publication number
JPH05121221A
JPH05121221A JP3305444A JP30544491A JPH05121221A JP H05121221 A JPH05121221 A JP H05121221A JP 3305444 A JP3305444 A JP 3305444A JP 30544491 A JP30544491 A JP 30544491A JP H05121221 A JPH05121221 A JP H05121221A
Authority
JP
Japan
Prior art keywords
alloy
powder
rare earth
nitrogen
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3305444A
Other languages
Japanese (ja)
Inventor
Toshiharu Suzuki
俊治 鈴木
Naomi Inoue
尚実 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP3305444A priority Critical patent/JPH05121221A/en
Publication of JPH05121221A publication Critical patent/JPH05121221A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0593Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of tetragonal ThMn12-structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To provide rare earth bonded magnet which ensures excellent magnetic characteristics and temperature characteristics without using hydrogen. CONSTITUTION:Rare earth metal (R) composed of Nd or Pr or Ce and alloy whose major ingredients are Fe and other metal containing ThMn12 type compound as a major phase are powdered to manufacture alloy powder whose average grain diameter is 200mum. The alloy powder is brought into contact with nitride gas at 200-500 deg.C so as to permit nitrogen to invade, binder is mixed with the nitrogen invaded powder and magnet is manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類ボンド磁石の製
造方法に係り、特に磁気性能、温度特性共に優れた希土
類ボンド磁石を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth bonded magnet, and more particularly to a method for producing a rare earth bonded magnet having excellent magnetic performance and temperature characteristics.

【0002】[0002]

【従来の技術】近年、各種電子部品・機器の小型化にと
もなって高性能な永久磁石が要求されている中で、Nd
−Fe −B系永久磁石が高い磁気性能を有するために広
く使用されている。しかし、このNd −Fe −B系永久
磁石はキュリー点が約 310℃と低いために温度特性が悪
く、150℃以上となるような雰囲気での使用は不向きと
されている。この対策としてFe の一部をCo で置換し
たり、Nd の一部をDyで置換することが行われている
が、前者の場合はキュリー点の若干の上昇が見られる反
面、少量のCo 置換でも保磁力が大きく低下するという
問題があり、後者の場合は保磁力の低下は見られないも
のの、飽和磁束密度が低下し、その上Dyが高価でコス
ト上昇が避けられないこととなり、実際上、温度特性の
改良は困難な状況にあった。
2. Description of the Related Art In recent years, with the demand for high-performance permanent magnets along with the miniaturization of various electronic parts and equipment, Nd
-Fe-B system permanent magnets are widely used because of their high magnetic performance. However, this Nd-Fe-B system permanent magnet has a low Curie point of about 310 ° C and thus has poor temperature characteristics, and is not suitable for use in an atmosphere of 150 ° C or higher. As a countermeasure against this, a part of Fe is replaced with Co, and a part of Nd is replaced with Dy. In the former case, the Curie point is slightly increased, but a small amount of Co replacement is performed. However, there is a problem that the coercive force is greatly reduced. In the latter case, although the coercive force is not reduced, the saturation magnetic flux density is reduced, and Dy is expensive and the cost increase is unavoidable. However, it was difficult to improve the temperature characteristics.

【0003】一方、最近、Th 2 Zn 17型化合物を主相
とする希土類金属−鉄−窒素−水素系合金が磁石材料に
なり得ることが報告されている(例えば、特開平2−5
7663号公報参照)。これによれば、希土類金属とし
てSm を使用し合金中に窒素と水素とが共存した場合
に、Nd−Fe −B系永久磁石と同等の飽和磁束密度と
それ以上の高いキュリー点が期待できるとしている。
On the other hand, recently, it has been reported that a rare earth metal-iron-nitrogen-hydrogen alloy having a Th 2 Zn 17 type compound as a main phase can be used as a magnet material (for example, Japanese Patent Laid-Open No. 2-5).
7663). According to this, when Sm is used as a rare earth metal and nitrogen and hydrogen coexist in the alloy, a saturation magnetic flux density equivalent to that of a Nd-Fe-B system permanent magnet and a higher Curie point can be expected. There is.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記希
土類金属−鉄−窒素−水素系合金によれば、合金中の水
素が温度や圧力の変化によって比較的容易に放出、吸蔵
現象を起こすため、長期的に磁気性能が不安定性になり
易く、また製造過程で引火爆発の危険のある水素ガスを
取り扱うため、製造性に難点があるという問題があっ
た。
However, according to the above rare earth metal-iron-nitrogen-hydrogen alloy, hydrogen in the alloy is relatively easily released due to changes in temperature and pressure, causing an occlusion phenomenon. In particular, there is a problem in that manufacturability is difficult because hydrogen gas, which has a risk of flammable explosion in the manufacturing process, is apt to become unstable in magnetic performance.

【0005】本発明は上記従来の問題に鑑みてなされた
もので、水素を用いることなく優れた磁気性能と温度特
性とを確保できる希土類ボンド磁石の製造方法を提供す
ることを目的とする。
The present invention has been made in view of the above conventional problems, and an object of the present invention is to provide a method for producing a rare earth bonded magnet which can secure excellent magnetic performance and temperature characteristics without using hydrogen.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明にかゝる希土類ボンド磁石材料は、Nd ,P
r ,Ce のうちの少なくとも一種からなる希土類金属
(R)、Fe およびR、Fe を除く他の金属(M)を主
成分としかつTh Mn 12型化合物を主相として含む合金
を粉砕して平均粒径が 200μm 以下の合金粉末を得る第
一工程と、前記合金粉末を 200〜500 ℃で窒化ガスと接
触させることにより該合金中に窒素を侵入させて窒化粉
末を得る第二工程と、前記窒化粉末をバインダーで固め
て磁石とする第三工程とを含むことを特徴とする。
To achieve the above object, the rare earth bonded magnet material according to the present invention is Nd, P.
Rare earth metal (R) consisting of at least one of r and Ce, Fe and another metal (M) other than R and Fe (M) as main components, and an alloy containing a Th Mn 12 type compound as a main phase are ground and averaged. A first step of obtaining an alloy powder having a particle size of 200 μm or less, a second step of contacting the alloy powder with a nitriding gas at 200 to 500 ° C. to obtain nitrogen by invading nitrogen into the alloy, and A third step of solidifying the nitriding powder with a binder to form a magnet.

