JPH0620815A - Manufacture of rare earth bonded magnet - Google Patents

Manufacture of rare earth bonded magnet

Info

Publication number
JPH0620815A
JPH0620815A JP4194911A JP19491192A JPH0620815A JP H0620815 A JPH0620815 A JP H0620815A JP 4194911 A JP4194911 A JP 4194911A JP 19491192 A JP19491192 A JP 19491192A JP H0620815 A JPH0620815 A JP H0620815A
Authority
JP
Japan
Prior art keywords
powder
rare earth
magnet
mixed
bonded magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4194911A
Other languages
Japanese (ja)
Inventor
Masahito Kawasaki
正仁 川崎
Toshihiko Miura
敏彦 三浦
Toshiharu Suzuki
俊治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP4194911A priority Critical patent/JPH0620815A/en
Publication of JPH0620815A publication Critical patent/JPH0620815A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0596Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0593Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of tetragonal ThMn12-structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To enhance coercive force and to improve long-term reliability by a method wherein low melting point metal powder is added to the alloy powder, having specific particle diameter and the compound of specific crystal structure as the main phase, which is mainly composed of rare earth metal, Fe and N. CONSTITUTION:This manufacturing method is the method in which rare earth bonded magnet is formed as follows: metal powder, consisting of at least a kind selected from Sn, Zn, Pb, In, Al and Mg, is mixed into alloy powder of 20 to 150mum in average particle diameter having rare earth metal, Fe and N as the main component, and also having a Th2Zn17 or ThMn12 type crystal structure compound as the main phase. After the above-mentioned mixed powder has been compression-molded, a heat treatment is conducted in the temperature range of 100 to 600 deg.C. As a result, sufficient coercive force can be ensured even when coarse powder is used, and a rare earth bonded magnet, having excellent long-term reliability, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類金属(R)−F
e −N系ボンド磁石の製造方法に係り、さらに詳しくは
粗粉末を用いることにより、量産性と長期安定性を改良
したボンド磁石の製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a rare earth metal (R) -F.
The present invention relates to a method for manufacturing an eN bond magnet, and more particularly to a method for manufacturing a bond magnet with improved mass productivity and long-term stability by using coarse powder.

【0002】[0002]

【従来の技術】近年、各種電子機器の小型化に伴って高
性能なNd −Fe −B系永久磁石が広く使用されてい
る。しかしこの磁石はキュリー点が約 310℃と低いため
に温度特性が悪く、 150℃以上での使用が困難であっ
た。
2. Description of the Related Art In recent years, high-performance Nd-Fe-B system permanent magnets have been widely used with the miniaturization of various electronic devices. However, since this magnet has a low Curie point of about 310 ° C, it has poor temperature characteristics and is difficult to use above 150 ° C.

【0003】一方、希土類金属と鉄との合金に窒素を侵
入させることにより、例えばTh 2Zn 17型結晶構造の
化合物を主相とするSm −Fe −N−H系合金が、優れ
た磁気特性と約 470℃のキュリー点をもつことが報告さ
れている。また、Th Mn 12型結晶構造の化合物を主相
とするNd −Fe −Ti −N系合金も同様な磁性をもち
えることが提案されている。
On the other hand, by introducing nitrogen into an alloy of a rare earth metal and iron, for example, an Sm-Fe-N-H-based alloy having a compound having a Th 2 Zn 17 type crystal structure as a main phase has excellent magnetic properties. And a Curie point of about 470 ° C. Further, it has been proposed that an Nd-Fe-Ti-N-based alloy containing a compound having a Th Mn 12 type crystal structure as a main phase also has similar magnetism.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記R
−Fe −N系合金は、数μmの粒径に微粉砕しなければ
永久磁石として必要な保磁力が得られず、この微粉末を
用いる分、成形性が悪化して高圧成形が必要となって金
型寿命が短縮され、その上、高温・多湿下で酸化し易い
ため、ボンド磁石としての長期信頼性に欠けるという問
題があった。
However, the above-mentioned R
The -Fe-N-based alloy cannot obtain the coercive force required as a permanent magnet unless it is finely pulverized to a particle size of several μm, and since this fine powder is used, the formability deteriorates and high-pressure forming becomes necessary. As a result, the mold life is shortened, and moreover, it easily oxidizes under high temperature and high humidity, so that there is a problem that the bond magnet lacks long-term reliability.

