JPH05315114A - Manufacture of rare earth magnet material - Google Patents

Manufacture of rare earth magnet material

Info

Publication number
JPH05315114A
JPH05315114A JP4140939A JP14093992A JPH05315114A JP H05315114 A JPH05315114 A JP H05315114A JP 4140939 A JP4140939 A JP 4140939A JP 14093992 A JP14093992 A JP 14093992A JP H05315114 A JPH05315114 A JP H05315114A
Authority
JP
Japan
Prior art keywords
nitrogen
rare earth
alloy
powder
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4140939A
Other languages
Japanese (ja)
Inventor
Naomi Inoue
尚実 井上
Toshiharu Suzuki
俊治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP4140939A priority Critical patent/JPH05315114A/en
Publication of JPH05315114A publication Critical patent/JPH05315114A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0593Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of tetragonal ThMn12-structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To prevent the drop of the crystal property of an ThMn12-type crystal structure of compound phase even if nitrogen penetrates into it. CONSTITUTION:Alloy contains N by 2-20% by getting alloy powder, which has a rare earth metal (R) consisting of at least one kind out of Nd, Pr, and Ce, Fe, and other metal consisting of at least one kind out of Ti, Mo, V, W, Cr, Mn, Al, and Si for its main ingredients and besides has a ThMn12-type compound for its main phase, and next, bringing the allay powder into contact with the nitriding gas at 200-600 deg.C thereby making nitrogen penetrate into it, and also, performing the diffusion heat treatment of nitrogen in the same temperature range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類磁石材料を製造
するための方法に係り、より詳しくは磁気特性、温度特
性共に優れた磁石材料としての希土類−鉄−窒素系合金
粉末を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth magnet material, and more particularly, a method for producing a rare earth-iron-nitrogen alloy powder as a magnet material having excellent magnetic characteristics and temperature characteristics. Regarding

【0002】[0002]

【従来の技術】近年、各種電子機器の小型化に伴って高
性能なNd −Fe −B系永久磁石が広く使用されてい
る。しかしこの磁石はキュリー点が 310℃と低いために
温度特性が悪く、 150℃以上での使用が困難であった。
一方、希土類金属と鉄との合金に窒素を侵入させること
により、例えばTh 2 Zn 17型の結晶構造の化合物を主
相とするSm −Fe −N−H系永久磁石(合金)が、優
れた磁気特性と約 470℃のキュリー点をもつことが報告
されている。しかし、この合金は希土類金属でも希少な
Sm を使用するために、前記Nd −Fe −B系合金より
もコスト高であるという問題がある。
2. Description of the Related Art In recent years, high-performance Nd-Fe-B permanent magnets have been widely used as various electronic devices have been downsized. However, since this magnet has a low Curie point of 310 ° C, it has poor temperature characteristics and is difficult to use above 150 ° C.
On the other hand, by entering the nitrogen alloyed with rare earth metals and iron, for example, Th 2 Zn 17 type Sm -Fe -N-H-based permanent magnet of the compound as the main phase of crystal structure (alloy) is excellent It has been reported to have magnetic properties and a Curie point of about 470 ° C. However, this alloy has a problem that the cost is higher than that of the Nd-Fe-B-based alloy because Sm, which is rare even in rare earth metals, is used.

【0003】更に最近、Th Mn 12型結晶構造の化合物
を主相とするNd −Fe −Ti −N系永久磁石が開発さ
れ、注目を集めている(例えば、特開平2−57663
号公報)。この合金は、Sm −Fe −N−H系合金同様
に優れた磁気特性と温度特性とが期待される他、安価な
Nd を使用するため、コスト的に有利となる。
More recently, Nd-Fe-Ti-N system permanent magnets having a compound of Th Mn 12 type crystal structure as a main phase have been developed and attracted attention (for example, JP-A-2-57663).
Publication). This alloy is expected to have excellent magnetic characteristics and temperature characteristics similar to the Sm-Fe-N-H alloy, and is inexpensive in terms of cost because it uses inexpensive Nd.