【0007】上記Th Mn 12型化合物は、一般に希土類
金属と遷移金属との合金において認められる各種の化合
物の内の一種であり、希土類金属と遷移金属との原子比
率が概略1:12の領域を中心として多く存在する。ただ
し同じ型の化合物でも、SmFe 11Ti ,Sm Fe 102
を主相として含む合金は高い保磁力をもつ反面、飽和
磁束密度が低く表れ、実用には向かない。
The above-mentioned Th Mn 12 type compound is one of various compounds generally found in alloys of rare earth metals and transition metals, and the atomic ratio of rare earth metal to transition metal is approximately 1:12. There are many as the center. However, even with the same type of compounds, SmFe 11 Ti, Sm Fe 10 V 2
The alloy containing as a main phase has a high coercive force, but has a low saturation magnetic flux density and is not suitable for practical use.

【0008】本発明は、上記Th Mn 12型化合物を主相
とする希土類金属−鉄系合金に窒素を侵入させることに
よって、飽和磁束密度や結晶磁気異方性、およびキュリ
ー点を充分実用可能な水準まで高めようとするものであ
る。この場合、例えば単純にTh Mn 12型化合物である
Sm Fe 11Ti に窒素を侵入させると、結晶磁気異方性
が面内となって磁石材料にならない。しかし、希土類金
属としてNd ,Pr ,Ce の何れかを用いた場合には、
一軸の結晶磁気異方性を付与することができ、その他の
磁気性能も優れたものとなる。因みに、窒素侵入前のN
d Fe 11Ti を主相とする合金の飽和磁束密度、異方性
磁界およびキュリー点は、それぞれ12.5kG、5 kOe
、 270℃であるのに対して、窒素侵入後の合金のそれ
らは13.4kG、60 kOe 、 460℃と大幅に向上する。な
お、磁気性能や原材料コストの調整のために前記Nd ,
Pr ,Ce のいずれか一部を他の希土類金属で置換する
ことは差し支えない。しかしこの場合においても、上記
化合物に一軸の結晶磁気異方性を有せしめるために、そ
の置換量は50%未満に抑えることが好ましい。
According to the present invention, the saturation magnetic flux density, the crystal magnetic anisotropy, and the Curie point can be sufficiently put into practical use by injecting nitrogen into the rare earth metal-iron alloy having the Th Mn 12 type compound as the main phase. It is an attempt to raise the standard. In this case, for example, if nitrogen is simply introduced into Sm Fe 11 Ti, which is a Th Mn 12 type compound, the crystal magnetic anisotropy becomes in-plane and the magnet material cannot be obtained. However, when any one of Nd, Pr and Ce is used as the rare earth metal,
Uniaxial crystal magnetic anisotropy can be imparted, and other magnetic performance becomes excellent. By the way, N before nitrogen invasion
The saturation magnetic flux density, anisotropic magnetic field and Curie point of the alloy containing d Fe 11 Ti as the main phase are 12.5 kG and 5 kOe, respectively.
, 270 ° C, whereas those of the alloy after nitrogen infiltration are greatly improved to 13.4 kG, 60 kOe, and 460 ° C. In order to adjust the magnetic performance and the cost of raw materials, Nd,
There is no problem in substituting some of Pr and Ce with other rare earth metals. However, even in this case, in order to give the above compound uniaxial crystal magnetic anisotropy, the substitution amount thereof is preferably suppressed to less than 50%.

【0009】RおよびFe を除く金属元素Mについて
は、Th Mn 12型化合物の安定化や磁気性能のより一層
の向上に効果を有するもので、Ti ,Zr ,Hf ,V,
Nb ,Ta ,Cr ,Mo ,W,Mn ,Ni,Pd ,Cu
,Ag ,Zn ,Mg ,B,Al,Ga ,In ,Si ,S
n などの遷移金属、低融点金属あるいは軽金属のうちの
少なくとも一種を選択することができる。これら金属の
うち、例えばTi ,V,Cr ,Si 等はTh Mn 12型化
合物の安定化に大きな効果があり、またZn ,Sn 等は
合金中に少量含まれるαFe と反応して化合物を生成し
保磁力の低下を抑制する効果があり、さらにTi ,Zr
,Ta 等はいずれも窒化物を形成しやすいために、合
金中にこれらが分散析出して保磁力を高める働きがあ
る。これらの金属Mは、1重量%未満では前記した効果
が少なく、20%を越える場合には飽和磁束密度が低下し
て良好な磁気特性を得ることが困難となるので、1〜20
重量%とするのが望ましい。なお、鉄の一部をコバルト
で置換することは、キュリー点を上昇させて温度特性を
改良することに有効である。
Regarding the metal element M except R and Fe, it has the effect of stabilizing the Th Mn 12 type compound and further improving the magnetic performance, and Ti, Zr, Hf, V,
Nb, Ta, Cr, Mo, W, Mn, Ni, Pd, Cu
, Ag, Zn, Mg, B, Al, Ga, In, Si, S
At least one of a transition metal such as n, a low melting point metal, or a light metal can be selected. Among these metals, for example, Ti, V, Cr, Si and the like have a great effect on the stabilization of the Th Mn 12 type compound, and Zn, Sn and the like react with a small amount of αFe contained in the alloy to form the compound. It has the effect of suppressing the decrease in coercive force, and also Ti, Zr
, Ta and the like are likely to form nitrides, and thus have a function of increasing coercive force by dispersing and precipitating them in the alloy. When the content of these metals M is less than 1% by weight, the above-mentioned effects are small, and when it exceeds 20%, the saturation magnetic flux density is lowered and it becomes difficult to obtain good magnetic characteristics.
It is desirable to set it as the weight percent. Note that substituting a part of iron with cobalt is effective in raising the Curie point and improving the temperature characteristics.