【0005】本発明は、上記従来の問題に鑑みてなされ
たもので、粗粉末を用いても充分なる保磁力を確保で
き、もって製造性、長期信頼性等に優れた希土類ボンド
磁石の製造方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and it is possible to secure a sufficient coercive force even if a coarse powder is used, and thus a method for producing a rare earth bonded magnet excellent in manufacturability and long-term reliability. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】上記の課題解決のため、
本発明は、希土類金属(R),Fe およびNを主成分と
し、かつTh 2 Zn 17またはTh Mn 12型結晶構造の化
合物を主相とする平均粒径20〜 150μmの合金粉末に、
Sn ,Zn ,Pb ,In ,Al ,Mg の少なくとも一種
から成る金属粉末を3〜30重量%混合し、この混合粉末
を圧縮成形した後、 100〜 600℃の温度範囲で熱処理を
行なうことを特徴とする。
[Means for Solving the Problems] In order to solve the above problems,
The present invention provides an alloy powder having a rare earth metal (R), Fe and N as main components and a compound having a Th 2 Zn 17 or Th Mn 12 type crystal structure as a main phase and an average particle size of 20 to 150 μm.
It is characterized in that metal powder consisting of at least one of Sn, Zn, Pb, In, Al and Mg is mixed in an amount of 3 to 30% by weight, the mixed powder is compression-molded and then heat-treated at a temperature range of 100 to 600 ° C. And

【0007】本発明において、上記R−Fe −N系合金
としては、Th 2 Zn 17型結晶構造の化合物を主相とす
るSm 2 Fe 17Nx 組成、あるいはTh Mn 12型結晶構
造の化合物を主相とするNd (Fe ,M)12Nx 組成や
Pr (Fe ,M) 12 Nx 組成が代表として挙げられる
(こゝで、Mは繊維金属を指す)。この場合、Nの含有
量としては数〜20数原子%が選択される。これらの合金
は、Fe の一部をCoやTi など他の遷移金属で置換し
たり、希土類金属として2種以上の希土類金属を用いる
ことができる。これらの合金は、飽和磁束密度、結晶磁
気異方性およびキュリー点が大幅に上昇し、永久磁石素
材として優れたものになる。特にCo は、キュリー点の
上昇と耐食性の向上に効果がある。また上記窒素を炭素
で置き換えることによっても良好な磁気特性を得ること
ができる。
In the present invention, as the R-Fe-N-based alloy, a Sm 2 Fe 17 Nx composition having a Th 2 Zn 17 type crystal structure as a main phase or a Th Mn 12 type crystal structure as a main phase is mainly used. Typical examples are Nd (Fe, M) 12 Nx composition and Pr (Fe, M) 12 Nx composition as a phase (here, M means fiber metal). In this case, the content of N is selected to be several to 20 several atomic%. In these alloys, a part of Fe can be replaced with another transition metal such as Co or Ti, or two or more kinds of rare earth metals can be used as the rare earth metal. These alloys have greatly increased saturation magnetic flux density, crystal magnetic anisotropy and Curie point, and are excellent as permanent magnet materials. In particular, Co is effective in raising the Curie point and improving the corrosion resistance. Also, good magnetic characteristics can be obtained by replacing the nitrogen with carbon.

【0008】本発明において合金粉末を得る方法は任意
であり、例えば、希土類金属とFe(および所望により
その他の金属)との母合金粉末を得て、これにNを侵入
させる方法を用いることができる。この場合、前記母合
金粉末を得る方法としては、希土類金属とFe (および
所望によりその他の金属)を所定比率で配合した原料を
高周波溶解し、その合金溶湯を鋳型に注湯して一旦合金
インゴットとなし、高温で均質化処理を行った後、ジョ
ークラッシャー、スタンプミル、ボールミル等を用いて
所望の粒度の粉末とする方法、あるいは合金溶湯を直接
急冷して粉末とする急冷法を用いることができる。
In the present invention, the method of obtaining the alloy powder is arbitrary, and for example, a method of obtaining a mother alloy powder of a rare earth metal and Fe (and optionally other metal) and injecting N into this is used. it can. In this case, as a method for obtaining the mother alloy powder, a raw material in which a rare earth metal and Fe (and optionally other metal) are blended in a predetermined ratio is subjected to high frequency melting, and the molten alloy is poured into a mold to temporarily alloy ingot. After performing homogenization at high temperature, it is possible to use a method such as jaw crusher, stamp mill, ball mill, etc., to obtain powder of desired particle size, or a method of rapidly cooling molten alloy directly to powder. it can.