【0004】ところで従来、上記Nd −Fe −Ti −N
系磁石材料を製造するには、一般にはNd −Fe −Ti
系合金を母合金とする粉末を得た後、これに適当な温度
で窒化ガスを接触させて窒素を侵入させる方法が採用さ
れていた。この方法によれば、Th Mn 12型主相の結晶
格子内の所定の位置(2bサイト)に窒素が侵入して、
例えばNd Fe11 Ti Nx (x= 0.2〜2.5 )の化学式
を有する窒化物が生成され、この窒化物が磁気特性およ
び温度特性の向上に大きく寄与するものとなるのであ
る。
By the way, conventionally, the above-mentioned Nd-Fe-Ti-N is used.
Generally, Nd-Fe-Ti is used to produce a magnetic material.
A method has been adopted in which a powder containing a base alloy as a master alloy is obtained, and then a nitriding gas is brought into contact with the powder at an appropriate temperature to allow nitrogen to enter. According to this method, nitrogen penetrates into a predetermined position (2b site) in the crystal lattice of the Th Mn 12 type main phase,
For example Nd nitride having a formula of Fe 11 Ti N x (x = 0.2~2.5) is produced, it is that this nitride is to greatly contribute to improvement of magnetic properties and temperature characteristics.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記N
d −Fe −Ti 系合金粉末に単に窒化ガスを接触させて
窒素を侵入させる希土類磁石材料の製造方法によれば、
得られた粉末の磁気特性が不安定となるばかりか、磁気
的な長期安定性にも欠けるという問題があった。これは
結晶格子内に取り込まれた窒素の侵入位置と量とが一定
せず、しかも合金粉末表面と内部との窒素含有量に差異
を生じ、この結果、Th Mn 12型主相(窒化物相)の結
晶性が不安定となったためと考えられる。
However, the above N
According to the method for producing a rare earth magnet material in which the nitriding gas is simply brought into contact with the d-Fe-Ti alloy powder and nitrogen is introduced,
There is a problem that not only the magnetic properties of the obtained powder become unstable, but also the magnetic long-term stability is lacking. This is because the intrusion position and amount of nitrogen taken into the crystal lattice are not constant, and there is a difference in the nitrogen content between the surface of the alloy powder and the inside. As a result, the Th Mn 12 type main phase (nitride phase) It is considered that the crystallinity of) became unstable.

【0006】本発明は、上記考察に基づいてなされたも
ので、その目的とするところは、窒素を侵入させてもT
h Mn 12型主相の結晶性を低下させることがなく、もっ
て磁気特性、長期安定性の向上に寄与する希土類磁石材
料の製造方法を提供することにある。
The present invention has been made on the basis of the above consideration. The purpose of the present invention is to prevent T even when nitrogen is penetrated.
An object of the present invention is to provide a method for producing a rare earth magnet material that does not lower the crystallinity of the h Mn 12 type main phase and contributes to the improvement of magnetic properties and long-term stability.

【0007】[0007]

【課題を解決するための手段】上記の課題解決のため、
本発明における希土類合金粉末の製造方法は、Nd ,P
r ,Ce のうちの少なくとも一種からなる希土類金属
(R)、Fe 、およびTi ,Mo ,V,W,Cr ,Mn
,Al ,Si のうちの少なくとも一種からなるその他
の金属(M)を主成分とし、かつTh Mn 12型結晶構造
の化合物を主相とする合金粉末を得、次に、この合金粉
末を 200〜 600℃の温度範囲で窒化ガスと接触させ、し
かる後に同じ温度範囲で窒素の拡散熱処理を行なうこと
により、該合金中に2〜20原子%の窒素を含有せしめ
たことを特徴とする。
[Means for Solving the Problems] In order to solve the above problems,
The method for producing the rare earth alloy powder according to the present invention is based on Nd, P
Rare earth metal (R) consisting of at least one of r and Ce, Fe, and Ti, Mo, V, W, Cr and Mn
, Al, and Si, other alloys containing at least one metal (M) as a main component, and a compound having a Th Mn 12 type crystal structure as a main phase are obtained as an alloy powder. The alloy is characterized in that 2 to 20 atomic% of nitrogen is contained in the alloy by contacting with a nitriding gas in a temperature range of 600 ° C. and then performing diffusion heat treatment of nitrogen in the same temperature range.

【0008】従来、Th Mn 12型結晶構造の化合物を主
相とする合金として、原子%で11%Fe −1%Ti −残
部(bal.)Sm の組成をもつものが知られていたが、こ
の合金は飽和磁束密度が低くて実用には向かない。その
ため、この合金に単純に窒素を侵入させることが考えら
れてが、この場合結晶磁気異方性が面内異方性となり磁
石材料にはならない。しかし、希土類金属(R)として
Nd ,Pr ,Ce のいずれかを用いた合金の場合には、
一軸異方性を付与することができ、他の磁気特性も優れ
たものとなる。因みに、窒素侵入前の11%Fe −1%T
i −bal.Nd 合金の飽和磁束密度、結晶磁気異方性およ
びキュリー点は、それぞれ12.5 kG,10kOe 、270 ℃
であるのに対して、窒素侵入後の合金のそれらは、13.7
kG,60kOe 、460 ℃と大幅に向上する。なお磁気性
能や原材料コストの調整のために前記Nd ,Pr ,Ce
のいずれか一部を他の希土類金属で置換することは差し
支えない。
Conventionally, an alloy having a compound of a Th Mn 12 type crystal structure as a main phase and having a composition of 11% Fe -1% Ti-balance (bal.) Sm in atomic% has been known. This alloy has a low saturation magnetic flux density and is not suitable for practical use. Therefore, it is considered that nitrogen is simply allowed to penetrate into this alloy, but in this case, the crystal magnetic anisotropy becomes in-plane anisotropy and cannot be a magnet material. However, in the case of an alloy using any one of Nd, Pr and Ce as the rare earth metal (R),
Uniaxial anisotropy can be imparted, and other magnetic properties are also excellent. By the way, 11% Fe -1% T before nitrogen invasion
The saturation magnetic flux density, crystal magnetic anisotropy and Curie point of i-bal.Nd alloy are 12.5 kG, 10 kOe and 270 ° C, respectively.
Whereas those of the alloys after nitrogen infiltration are 13.7
kG, 60kOe, 460 ℃ significantly improved. In order to adjust the magnetic performance and the cost of raw materials, Nd, Pr, Ce
There is no problem in substituting some of the above with other rare earth metals.