【0010】本発明は、上記したように粉末合金中に窒
素を侵入させて窒化粉末とすることを特徴とするが、こ
の窒素の侵入を効果的に行うには、合金粉末を200μm
以下とすることが必要である。合金粉末がこれにより大
きい粒径では、窒素は合金内部まで充分に侵入せず均一
な窒化化合物が得られない。本発明において合金粉末を
得る方法は任意であり、例えば希土類金属、鉄およびそ
の他の金属を所定比率で配合した原料を高周波誘導炉で
溶解し、その合金溶湯を鋳型に注湯して一旦合金インゴ
ットとなし、高温で均質化処理を行った後、その合金イ
ンゴットをジョークラッシャーなどにより機械的に粉砕
する方法、前記合金溶湯を回転するロール面へ直接射出
する急冷法、合金溶湯をガスや液中に高速で噴射させる
アトマイズ法、溶解に代えて固体金属同士の相互拡散を
利用するメカニカルアロイング法等を採用することがで
きる。なお、必要によりボールミルやアトライタ、ジェ
ットミル等を併用して所望の大きさの粉末とすることも
できる。
The present invention is characterized in that nitrogen is infiltrated into the powder alloy to form a nitride powder as described above. To effectively infiltrate this nitrogen, the alloy powder should be 200 μm thick.
It is necessary to do the following. If the particle size of the alloy powder is larger than this, nitrogen does not sufficiently penetrate into the alloy and a uniform nitride compound cannot be obtained. The method of obtaining the alloy powder in the present invention is arbitrary, for example, rare earth metals, iron and other metals are mixed in a predetermined ratio to melt the raw material in a high-frequency induction furnace, the alloy melt is poured into a mold and once alloy ingot After homogenizing at high temperature, the alloy ingot is mechanically crushed with a jaw crusher, the alloy melt is directly injected into the rotating roll surface, the quenching method is used, and the molten alloy is put into gas or liquid. It is possible to employ an atomizing method of spraying at high speed, a mechanical alloying method utilizing mutual diffusion of solid metals instead of melting, and the like. If necessary, a ball mill, an attritor, a jet mill or the like may be used in combination to obtain a powder having a desired size.

【0011】本発明は、上記したように合金粉末を 200
〜500 ℃に加熱して窒化ガスに接触させることにより粉
末合金中に窒素を侵入させるが、この窒化ガスとしては
窒素ガス、アンモニアガス、窒素ガスと他の還元性ガス
との混合ガス等を用いることができる。この場合、温度
が 200℃未満では窒素の侵入が充分でなく、 500℃を越
えるとTh Mn 12型化合物が希土類窒化物と鉄とに分解
してしまうので、200〜500 ℃の範囲で処理する必要が
ある。なお、雰囲気を加圧することによって窒素の侵入
はより容易となる。最終合金における窒素の含有量は
0.5未満では充分な異方性磁界が得られず、5%を越え
る場合にはTh Mn 12型結晶構造が維持できなくなって
アモルファス化し磁気性能が全般に低下するので、その
含有量を 0.5〜5重量%とするのが望ましい。
According to the present invention, as described above, the alloy powder is
Nitrogen is introduced into the powder alloy by heating it to ~ 500 ° C and contacting it with a nitriding gas. Nitrogen gas, ammonia gas, a mixed gas of nitrogen gas and other reducing gas, etc. is used as this nitriding gas. be able to. In this case, if the temperature is less than 200 ° C, the penetration of nitrogen is not sufficient, and if it exceeds 500 ° C, the Th Mn 12 type compound is decomposed into rare earth nitrides and iron, so the treatment is performed in the range of 200 to 500 ° C. There is a need. It should be noted that pressurizing the atmosphere makes it easier for nitrogen to enter. The content of nitrogen in the final alloy is
If it is less than 0.5, a sufficient anisotropic magnetic field cannot be obtained, and if it exceeds 5%, the Th Mn 12 type crystal structure cannot be maintained and becomes amorphous so that the magnetic performance is generally deteriorated. It is desirable to set it as the weight percent.

【0012】また本発明は、上記したように窒化粉末を
バインダーで固めて磁石とすることを特徴とするが、こ
のバインダーとしてはZn ,Sn ,Pb などの金属、エ
ポキシ樹脂あるいはフェノール樹脂などの熱硬化性樹脂
あるいはナイロン樹脂などの熱可塑性樹脂を用いること
ができる。バインダーとして前記金属類を用いた場合
は、単に結合剤として機能する他、窒化粉末を構成する
各金属と一部合金化して保磁力の増加に寄与する。これ
らバインダーの添加量は、少なすぎると結合力が不足
し、多すぎると磁気性能特に残留磁束密度の低下を招く
ので、重量%で2〜20%とするのが望ましい。また窒化
粉末をバインダーで固めるには圧縮成形すれば良いが、
バインダーとして樹脂を用いる場合には射出成形、押し
出し成形等も用いることができる。なお、これら成形を
加熱して行う場合は、後の熱処理またはキュアを省略す
ることができる。
Further, the present invention is characterized in that the nitriding powder is hardened with a binder as described above to form a magnet, and the binder is a metal such as Zn, Sn, or Pb, or a heat-resistant epoxy resin or phenol resin. A curable resin or a thermoplastic resin such as a nylon resin can be used. When the above-mentioned metals are used as the binder, in addition to simply functioning as a binder, they partially alloy with each metal constituting the nitriding powder to contribute to an increase in coercive force. If the addition amount of these binders is too small, the binding force will be insufficient, and if the addition amount is too large, the magnetic performance, especially the residual magnetic flux density will be deteriorated. In addition, compression molding can be used to harden the nitriding powder with a binder.
When a resin is used as the binder, injection molding, extrusion molding or the like can also be used. When these moldings are performed by heating, subsequent heat treatment or curing can be omitted.