【0009】また、上記母合金粉末へのNの侵入は、こ
の母合金粉末を高温で窒素、アンモニア、あるいは窒素
と水素の混合ガス等の窒化性ガスと接触させることによ
って行うことができる。この場合、窒化温度としては、
200℃未満ではNの侵入が不充分であり、 600℃を越え
ると所定の合金化合物相が分解し易くなるので、 100〜
600℃の範囲を選択するのが望ましい。また、窒化処理
を数十気圧の高圧力下方で行うことにより、母合金粉末
の窒化を促進することができる。さらに、上記窒化処理
の後に再度粉砕を行って、粉末粒径と磁気特性の調整を
行うことは差し支えない。
The penetration of N into the mother alloy powder can be carried out by bringing the mother alloy powder into contact with a nitriding gas such as nitrogen, ammonia, or a mixed gas of nitrogen and hydrogen at a high temperature. In this case, the nitriding temperature is
If the temperature is less than 200 ° C, the penetration of N is insufficient, and if it exceeds 600 ° C, the predetermined alloy compound phase is easily decomposed.
It is desirable to select the range of 600 ° C. Further, by performing the nitriding treatment under a high pressure of several tens of atmospheres, nitriding of the mother alloy powder can be promoted. Further, it is possible to pulverize again after the nitriding treatment to adjust the powder particle size and magnetic characteristics.

【0010】本発明において、合金粉末の粒径は、20μ
m未満ではボンド磁石化するに際して高圧成形を必要と
するために量産上好ましくないばかりか、製造工程中で
酸化し易くなり、一方、 150μmを越えると窒素の侵入
が充分に行われないため、20〜 150μmの範囲とした。
In the present invention, the grain size of the alloy powder is 20 μm.
If it is less than m, it is not preferable for mass production because it requires high-pressure molding when it is made into a bonded magnet, and it easily oxidizes in the manufacturing process. On the other hand, if it exceeds 150 μm, nitrogen is not sufficiently penetrated. The range was up to 150 μm.

【0011】本発明において、得られた合金粉末に混合
する金属粉末として、低融点金属であるSn ,Zn ,P
b ,In ,Al ,Mg の少なくとも一種を選択したの
は、これらの金属は、ボンド磁石用バインダーとして機
能する他に、後述の熱処理により合金粉末と一部反応し
て保磁力を増加させる働きがあるためである。これら混
合金属量は、3重量%未満では磁石としての結合強度が
不足し、30重量%を越える場合は磁気特性の低下が大き
いため、その添加量を3〜30重量%とした。
In the present invention, as the metal powder to be mixed with the obtained alloy powder, Sn, Zn and P which are low melting point metals are used.
At least one of b, In, Al, and Mg is selected because these metals function as binders for bond magnets, and also have a function of partially reacting with alloy powder by heat treatment described later to increase coercive force. Because there is. If the amount of these mixed metals is less than 3% by weight, the bonding strength as a magnet is insufficient, and if it exceeds 30% by weight, the magnetic properties are greatly deteriorated. Therefore, the addition amount is set to 3 to 30% by weight.

【0012】さらに、本発明は、圧縮成形後熱処理をし
て磁気特性(保磁力)と結合強度との向上を図ったこと
を特徴とするが、この熱処理温度としては、 100℃未満
では前記した向上がみられず、 600℃を越えると化合物
の分解を引き起こして磁気特性を低下させるため、これ
を 100〜 600℃とした。なお、この熱処理は不活性ガス
雰囲気中あるいは真空中で行うのが望ましい。また、前
記圧縮成形を 100〜 600℃で行うことにより、後の熱処
理を省略することもできる。さらに熱処理後の成形体
に、強度向上のために有機物樹脂を含浸する。あるいは
耐食性向上のために有機物または無機物の皮膜を形成す
ることも有効である。
Further, the present invention is characterized in that the magnetic properties (coercive force) and the bond strength are improved by heat treatment after compression molding. No improvement was observed, and when the temperature exceeds 600 ° C, the compound is decomposed and the magnetic properties deteriorate, so this was set to 100 to 600 ° C. It is desirable that this heat treatment be performed in an inert gas atmosphere or in a vacuum. Further, by performing the compression molding at 100 to 600 ° C., the subsequent heat treatment can be omitted. Further, the molded body after the heat treatment is impregnated with an organic resin for improving the strength. Alternatively, it is also effective to form an organic or inorganic film for improving the corrosion resistance.