【0009】その他の金属(M)については、Ti ,M
o ,V,W,Cr ,Mn ,Al ,Si のいずれかがTh
Mn 12型結晶構造の安定化に必須であり、合金中にはお
よそ5〜20原子%必要とされる。また本発明において
は、合金中のFe の一部をCoで置換することにより、
さらに飽和磁束密度とキュリー点を高めることができ
る。ただし、Fe に対するCo の置換率が50%以上にな
ると結晶磁気異方性の低下が大きくなるため、置換率は
50%未満とするのがよい。
For other metals (M), Ti, M
Any one of o, V, W, Cr, Mn, Al and Si is Th.
It is essential for stabilizing the Mn 12 type crystal structure, and is required in the alloy in an amount of about 5 to 20 atom%. Further, in the present invention, by substituting a part of Fe in the alloy with Co,
Further, the saturation magnetic flux density and the Curie point can be increased. However, when the substitution rate of Co for Fe is 50% or more, the decrease in magnetocrystalline anisotropy becomes large.
It should be less than 50%.

【0010】本発明において合金粉末を得る方法は任意
である。例えば、希土類金属、鉄およびその他の金属を
所定比率で調合した原料を高周波溶解し、その合金溶湯
を鋳型に注湯して一旦合金インゴットとなし、高温で均
質化処理を行った後、そのインゴットをジョークラッシ
ャーやボールミル、ジェットミル等によって粉砕するよ
うにしても、あるいは前記合金溶湯を直接急冷して粉末
を得るようにしても良い。
In the present invention, the method for obtaining the alloy powder is arbitrary. For example, raw materials prepared by mixing rare earth metals, iron and other metals in a predetermined ratio are subjected to high frequency melting, and the molten alloy is poured into a mold to form an alloy ingot, which is then homogenized at high temperature and then the ingot May be crushed by a jaw crusher, a ball mill, a jet mill, or the like, or the molten alloy may be directly cooled to obtain a powder.

【0011】また、合金粉末への窒素の侵入について
は、この粉末を高温で窒化ガスと接触させることによっ
て行われる。この場合、粉末粒度としては1μm以下で
は酸化しやすく、また数mm単位では窒素の侵入が充分に
行われないため、数〜200μmの範囲が望ましい。窒
化ガスとしては窒素、アンモニア、窒素と水素の混合ガ
スを用いることができる。さらに窒素侵入温度について
は、 200℃未満では窒素の侵入が不充分であり、 600℃
を越えるとTh Mn 12型結晶構造が分解し易くなるた
め、本発明では 200〜 600℃の範囲とした。
Further, the penetration of nitrogen into the alloy powder is carried out by bringing this powder into contact with a nitriding gas at a high temperature. In this case, if the particle size of the powder is 1 μm or less, it is easy to oxidize, and nitrogen is not sufficiently penetrated in a unit of several mm. As the nitriding gas, nitrogen, ammonia, or a mixed gas of nitrogen and hydrogen can be used. Further, regarding the nitrogen penetration temperature, if the temperature is less than 200 ° C, the penetration of nitrogen is insufficient.
If it exceeds the above range, the Th Mn 12 type crystal structure is easily decomposed.

【0012】ところで、上記で得られる窒化粉末の表面
と内部とでは窒素侵入量の差異を生じ、さらに窒化によ
る結晶性の低下をもたらしやすい。このため、本発明で
は窒化処理後に、窒素の拡散熱処理を行うようにした
が、この拡散熱処理は、窒化処理と同じ温度範囲におい
て、真空あるいは不活性ガス雰囲気下で行われる。この
熱処理により粉末表面と内部との窒素量の均一化と、本
合金の特徴としての結晶性の回復が行われる。
By the way, a difference in the amount of nitrogen invasion occurs between the surface and the inside of the nitride powder obtained above, and the crystallinity is likely to be lowered due to nitriding. Therefore, in the present invention, the nitrogen diffusion heat treatment is performed after the nitriding treatment, but this diffusion heat treatment is performed in a vacuum or in an inert gas atmosphere in the same temperature range as the nitriding treatment. By this heat treatment, the amount of nitrogen on the surface of the powder is made uniform, and the crystallinity characteristic of the present alloy is recovered.