【0013】[0013]

【作用】上述のように構成した希土類ボンド磁石におい
ては、窒素がTh Mn 12型化合物の結晶格子内に侵入し
て飽和磁束密度、結晶磁気異方性およびキュリー点のい
ずれをも増大させ、しかも水素を含まないので長期にわ
たって性能が安定する。また製造過程で水素を取扱うこ
ともないので安全性が高まる。
In the rare earth bonded magnet constructed as described above, nitrogen penetrates into the crystal lattice of the Th Mn 12 type compound to increase the saturation magnetic flux density, the crystal magnetic anisotropy and the Curie point, and Since it does not contain hydrogen, performance is stable over a long period of time. Further, since hydrogen is not handled in the manufacturing process, safety is improved.

【0014】[0014]

【実施例】以下、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0015】実施例1 純度96%のネオジウム(Nd )、純度99.9%の電解鉄、
および純度99%のスポンジチタンを所定の比率で配合
し、アルミナルツボに装入して高周波誘導炉によって溶
解し、鋳型内に鋳込んで合金インゴットを製作した。合
金インゴット内部には多くの場合成分偏析がみられるた
め、これをアルゴンガス雰囲気下で1100℃、24時間保持
してその後急冷する熱処理を行った。次に、この合金イ
ンゴットをジョークラッシャーに供して数mmの大きさに
粗粉砕し、続いてスタンプミルによってさらに粉砕、分
級して、平均粒径40μm の合金粉末を得た。次に、この
合金粉末をステンレス製小皿に入れて電気炉に装入し、
窒素ガス雰囲気下で2気圧、350 ℃、4〜24時間保持
して窒素を侵入せしめて窒化粉末試料1〜4を得、これ
らを後述する磁気性能およびキュリー点の測定試験に供
した。また比較のため、Nd −Fe −B系合金インゴッ
トとSm −Fe 系合金インゴットとを製作し、各インゴ
ットを上記同様に粉砕して合金粉末を得、その後、前者
については窒化処理することなくそのまゝ粉末試料5と
し、後者についてはアンモニアガス雰囲気下で処理を行
って粉末試料6とし、それぞれについても磁気性能およ
びキュリー点の測定試験に供した。なお、各粉末につい
て結晶構造をX線回折法によって解析した結果、粉末試
料1〜4については何れも主としてTh Mn 12型の結晶
構造を有していた。同様に粉末試料5、6については、
それぞれNd2Fe 14B型、Th 2 Zn 17型の構造であっ
た。
Example 1 Neodymium (Nd) with a purity of 96%, electrolytic iron with a purity of 99.9%,
Then, titanium sponge having a purity of 99% was blended at a predetermined ratio, charged into an alumina crucible, melted in a high frequency induction furnace, and cast into a mold to produce an alloy ingot. In many cases, segregation of the components was observed inside the alloy ingot. Therefore, heat treatment was carried out by holding this in an argon gas atmosphere at 1100 ° C for 24 hours and then rapidly cooling it. Next, this alloy ingot was subjected to a jaw crusher to roughly crush it to a size of several mm, and then further crushed and classified by a stamp mill to obtain an alloy powder having an average particle size of 40 μm. Next, put this alloy powder in a stainless steel small plate and put it in an electric furnace.
Nitrogen powder samples 1 to 4 were obtained by keeping nitrogen atmosphere at 350 ° C. for 4 to 24 hours under nitrogen atmosphere to infiltrate nitrogen, and these were subjected to a magnetic performance and Curie point measurement test described later. For comparison, Nd-Fe-B alloy ingots and Sm-Fe alloy ingots were manufactured, and each ingot was crushed in the same manner as above to obtain an alloy powder. Further, the powder sample 5 was prepared, and the latter was processed in an atmosphere of ammonia gas to prepare the powder sample 6, and the powder sample 5 was also subjected to the magnetic performance and Curie point measurement tests. As a result of analyzing the crystal structure of each powder by an X-ray diffraction method, all of the powder samples 1 to 4 mainly had a Th Mn 12 type crystal structure. Similarly for powder samples 5 and 6,
The structures were Nd 2 Fe 14 B type and Th 2 Zn 17 type, respectively.

【0016】キュリー点(Tc )の測定は、各粉末試料
1〜6を所定のホルダーに充填して振動試料型磁力計
(略称VSM)を用いて測定した。磁気性能の測定は、
直流式BHトレーサーを使用して行い、最大磁束密度4
πIm は15 kOe の測定磁界における磁束密度として、
結晶磁気異方性の大きさを表す異方性磁界Ha は磁石に
おける粉末の配向と平行および直角の2方向の磁化曲線
から作図法によってそれぞれ求めた。また成分分析は、
Nd ,Sm ,Fe ,Ti についてはICP発光分析法に
よって、NおよびHはそれぞれLECO社製分析装置の
TC−436、RH−402により行った。これらの試
験結果を表1に示す。なお、表中成分組成(%)は原子
百分率を、また試料番号に付した符号#は比較例を表し
ている。
The Curie point (Tc) was measured by filling each powder sample 1 to 6 in a predetermined holder and using a vibrating sample magnetometer (abbreviated as VSM). The measurement of magnetic performance is
Performed using a DC BH tracer, maximum magnetic flux density 4
πIm is the magnetic flux density in the measured magnetic field of 15 kOe,
An anisotropic magnetic field Ha, which represents the magnitude of crystal magnetic anisotropy, was determined by a drawing method from magnetization curves in two directions parallel and at right angles to the powder orientation in the magnet. In addition, the component analysis
Nd, Sm, Fe, and Ti were measured by ICP emission spectrometry, and N and H were measured by LECO analyzers TC-436 and RH-402, respectively. The results of these tests are shown in Table 1. In the table, the component composition (%) represents the atomic percentage, and the symbol # attached to the sample number represents the comparative example.