【0013】本合金中への窒素の侵入量は2〜20原子
%すなわち代表的な窒化物Nd Fe1 1 Ti Nx と表現し
た場合には、x= 0.2〜2.5 とするのが好ましい。この
理由は、2原子%未満では結晶磁気異方性が小さくて磁
気特性が優れず、また20原子%を越えるとTh Mn 12
晶相が不安定になって、結晶性および磁気特性の低下を
もたらすためである。
The amount of nitrogen penetrating into the present alloy is 2 to 20 atomic%, that is, when expressed as a typical nitride Nd Fe 1 1 Ti N x, it is preferable that x = 0.2 to 2.5. The reason for this is that if it is less than 2 atom%, the crystalline magnetic anisotropy is small and the magnetic properties are not excellent, and if it exceeds 20 atom%, the Th Mn 12 crystalline phase becomes unstable and the crystallinity and magnetic properties are deteriorated. This is to bring.

【0014】本発明により製造された希土類磁石材料
は、一般にバインダーで固めていわゆるボンド磁石とす
ることができる。この場合、バインダーとしては亜鉛や
錫などの金属、エポキシ樹脂やフェノール樹脂などの熱
硬化性樹脂、あるいはナイロンなどの熱可塑性樹脂を用
いることができ、また成形方法としては、圧縮、射出、
押し出し、ホットプレスなど各種の方法を用いることが
できる。
The rare earth magnet material produced according to the present invention can generally be solidified with a binder to form a so-called bonded magnet. In this case, a metal such as zinc or tin, a thermosetting resin such as an epoxy resin or a phenol resin, or a thermoplastic resin such as nylon can be used as the binder, and the molding method includes compression, injection,
Various methods such as extrusion and hot pressing can be used.

【0015】[0015]

【作用】上述の希土類合金粉末の製造方法によれば、合
金内に自由に侵入した窒素原子が拡散熱処理によってT
h Mn 12型結晶格子内の所定の位置(2bサイト)に収
まり、Th Mn 12型主相の結晶構造が安定化する。
According to the above-described method for producing rare earth alloy powder, the nitrogen atoms freely penetrating into the alloy are transformed into T by the diffusion heat treatment.
It fits into a predetermined position (2b site) in the hMn 12 type crystal lattice, and the crystal structure of the Th Mn 12 type main phase is stabilized.

【0016】[0016]

【実施例】以下、本発明の実施例を添付図面も参照して
説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0017】実施例1 金属ネオジウム(Nd )、電解鉄、フェロチタンを所定
の比率で配合し、高周波溶解して成分組成式Nd 1 Fe
11Ti 1 (原子比でNd :Fe :Ti =1:11:1)の
組成の合金インゴットを製作し、このインゴットを1200
℃、12時間、Ar ガス雰囲気下で拡散熱処理を行い、そ
の後、スタンプミルとジェットミルによって平均粒径10
μmの合金粉末を得た。次に、この合金粉末を5気圧の
窒素ガス中で、 350℃、1〜36時間保持して窒素を侵入
させ、引き続いて真空中で 400℃、4時間保持して窒素
の拡散熱処理を行った。得られた窒化粉末の窒素含有量
はLECO社製分析装置のTC−436によって測定
し、X線回折法によってThMn 12型主相の生成の有無
を確認した。また、磁気特性は振動試料型磁力計によっ
て測定した。図1および図2にこれらの試験結果を示
す。
Example 1 Metal neodymium (Nd), electrolytic iron, and ferrotitanium were blended in a predetermined ratio, and the mixture was melted at a high frequency to form a component composition formula Nd 1 Fe.
An alloy ingot having a composition of 11 Ti 1 (atomic ratio of Nd: Fe: Ti = 1: 11: 1) was produced, and this ingot was made into 1200
Diffusion heat treatment is performed at 12 ℃ for 12 hours in Ar gas atmosphere, and then the average particle size is 10 with a stamp mill and a jet mill.
A μm alloy powder was obtained. Next, this alloy powder was kept in nitrogen gas at 5 atm at 350 ° C. for 1 to 36 hours to infiltrate nitrogen, and subsequently kept at 400 ° C. in vacuum for 4 hours to perform diffusion heat treatment of nitrogen. .. The nitrogen content of the obtained nitriding powder was measured by TC-436 of LECO analyzer, and it was confirmed by X-ray diffraction method whether or not the ThMn 12 type main phase was formed. The magnetic characteristics were measured by a vibrating sample magnetometer. The test results are shown in FIGS. 1 and 2.

【0018】図1は磁気特性とキュリー点の試験結果を
示したものである。なお、図1において白抜きマークは
拡散熱処理を行う前の粉末の試験結果を、黒塗りマーク
は拡散熱処理を行った後の試験結果をそれぞれ表す。ま
た同図中、4πIm は最大印加磁界20 kOe における
最大磁束密度を、Ha は異方性磁界をそれぞれ表す。図
1に示す結果より、Th Mn 12型主相としての窒化物N
d Fe 11Ti Nx (xは定数とならず不特定の値をとり
得る)を含む本発明にかゝる合金粉末は、窒素の侵入と
その拡散熱処理によって最大磁束密度4πIm および異
方性磁界Ha のいずれもが向上し、優れた磁気特性値が
得られることが分った。なお、合金粉末中の窒素量が2
原子%未満および20原子%を越える場合には、磁気特性
の向上があまり顕著でない。
FIG. 1 shows the test results of magnetic properties and Curie points. In FIG. 1, white marks represent the test results of the powder before the diffusion heat treatment, and black marks represent the test results after the diffusion heat treatment. In the figure, 4πIm represents the maximum magnetic flux density at the maximum applied magnetic field of 20 kOe, and Ha represents the anisotropic magnetic field. From the results shown in FIG. 1, the nitride N as the main phase of Th Mn 12 type
The alloy powder according to the present invention containing d Fe 11 Ti N x (where x is not a constant and can take an unspecified value) has a maximum magnetic flux density of 4πIm and an anisotropic magnetic field due to nitrogen infiltration and its diffusion heat treatment. It has been found that all of Ha are improved and excellent magnetic characteristic values are obtained. The amount of nitrogen in the alloy powder is 2
When it is less than 20 atomic% or less than 20 atomic%, the magnetic properties are not significantly improved.

【0019】図2は、拡散熱処理前・後の粉末試料につ
いてのX線回折結果を示したものである。なお、このX
線回折は、窒素を6原子%含有する粉末試料のものを対
象にして行い、図2には(002)面についてのX線回
折パターンを示した。同図に示す結果より、曲線bで表
す拡散熱処理後の粉末試料の回折パターンは、aで表す
拡散熱処理前の粉末試料のそれよりもシャープになって
おり、拡散熱処理によって窒化物の結晶性が改善されて
いることが明らかである。このことより、上記拡散熱処
理後の磁気特性が向上したのは、この窒化物の結晶性が
改善されたことによると考えられる。
FIG. 2 shows the X-ray diffraction results of the powder sample before and after the diffusion heat treatment. In addition, this X
The line diffraction was performed on a powder sample containing 6 atomic% of nitrogen, and FIG. 2 shows an X-ray diffraction pattern of the (002) plane. From the results shown in the figure, the diffraction pattern of the powder sample after the diffusion heat treatment represented by the curve b is sharper than that of the powder sample before the diffusion heat treatment represented by a, and the crystallinity of the nitride is increased by the diffusion heat treatment. It is clearly improved. From this, it is considered that the magnetic properties after the diffusion heat treatment are improved because the crystallinity of the nitride is improved.

【0020】実施例2 希土類金属としてNd ,Pr ,Ce ,Sm ,Dy のいず
れかと、電解鉄、フェロチタンを溶解原料として、実施
例1と同様に溶解、粉砕を行った。次に、この合金粉末
をアンモニアガス気流中で、 350℃、2時間保持して窒
素を侵入させ、引き続いて真空中で 400℃、4時間保持
して窒素の拡散熱処理を行った。得られた窒化粉末試料
No.1〜7の成分組成と磁気特性とを表1に一括して示
す。なお、表中、各元素に付した数値は原子比を表し、
また試料番号に付した#記号は比較例を表している。
Example 2 As a rare earth metal, any one of Nd, Pr, Ce, Sm and Dy, electrolytic iron and ferro titanium were used as a melting raw material, and melting and pulverization were carried out in the same manner as in Example 1. Next, this alloy powder was kept in an ammonia gas stream at 350 ° C. for 2 hours to allow nitrogen to infiltrate therein, and subsequently kept in vacuum at 400 ° C. for 4 hours for diffusion heat treatment of nitrogen. Table 1 collectively shows the composition and magnetic properties of the obtained nitride powder samples No. 1 to 7. In the table, the numerical value attached to each element represents the atomic ratio,
The # symbol added to the sample number represents a comparative example.

【0021】[0021]

【表1】 [Table 1]

【0022】表1に示す結果より明らかなように、本発
明にかゝる試料No. 2〜7については良好な磁気特性が
得られた。一方、比較試料No.1は希土類金属がSm で
あるために、結晶磁気異方性が面内異方性となり、磁石
材料として必要な異方性磁界が得られていない。
As is clear from the results shown in Table 1, good magnetic properties were obtained for Sample Nos. 2 to 7 according to the present invention. On the other hand, in the comparative sample No. 1, since the rare earth metal is Sm, the crystal magnetic anisotropy becomes in-plane anisotropy, and the anisotropic magnetic field required as a magnet material cannot be obtained.

【0023】実施例3 金属ネオジウム、電解鉄、およびその他の金属としてT
i ,Mo ,V,W,Cr ,Mn ,Al ,Si のいずれか
のフェロアロイを原料として、実施例1と同様にして溶
解、粉砕を行った。次に、この合金粉末を5気圧の窒素
ガス雰囲気下で、 400℃、2時間保持して窒素を侵入さ
せ、引き続いて真空中で 350℃、6時間保持して窒素の
拡散熱処理を行った。得られた窒化粉末試料No.11〜
20の成分組成と磁気特性を表2に一括して示す。
EXAMPLE 3 Metal neodymium, electrolytic iron, and T as other metals
A ferroalloy of any one of i, Mo, V, W, Cr, Mn, Al and Si was used as a raw material, and dissolved and pulverized in the same manner as in Example 1. Next, this alloy powder was kept under a nitrogen gas atmosphere of 5 atm at 400 ° C. for 2 hours to allow nitrogen to infiltrate, and subsequently kept at 350 ° C. for 6 hours in vacuum to carry out nitrogen diffusion heat treatment. The obtained nitride powder sample No. 11
Table 2 collectively shows the composition and magnetic properties of 20.