【0017】[0017]

【表1】 [Table 1]

【0018】表1から明らかなように、本発明にかゝる
粉末試料2〜4は、いずれも最大磁束密度4πIm 、異
方性磁界Ha 、キュリー点Tc ともに高い値が得られ
た。これに対して窒素を含有しない粉末試料1は、異方
性磁界Ha が他に比してきわめて小さく、磁石素材とし
ては適さないことが明らかとなった。またNd −Fe −
B系の粉末試料5のキュリー点Tc は約 310℃であり、
本発明試料のそれには及ばない。さらに、Sm −Fe −
N−H系の粉末試料6は本発明にかゝる粉末試料2〜4
と同等の磁気特性を示すもの、水素含有による長期不安
定性を考慮にいれなければならない。
As is clear from Table 1, in each of the powder samples 2 to 4 according to the present invention, the maximum magnetic flux density 4πIm, the anisotropic magnetic field Ha and the Curie point Tc were high. On the other hand, it was revealed that the powder sample 1 containing no nitrogen had an anisotropic magnetic field Ha extremely smaller than the others, and was not suitable as a magnet material. Also Nd-Fe-
The Curie point Tc of the B-type powder sample 5 is about 310 ° C.,
It does not reach that of the sample of the present invention. Furthermore, Sm-Fe-
N—H powder samples 6 are powder samples 2 to 4 according to the present invention.
It should be taken into consideration the long-term instability due to the hydrogen content, which shows the magnetic properties equivalent to.

【0019】実施例2 希土類金属Rとして、純度96%のNd ,Pr ,Ce の少
なくとも一種、純度99.9%の電解鉄、およびその他の金
属Mとして純度98%以上のTi ,V,Cr ,Si ,Zr
,W,Cu ,Al ,Sn ,Zn の少なくとも一種を所
定比率で配合した合金インゴットを実施例1と同様に製
作した。次に、実施例1と同様にこれら合金インゴット
を熱処理、粉砕、分級して平均粒径10μm の合金粉末を
得、続いて、これらの合金粉末を窒素ガス雰囲気下で2
気圧、350℃、4時間保持して窒素を侵入せしめて窒化
粉末を得た。その後、前記窒化粉末に一液性エポキシ樹
脂を2重量%混合し、15 kOe の磁界を印加しながら6
ton/cm2 の圧力で圧縮成形し、しかる後、窒素ガス中
で 150℃のキュア処理を行って磁石試料11〜25を製
作し、これらを磁気性能の測定試験に供した。磁気性能
の測定試験は、直流式BHトレーサーを用いて行い、残
留磁束密度Br および保磁力 iHc を求め、一部の試料
についてはX線回折により生成化合物の分析を行った。
磁気性能の測定試験結果を表2に示す。
Example 2 As the rare earth metal R, at least one of Nd, Pr and Ce having a purity of 96%, electrolytic iron having a purity of 99.9%, and Ti, V, Cr, Si having a purity of 98% or more as the other metal M. Zr
, W, Cu, Al, Sn, and Zn were mixed in a predetermined ratio to prepare an alloy ingot in the same manner as in Example 1. Next, these alloy ingots were heat-treated, crushed and classified in the same manner as in Example 1 to obtain alloy powders with an average particle size of 10 μm.
Nitrogen was infiltrated by maintaining nitrogen at 350 ° C for 4 hours to obtain a nitride powder. Then, 2% by weight of one-component epoxy resin was mixed with the above-mentioned nitriding powder, and while applying a magnetic field of 15 kOe,
It was compression-molded at a pressure of ton / cm 2 and then cured at 150 ° C. in nitrogen gas to produce magnet samples 11 to 25, which were subjected to a magnetic performance measurement test. The magnetic performance measurement test was performed using a DC BH tracer, the residual magnetic flux density Br and the coercive force iHc were determined, and some of the samples were analyzed by X-ray diffraction for the compounds produced.
Table 2 shows the measurement test results of the magnetic performance.

【0020】[0020]

【表2】 [Table 2]

【0021】表2から明らかなように、本発明にかかる
磁石試料13〜25は残留磁束密度Br および保磁力 i
Hc ともに高い値を示し、実用的な永久磁石が得られる
ことが明らかになった。また、希土類金属のうちNd の
他にPr あるいはCe が使用でき、また各種の金属元素
Mの使用が有効であり、中でも、MとしてTi 、Vある
いはSi は本発明の合金を得るためには重要であること
が確認できた。比較例である磁石試料11は良好な磁気
性能が得られていないが、X線回折による分析結果によ
れば、Th 2 Zn 17型化合物が大部分を占めていてTh
Mn 12型化合物の存在は認められず、これが磁気性能が
低く表れた理由と考えられる。一方、別の比較例である
磁石試料12は、合金中に窒素の侵入がないために磁気
性能が劣っている。
As is clear from Table 2, the magnet samples 13 to 25 according to the present invention have a residual magnetic flux density Br and a coercive force i.
Both Hc showed a high value, and it became clear that a practical permanent magnet could be obtained. Of rare earth metals, Pr or Ce can be used in addition to Nd, and it is effective to use various metal elements M. Among them, Ti, V or Si as M is important for obtaining the alloy of the present invention. It was confirmed that The magnet sample 11 which is a comparative example does not have good magnetic performance, but the result of analysis by X-ray diffraction shows that the Th 2 Zn 17 type compound occupies the majority, and Th
The presence of the Mn 12 type compound was not recognized, which is considered to be the reason why the magnetic performance was low. On the other hand, the magnet sample 12, which is another comparative example, is inferior in magnetic performance because nitrogen does not penetrate into the alloy.