【0024】[0024]

【表2】 [Table 2]

【0025】第2表に示す結果より明らかなように、本
発明による試料No.12〜20については良好な磁気特
性が得られた。一方、比較試料No.11はTh Mn 12
結晶構造を安定化する金属元素を含まないため、Th 2
Zn 17相が生成し、そのため磁気特性が低くなってい
る。
As is clear from the results shown in Table 2, good magnetic properties were obtained for samples No. 12 to 20 according to the present invention. On the other hand, Comparative sample No. 11 does not contain a metal element that stabilizes the Th Mn 12 type crystal structure, and therefore Th 2
The Zn 17 phase is generated, and therefore the magnetic properties are low.

【0026】実施例4 金属ネオジウム、電解鉄、電解コバルト、およびフェロ
チタンを所定の比率で配合し、高周波溶解して成分組成
式Nd 1 Fe 9 Co 2 Ti 1 の合金インゴットを製作し
た。これを1100℃、12時間、Ar ガス雰囲気下で拡散熱
処理を行い、その後、スタンプミルとボールミルによっ
て平均粒径50μmの粉末を得た。次に、この合金粉末を
5気圧の窒素ガス中で、 100〜700 ℃の温度で、16時間
保持して窒素を侵入させ、引き続いてAr ガス気流中で
350℃、12時間保持して窒素の拡散熱処理を行った。得
られた窒化粉末を実施例1と同様に磁気特性の測定に供
した。結果を図3に示す。
Example 4 Metal neodymium, electrolytic iron, electrolytic cobalt, and ferrotitanium were mixed in a predetermined ratio and were subjected to high frequency melting to produce an alloy ingot having a compositional formula Nd 1 Fe 9 Co 2 Ti 1 . This was subjected to diffusion heat treatment at 1100 ° C. for 12 hours in an Ar gas atmosphere, and then a stamp mill and a ball mill were used to obtain a powder having an average particle size of 50 μm. Next, this alloy powder is kept in nitrogen gas at 5 atm at a temperature of 100 to 700 ° C. for 16 hours to allow nitrogen to infiltrate, and then in an Ar gas stream.
This was held at 350 ° C for 12 hours to perform nitrogen diffusion heat treatment. The obtained nitriding powder was subjected to measurement of magnetic properties in the same manner as in Example 1. Results are shown in FIG.

【0027】図3に示す結果より、本発明によるTh M
n 12型主相を含む合金は、 200〜 600℃の温度範囲で窒
化処理を行うことにより優れた磁気特性を示すことが明
らかとなった。なお、窒化処理温度が 200℃に満たない
場合には、窒素の侵入が容易でなく、一方 600℃を越え
ると、窒化物結晶の分解のため磁性が低下する。
From the results shown in FIG. 3, the Th M according to the present invention is
It has been clarified that the alloy containing the n 12 type main phase exhibits excellent magnetic properties by nitriding treatment in the temperature range of 200 to 600 ° C. If the nitriding temperature is less than 200 ° C, it is not easy for nitrogen to enter. On the other hand, if the nitriding temperature exceeds 600 ° C, the magnetism deteriorates due to decomposition of the nitride crystal.

【0028】実施例5 実施例4と同じく、成分組成式Nd 1 Fe 9 Co 2 Ti
1 の合金粉末をオートクレーブに装填し、40気圧の窒素
ガス中、 350℃、12時間保持して窒素を侵入させた。続
いてこの粉末を、真空中で 100〜700 ℃、12時間保持し
て窒素の拡散熱処理を行った。得られた窒化粉末試料
は、実施例1と同様に磁気特性を測定した。結果を図4
に示す。4図に示す結果より、本発明にかゝる合金粉末
は、上記熱処理を 200〜 600℃の温度範囲で行うことに
より、磁気特性が向上することが明らかとなった。
Example 5 As in Example 4, the chemical composition formula of Nd 1 Fe 9 Co 2 Ti was used.
The alloy powder of No. 1 was charged into an autoclave and kept in nitrogen gas at 40 atm at 350 ° C for 12 hours to allow nitrogen to infiltrate. Subsequently, this powder was held in vacuum at 100 to 700 ° C. for 12 hours to perform a nitrogen diffusion heat treatment. The magnetic characteristics of the obtained nitride powder sample were measured in the same manner as in Example 1. The result is shown in Figure 4.
Shown in. From the results shown in FIG. 4, it has been clarified that the alloy powder according to the present invention has improved magnetic properties by performing the heat treatment in the temperature range of 200 to 600 ° C.