【0022】実施例3 原子百分率で 7.2%Nd − 7.4%Ti −残部Fe なる組
成の合金を実施例1と同様に熔解、鋳造、さらに均質化
の熱処理をして合金インゴットを製作した。続いて、ジ
ョークラッシャーとボールミルによって粉砕したものを
分級して平均粒径がそれぞれ約 300、 200、 100、40、
10μm の合金粉末を得、これらの合金粉末を窒素ガス雰
囲気下で5気圧、 400℃、4時間保持して所定量の窒素
を侵入せしめて窒化粉末を得た。次に、10μm の窒化粉
末を除くものをさらにボールミルによって粉砕して、い
ずれも平均粒径が10μmの粉末を得た。これらの粉末を
実施例1と同様の手順によってエポキシ樹脂で固めて磁
石試料31〜35を得、これらを磁気性能の測定試験に
供した。なお、10μm の粉末については、LECO社製
分析装置TC−436を用いて酸素分析を行った。磁石
試料の磁気性能、およびそれぞれの粉末試料の酸素を含
む成分組成分析値の測定結果を表3に示す。
Example 3 An alloy ingot having a composition of 7.2% Nd-7.4% Ti-balance Fe in atomic percentage was melted, cast and homogenized in the same manner as in Example 1 to produce an alloy ingot. Then, the crushed product with a jaw crusher and a ball mill was classified to obtain average particle sizes of about 300, 200, 100, 40, and 40, respectively.
Alloy powders of 10 μm were obtained, and these alloy powders were kept under a nitrogen gas atmosphere at 5 atmospheres and 400 ° C. for 4 hours, and a predetermined amount of nitrogen was introduced to obtain nitride powders. Next, the powder excluding the 10 μm 2 nitriding powder was further pulverized by a ball mill to obtain powders having an average particle diameter of 10 μm. These powders were hardened with an epoxy resin in the same procedure as in Example 1 to obtain magnet samples 31 to 35, which were subjected to a magnetic performance measurement test. The 10 μm powder was subjected to oxygen analysis using LECO analyzer TC-436. Table 3 shows the magnetic performance of the magnet samples and the measurement results of the component composition analysis values containing oxygen of each powder sample.

【0023】[0023]

【表3】 [Table 3]

【0024】表3から明らかなように、本発明にかかる
磁石試料32〜35は、いずれも磁石として充分に実用
的な磁気性能を有することが明らかとなった。また、窒
化粉末を再度粉砕することによっても、あるいは若干の
酸素汚染あっても充分な磁気性能が得られることがあき
らかとなった。なお比較例試料31は、窒素侵入処理時
間を長くしたにもかかわらず、粉末粒径が大きすぎるた
めに窒素侵入が充分に行われず、高い磁気性能が得られ
ていない。
As is apparent from Table 3, all of the magnet samples 32 to 35 according to the present invention have magnetic properties sufficiently practical as a magnet. It was also clarified that sufficient magnetic performance could be obtained by pulverizing the nitriding powder again or even with slight oxygen contamination. In addition, in Comparative Example Sample 31, although the nitrogen infiltration treatment time was increased, nitrogen infiltration was not sufficiently performed because the powder particle size was too large, and high magnetic performance was not obtained.

【0025】実施例4 原子百分率で 4.0%Pr − 2.6%Nd − 7.2%Ti −残
部Fe なる組成の合金インゴットを粉砕して、平均粒径
が約40μm の合金粉末を得た。次に、この合金粉末を窒
素ガス、あるいはアンモニアガス気流中で、 100℃〜 6
00℃、1〜24時間保持して窒素を侵入せしめた。次
に、得られた粉末をボールミルによって平均粒径が5μ
m になるまで粉砕し、実施例1と同様の手順によってエ
ポキシ樹脂で固めて磁石試料41〜48とし、これら窒
素含有量の分析試験および磁気特性の測定試験に供し
た。表4に、結果を示す。
Example 4 An alloy ingot having a composition of 4.0% Pr-2.6% Nd-7.2% Ti-balance Fe in atomic percentage was pulverized to obtain an alloy powder having an average particle size of about 40 μm. Next, this alloy powder is heated to 100 ° C to 6 ° C in a nitrogen gas or ammonia gas stream.
The temperature was maintained at 00 ° C for 1 to 24 hours to allow nitrogen to infiltrate. Next, the obtained powder is crushed with a ball mill so that the average particle size is 5μ.
The powder was pulverized to m 2 and hardened with an epoxy resin by the same procedure as in Example 1 to obtain magnet samples 41 to 48, which were subjected to an analysis test of these nitrogen contents and a measurement test of magnetic properties. The results are shown in Table 4.

【0026】[0026]

【表4】 [Table 4]

【0027】表4から明らかなように、本発明にかかる
磁石試料42〜47は各種の窒素侵入処理条件におい
て、優れた磁気特性を有することが明らかとなった。ま
た比較例試料41は、処理温度が低いために合金粉末へ
の窒素侵入が充分に行われず、高い磁気性能が得られな
い。一方の比較例試料48は、窒素侵入量が多いにもか
かわらず、処理温度が高すぎるためにTh Mn 12型化合
物の分解が一部起こり、磁気性能を低下させている。上
記の結果より、窒素侵入温度は 200℃〜 500℃の範囲が
適し、また窒化粉末の窒素の含有量は、 0.5〜5重量%
の範囲が適することが明らかになった。
As is clear from Table 4, it was revealed that the magnet samples 42 to 47 according to the present invention have excellent magnetic characteristics under various nitrogen infiltration treatment conditions. Further, in the comparative sample 41, since the treatment temperature is low, nitrogen infiltration into the alloy powder is not sufficiently performed, and high magnetic performance cannot be obtained. On the other hand, in Comparative Example sample 48, although the nitrogen penetration amount was large, the processing temperature was too high, so that some decomposition of the Th Mn 12 type compound occurred and the magnetic performance was deteriorated. From the above results, it is suitable that the nitrogen infiltration temperature is in the range of 200 ℃ ~ 500 ℃, and the nitrogen content of the nitriding powder is 0.5 ~ 5 wt%.
It became clear that the range of was suitable.