【0029】実施例6 金属プラセオジウム、電解鉄、電解コバルト、フェロチ
タン、およびフェロクロムを原料として、成分組成式P
r 1 (Fe ,Co ) 10.8Ti 0.8 Cr 0.4 の合金インゴ
ットを製作した。次に1100℃、12時間の均質化処理を行
った後、ジェットミルによって平均粒径6μmの粉末を
得た。この合金粉末を5気圧の窒素ガス中で、 350〜 4
00℃の温度で12時間保持して窒素を侵入させ、続いて真
空中で 350℃、6時間保持して窒素の拡散熱処理を行っ
た。得られた窒化粉末のうち窒素含有量が5〜9原子%
のものを、実施例1と同様に磁気特性の試験に供した。
結果を図5に示す。
Example 6 Using metal praseodymium, electrolytic iron, electrolytic cobalt, ferrotitanium, and ferrochrome as raw materials, component composition formula P
An alloy ingot of r 1 (Fe, Co) 10.8 Ti 0.8 Cr 0.4 was produced. Next, after homogenizing treatment at 1100 ° C. for 12 hours, a powder having an average particle size of 6 μm was obtained by a jet mill. This alloy powder is heated to 350 to 4 in nitrogen gas at 5 atm.
The temperature was kept at 00 ° C. for 12 hours to allow nitrogen to infiltrate, and subsequently, the temperature was kept at 350 ° C. for 6 hours in vacuum to carry out nitrogen diffusion heat treatment. The nitrogen content of the obtained nitriding powder is 5 to 9 atom%.
The same was subjected to the magnetic property test as in Example 1.
Results are shown in FIG.

【0030】図5により、本発明における合成成分の
内、Fe を一定比率のCo で置換することにより、最大
磁束密度が増大することが明らかになった。ただしその
置換率が60%以上では、磁束密度の向上が見られなくな
るために、Co 置換率は50%未満であることが必要であ
る。
From FIG. 5, it has been clarified that the maximum magnetic flux density is increased by substituting Fe with Co at a constant ratio among the composite components in the present invention. However, if the substitution rate is 60% or more, the improvement of the magnetic flux density cannot be seen, so the Co substitution rate must be less than 50%.

【0031】[0031]

【発明の効果】以上詳細に説明したように、本発明にか
かる希土類磁石材料の製造方法によれば、合金内に自由
に侵入した窒素原子が拡散熱処理によってTh Mn 12
結晶格子内の所定の位置に収まるので、Th Mn 12型主
相の結晶性が安定化し、磁気特性および温度特性が向上
するばかりか、長期安定性においても優れた希土類磁石
材料を得ることができる。
As described above in detail, according to the method for manufacturing a rare earth magnet material of the present invention, nitrogen atoms freely penetrating into the alloy are diffused and heat-treated to a predetermined amount in the Th Mn 12 type crystal lattice. Since it fits in the position, the crystallinity of the Th Mn 12 type main phase is stabilized, the magnetic characteristics and temperature characteristics are improved, and a rare earth magnet material excellent in long-term stability can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1で得た希土類磁石材料の磁気
特性に及ぼす窒素量の影響を示すグラフである。
FIG. 1 is a graph showing the influence of the amount of nitrogen on the magnetic properties of the rare earth magnet material obtained in Example 1 of the present invention.

【図2】本発明の実施例1で得た希土類磁石材料のX線
回折結果を示すグラフである。
FIG. 2 is a graph showing an X-ray diffraction result of the rare earth magnet material obtained in Example 1 of the present invention.

【図3】本発明の実施例4で得た希土類磁石材料の磁気
特性に及ぼす窒化処理温度の影響を示すグラフである。
FIG. 3 is a graph showing the effect of nitriding temperature on the magnetic properties of the rare earth magnet material obtained in Example 4 of the present invention.

【図4】本発明の実施例4で得た希土類磁石材料の磁気
特性に及ぼす拡散熱処理温度の影響を示すグラフであ
る。
FIG. 4 is a graph showing the effect of diffusion heat treatment temperature on the magnetic properties of the rare earth magnet material obtained in Example 4 of the present invention.

【図5】本発明の実施例6で得た希土類磁石材料の磁気
特性に及ぼすCo /Fe 比の影響を示すグラフである。
FIG. 5 is a graph showing the influence of the Co / Fe ratio on the magnetic characteristics of the rare earth magnet material obtained in Example 6 of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Nd ,Pr ,Ce のうちの少なくとも一
種からなる希土類金属(R)、Fe 、およびTi ,Mo
,V,W,Cr ,Mn ,Al ,Si のうちの少なくと
も一種からなるその他の金属(M)を主成分とし、かつ
Th Mn 12型結晶構造の化合物を主相とする合金粉末を
得、次に、この合金粉末を 200〜 600℃の温度範囲で窒
化ガスと接触させ、しかる後に同じ温度範囲で窒素の拡
散熱処理を行なうことにより、該合金中に2〜20原子
%の窒素を含有せしめたことを特徴とする希土類磁石材
料の製造方法。
1. A rare earth metal (R) comprising at least one of Nd, Pr, and Ce, Fe, and Ti, Mo.
, V, W, Cr, Mn, Al, Si, other metal (M) consisting of at least one of the main components, and an alloy powder containing a compound of the Th Mn 12 type crystal structure as the main phase is obtained. Then, this alloy powder was brought into contact with a nitriding gas in the temperature range of 200 to 600 ° C., and then nitrogen diffusion heat treatment was carried out in the same temperature range so that the alloy contained 2 to 20 atomic% of nitrogen. A method for producing a rare earth magnet material, comprising:
【請求項2】 Fe の一部を50%未満のCo で置換す
ることを特徴とする請求項1に記載の希土類磁石材料の
製造方法。
2. The method for producing a rare earth magnet material according to claim 1, wherein a part of Fe is replaced with less than 50% of Co.
JP4140939A 1992-05-06 1992-05-06 Manufacture of rare earth magnet material Pending JPH05315114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4140939A JPH05315114A (en) 1992-05-06 1992-05-06 Manufacture of rare earth magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4140939A JPH05315114A (en) 1992-05-06 1992-05-06 Manufacture of rare earth magnet material

Publications (1)

Publication Number Publication Date
JPH05315114A true JPH05315114A (en) 1993-11-26

Family

ID=15280333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4140939A Pending JPH05315114A (en) 1992-05-06 1992-05-06 Manufacture of rare earth magnet material

Country Status (1)

Country Link
JP (1) JPH05315114A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19649407A1 (en) * 1995-11-28 1997-06-05 Sumitomo Metal Mining Co Magnetic alloy containing rare earth, iron and nitrogen
JP2005183630A (en) * 2003-12-18 2005-07-07 Tdk Corp Permanent magnetic powder, method for manufacturing the same and bond magnet
US20130252004A1 (en) * 2011-05-24 2013-09-26 Sumitomo Electric Industries, Ltd. Rare earth-iron-nitrogen-based alloy material, method for producing rare earth-iron-nitrogen-based alloy material, rare earth-iron-based alloy material, and method for producing rare earth-iron-based alloy material
WO2024048972A1 (en) * 2022-08-30 2024-03-07 한국재료연구원 Method for preparing thmn12-type magnetic powder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19649407A1 (en) * 1995-11-28 1997-06-05 Sumitomo Metal Mining Co Magnetic alloy containing rare earth, iron and nitrogen
DE19649407C2 (en) * 1995-11-28 2002-06-27 Sumitomo Metal Mining Co Rare earth iron nitrogen magnetic alloy
JP2005183630A (en) * 2003-12-18 2005-07-07 Tdk Corp Permanent magnetic powder, method for manufacturing the same and bond magnet
US20130252004A1 (en) * 2011-05-24 2013-09-26 Sumitomo Electric Industries, Ltd. Rare earth-iron-nitrogen-based alloy material, method for producing rare earth-iron-nitrogen-based alloy material, rare earth-iron-based alloy material, and method for producing rare earth-iron-based alloy material
WO2024048972A1 (en) * 2022-08-30 2024-03-07 한국재료연구원 Method for preparing thmn12-type magnetic powder

Similar Documents

Publication Publication Date Title
JP3741597B2 (en) Multi-element rare earth-iron lattice intrusion-type permanent magnet material, permanent magnet comprising the same, and method for producing them
US4898625A (en) Method for producing a rare earth metal-iron-boron permanent magnet by use of a rapidly-quenched alloy powder
JP2001189206A (en) Permanent magnet
JPWO2002103719A1 (en) Rare earth permanent magnet material
EP1127358B1 (en) Sm (Co, Fe, Cu, Zr, C) COMPOSITIONS AND METHODS OF PRODUCING SAME
JPH04184901A (en) Rare earth iron based permanent magnet and its manufacture
JP3118740B2 (en) Rare earth magnet materials and rare earth bonded magnets
JPH05315114A (en) Manufacture of rare earth magnet material
JP3073807B2 (en) Iron-rare earth permanent magnet material and method for producing the same
JP3248077B2 (en) Manufacturing method of rare earth-iron-nitrogen permanent magnet
JP2739860B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
JPH06279915A (en) Rare earth magnet material and rare earth bonded magnet
US7465363B2 (en) Hard magnetic composition, permanent magnet powder, method for permanent magnet powder, and bonded magnet
JPH0525592A (en) Rare earth magnet material
JPH06248301A (en) Production of rare-earth magnet material
JP2000216015A (en) Compressed type rigid magnetic material and manufacture thereof
JPH05121221A (en) Production of rare earth bonded magnet
JPH04365840A (en) Rare earth magnet material
JP3168484B2 (en) Method for manufacturing rare earth-iron-nitrogen permanent magnet
JPH05121222A (en) Production of rare earth bonded magnet
JPH0533095A (en) Permanent magnet alloy and its production
JPH04318152A (en) Rare earth magnetic material and its manufacture
JPH0620815A (en) Manufacture of rare earth bonded magnet
JPH05230502A (en) Production of rare-earth element bond magnet
JPH05234735A (en) Manufacture of rare earth element bonded magnet