【0028】実施例5 実施例2における試料番号13に用いたNd −Ti −N−
Fe 系窒化粉末に、Zn ,Sn ,Pb ,In ,Al ,M
g あるいはそれらの合金粉末をそれぞれ15重量%の比率
で配合しボールミルにて混合した。これらの混合粉末を
所定の金型に充填して、15 kOe の磁界を印加しながら
6 ton/cm2の圧力で圧粉成形した。引き続いて、これ
らの成形体を電気炉に装入して、アルゴンガス中、所定
の温度で2時間の熱処理を行い磁石試料51〜59を製
作し、これらを磁気性能の測定試験に供した。結果を表
5に示す。なお表5中の混合金属の数値は、合金の場合
の重量%を表している。
Example 5 Nd-Ti-N- used for sample No. 13 in Example 2
Fe, Ni nitride powder, Zn, Sn, Pb, In, Al, M
g or their alloy powders were mixed at a ratio of 15% by weight and mixed in a ball mill. These mixed powders were filled in a predetermined mold, and were compacted under a pressure of 6 ton / cm 2 while applying a magnetic field of 15 kOe. Subsequently, these molded bodies were loaded into an electric furnace and heat-treated in argon gas at a predetermined temperature for 2 hours to manufacture magnet samples 51 to 59, which were subjected to a magnetic performance measurement test. The results are shown in Table 5. In addition, the numerical value of the mixed metal in Table 5 represents weight% in the case of an alloy.

【0029】[0029]

【表5】 [Table 5]

【0030】表5から明らかなように、本発明にかゝる
磁石試料51〜57および59は優れた磁気性能を示
し、特に保磁力の向上が認められた。なお、磁石成形後
の熱処理は磁石試料51に見られるとおり、実施しなく
ともかまわないが、熱処理を付加することによりさらに
保磁力が改善される。しかし、比較例である磁石試料5
8のように熱処理温度が 500℃を越える場合には、合金
中のTh Mn 12型化合物の分解により磁気性能が低下す
る。また、本実施例のように金属をバインダーとして用
いる場合には、合金の優れた温度特性と併せて耐熱性を
要する用途に好適である。
As is clear from Table 5, the magnet samples 51 to 57 and 59 according to the present invention showed excellent magnetic performance, and particularly the improvement of coercive force was recognized. It should be noted that the heat treatment after magnet molding does not have to be performed as seen in the magnet sample 51, but the coercive force is further improved by adding the heat treatment. However, magnet sample 5 which is a comparative example
When the heat treatment temperature exceeds 500 ° C. as in No. 8, the magnetic performance deteriorates due to the decomposition of the Th Mn 12 type compound in the alloy. In addition, when a metal is used as a binder as in this example, it is suitable for applications requiring heat resistance as well as excellent temperature characteristics of the alloy.

【0031】実施例6 実施例2における試料番号13に用いたNd −Ti −N−
Fe 窒化粉末に、5重量%の亜鉛と 0.2重量%のステア
リン酸を混合し、この混合粉末をホットプレスの 350℃
に加熱された金型に充填し、真空中において、10 kOe
の磁界を印加しながら1 ton/cm2 の圧力で1分間、圧
粉成形して磁石試料を製作した。なお、試料の密度は
7.1g/cm3 であり、高温での加圧成形のため室温成形
の場合と比較して高い密度が得られた。この結果、本磁
石試料は残留磁束密度Br =10.3(kG)、保磁力 iHc
=7.6 ( kOe )となり、優れた磁石性能が得られる
ことが明らかとなった。
Example 6 Nd-Ti-N- used for sample No. 13 in Example 2
Fe nitride powder was mixed with 5% by weight of zinc and 0.2% by weight of stearic acid, and the mixed powder was hot-pressed at 350 ° C.
It is filled in a mold heated to 10 kOe in a vacuum.
While applying a magnetic field of 1 ton / cm 2 for 1 minute, powder compaction was performed to manufacture a magnet sample. The sample density is
It was 7.1 g / cm 3 , and a high density was obtained as compared with the case of room temperature molding due to pressure molding at high temperature. As a result, this magnet sample has a residual magnetic flux density Br = 10.3 (kG) and a coercive force iHc.
= 7.6 (kOe), and it became clear that excellent magnet performance was obtained.

【0031】実施例7 実施例2における試料番号13に用いたNd −Ti −N−
Fe 窒化粉末に、バインダーとして一液性エポキシ樹脂
2重量%と、潤滑剤として機能するオレイン酸0.2重量
%とを混合した。この混合粉末を所定の金型に充填し、
15 kOe の磁界を印加しながら6 ton/cm2 の圧力で成
形し、窒素ガス中で 150℃、1時間のキュア処理を行っ
て磁石試料とした。得られた磁石試料の磁気性能を測定
した結果、留磁束密度Br =8.1 ( kG)、保磁力 iH
c=4.5 ( kOe )となり、優れた磁石性能が得られ
た。
Example 7 Nd-Ti-N- used for sample No. 13 in Example 2
2% by weight of one-component epoxy resin as a binder and 0.2% by weight of oleic acid functioning as a lubricant were mixed with Fe nitride powder. This mixed powder is filled in a predetermined mold,
It was molded at a pressure of 6 ton / cm 2 while applying a magnetic field of 15 kOe, and cured at 150 ° C. for 1 hour in nitrogen gas to obtain a magnet sample. As a result of measuring the magnetic performance of the obtained magnet sample, the residual magnetic flux density Br = 8.1 (kG) and the coercive force iH
c = 4.5 (kOe) and excellent magnet performance was obtained.

【0032】[0032]

【発明の効果】以上詳細に説明したように、本発明にか
ゝる希土類ボンド磁石の製造方法によれば、Th Mn 12
型化合物を主相として含む粉末合金に窒素を侵入させる
ことにより、水素を含まなくても磁気性能および温度特
性に優れた磁石を製造できるようになり、水素を用いな
い分、製造の安全性を確立でき、しかも得られた磁石の
性能は長期的に安定する効果がある。
As described in detail above, according to the method for producing a rare earth bonded magnet according to the present invention, Th Mn 12
By injecting nitrogen into a powder alloy containing a type compound as the main phase, it becomes possible to manufacture magnets with excellent magnetic performance and temperature characteristics without the use of hydrogen, and because hydrogen is not used, manufacturing safety is improved. The magnet can be established and the obtained magnet has an effect of stabilizing in the long term.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 41/02 G 8019−5E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01F 41/02 G 8019-5E

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Nd ,Pr ,Ce のうちの少なくとも一
種からなる希土類金属(R)、Fe およびR、Fe を除
く他の金属(M)を主成分としかつTh Mn 12型化合物
を主相として含む合金を粉砕して平均粒径が 200μm 以
下の合金粉末を得る第一工程と、前記合金粉末を 200〜
500 ℃で窒化ガスと接触させることにより該合金中に窒
素を侵入させて窒化粉末を得る第二工程と、前記窒化粉
末をバインダーで固めて磁石とする第三工程とを含むこ
とを特徴とする希土類ボンド磁石の製造方法。
1. A rare earth metal (R) consisting of at least one of Nd, Pr and Ce, Fe and a metal (M) other than R and Fe as a main component and a Th Mn 12 type compound as a main phase. The first step of crushing the containing alloy to obtain an alloy powder having an average particle size of 200 μm or less, and
The method is characterized by including a second step of injecting nitrogen into the alloy to obtain a nitriding powder by contacting with a nitriding gas at 500 ° C., and a third step of solidifying the nitriding powder with a binder to form a magnet. Manufacturing method of rare earth bonded magnet.
【請求項2】 合金中の他の金属(M)が、Ti ,Zr
,Hf ,V,Nb ,Ta ,Cr ,Mo ,W,Mn ,N
i,Pd ,Cu ,Ag ,Zn ,Mg ,B,Al,Ga ,
In ,Si ,Sn のうちの少なくとも一種からなること
を特徴とする請求項1に記載の希土類ボンド磁石の製造
方法。
2. The other metal (M) in the alloy is Ti, Zr.
, Hf, V, Nb, Ta, Cr, Mo, W, Mn, N
i, Pd, Cu, Ag, Zn, Mg, B, Al, Ga,
2. The method for manufacturing a rare earth bonded magnet according to claim 1, wherein the method comprises at least one of In, Si and Sn.
【請求項3】 第二工程において合金粉末に窒素を 0.5
〜5重量%侵入させることを特徴とする請求項1に記載
の希土類ボンド磁石の製造方法。
3. Nitrogen is added to the alloy powder at 0.5 in the second step.
The method for producing a rare-earth bonded magnet according to claim 1, wherein the intrusion is about 5% by weight.
【請求項4】 第三工程において、バインダーとしてZ
n ,Sn ,Pb ,In ,Al ,Mg のうちの少なくとも
一種を選択することをことを特徴とする請求項1に記載
の希土類ボンド磁石の製造方法。
4. A Z as a binder in the third step
The method for producing a rare earth bonded magnet according to claim 1, wherein at least one of n, Sn, Pb, In, Al, and Mg is selected.
【請求項5】 第三工程において、バインダーとして熱
硬化性樹脂または熱可塑性樹脂を選択することを特徴と
する請求項1に記載の希土類ボンド磁石の製造方法。
5. The method for producing a rare earth bonded magnet according to claim 1, wherein a thermosetting resin or a thermoplastic resin is selected as the binder in the third step.
JP3305444A 1991-10-24 1991-10-24 Production of rare earth bonded magnet Pending JPH05121221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3305444A JPH05121221A (en) 1991-10-24 1991-10-24 Production of rare earth bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3305444A JPH05121221A (en) 1991-10-24 1991-10-24 Production of rare earth bonded magnet

Publications (1)

Publication Number Publication Date
JPH05121221A true JPH05121221A (en) 1993-05-18

Family

ID=17945216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3305444A Pending JPH05121221A (en) 1991-10-24 1991-10-24 Production of rare earth bonded magnet

Country Status (1)

Country Link
JP (1) JPH05121221A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199363A (en) * 1996-01-22 1997-07-31 Aichi Steel Works Ltd Method for manufacturing magnetic anisotropic resin coupled magnet and magnetic anisotropic resin coupled magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199363A (en) * 1996-01-22 1997-07-31 Aichi Steel Works Ltd Method for manufacturing magnetic anisotropic resin coupled magnet and magnetic anisotropic resin coupled magnet

Similar Documents

Publication Publication Date Title
EP0239031B2 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
US4898625A (en) Method for producing a rare earth metal-iron-boron permanent magnet by use of a rapidly-quenched alloy powder
KR960008185B1 (en) Rare earth-iron system permanent magnet and process for producing the same
JPWO2002103719A1 (en) Rare earth permanent magnet material
EP0249973A1 (en) Permanent magnetic material and method for producing the same
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
US5069713A (en) Permanent magnets and method of making
JPH04184901A (en) Rare earth iron based permanent magnet and its manufacture
EP0414645B1 (en) Permanent magnet alloy having improved resistance to oxidation and process for production thereof
JP3118740B2 (en) Rare earth magnet materials and rare earth bonded magnets
JPH08181009A (en) Permanent magnet and its manufacturing method
JPH05121221A (en) Production of rare earth bonded magnet
JP2739860B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
JP4618437B2 (en) Method for producing rare earth permanent magnet and raw material alloy thereof
JPH05315114A (en) Manufacture of rare earth magnet material
JP2708578B2 (en) Bonded magnet
JPH0525592A (en) Rare earth magnet material
JPH05121222A (en) Production of rare earth bonded magnet
JPH06279915A (en) Rare earth magnet material and rare earth bonded magnet
JPH0562815A (en) Permanent magnet and manufacturing method thereof
JPH05230502A (en) Production of rare-earth element bond magnet
JP2581179B2 (en) Method for producing rare earth-B-Fe sintered magnet with excellent corrosion resistance
JP3168484B2 (en) Method for manufacturing rare earth-iron-nitrogen permanent magnet
JPH04365840A (en) Rare earth magnet material
JPH04318152A (en) Rare earth magnetic material and its manufacture