【0013】[0013]

【作用】上述のように構成した希土類ボンド磁石におい
ては、合金粉末への低融点金属または合金添加とその後
の熱処理により、磁気特性特に保磁力が増大し、その
分、粗粉末の使用が可能になる。
In the rare earth bonded magnet having the above-mentioned structure, the addition of the low melting point metal or alloy to the alloy powder and the subsequent heat treatment increase the magnetic properties, especially the coercive force, which makes it possible to use the coarse powder. Become.

【0014】[0014]

【実施例】以下、本発明の実施例を添付図面も参照して
説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0015】実施例1 純度99.9%のサマリウムおよび電解鉄を所定の比率で配
合し、高周波溶解してTh 2 Zn 17型結晶構造を主相と
するSm2Fe17 組成の合金インゴットを製作した。この
インゴットに1200℃、12時間、Ar ガス雰囲気下で均質
化処理を施した後、スタンプミルとボールミルによって
平均粒径5〜 180μmの各種母合金粉末を得た。次に、
この合金粉末を5気圧の窒素ガス中で、 450℃、2〜24
時間保持してNを侵入させて合金粉末(窒化粉末)を得
た。続いて、これらの窒化粉末に、粒径5μmのZn 粉
末を10重量%添加してボールミルにより混合し、この混
合粉末を15 kOe の磁界を印加しながら5 Ton/cm2
圧力で圧縮成形した。その後、この成形体を電気炉に装
入して、アルゴンガス雰囲気中、 400℃で6時間熱処理
を行い、複数の磁石体試料を得た。得られた磁石体試料
は、X線回折法によって結晶構造を確認し、磁気特性は
B−Hトレーサーによって測定した。一方、前記窒化粉
末の長期安定性を知るために、 125℃の恒温槽に 500時
間保持して、粉末の重量変化を測定した。
Example 1 Samarium having a purity of 99.9% and electrolytic iron were blended in a predetermined ratio, and high frequency melting was performed to produce an alloy ingot of Sm 2 Fe 17 composition having a Th 2 Zn 17 type crystal structure as a main phase. This ingot was homogenized at 1200 ° C. for 12 hours in an Ar gas atmosphere, and various mother alloy powders having an average particle size of 5 to 180 μm were obtained by a stamp mill and a ball mill. next,
This alloy powder is heated at 450 ° C for 2 to 24 in nitrogen gas at 5 atm.
The alloy powder (nitriding powder) was obtained by holding for a period of time and infiltrating N. Subsequently, 10% by weight of Zn powder having a particle size of 5 μm was added to these nitride powders and mixed by a ball mill, and the mixed powder was compression molded at a pressure of 5 Ton / cm 2 while applying a magnetic field of 15 kOe. . Then, the molded body was charged into an electric furnace and heat-treated at 400 ° C. for 6 hours in an argon gas atmosphere to obtain a plurality of magnet body samples. The crystal structure of the obtained magnet sample was confirmed by an X-ray diffraction method, and the magnetic characteristics were measured by a BH tracer. On the other hand, in order to know the long-term stability of the nitriding powder, the weight change of the powder was measured by keeping it in a thermostat at 125 ° C. for 500 hours.

【0016】図1は、磁石体試料の最大磁気エネルギー
積BHmax 、保磁力 iHc および残留磁束密度Br に及
ぼす合金粉末の平均粒径の影響を見たものである。図1
より、最大磁気エネルギー積BHmax と残留磁束密度B
r は、平均粉末粒径が25μmでピークとなるものの、平
均粉末粒径20〜 150μmの範囲において高値となり、ま
た保磁力 iHc は、単磁区粒子理論に従って窒化粉末粒
径が小さくなるにつれて増大している。
FIG. 1 shows the effect of the average grain size of the alloy powder on the maximum magnetic energy product BHmax, the coercive force iHc and the residual magnetic flux density Br of the magnet sample. Figure 1
Therefore, the maximum magnetic energy product BHmax and the residual magnetic flux density B
Although r has a peak at an average powder particle size of 25 μm, it has a high value in the average powder particle size range of 20 to 150 μm, and coercive force iHc increases as the nitride powder particle size decreases according to the single domain particle theory. There is.

【0017】図2は、窒化粉末の酸化重量増加に及ぼす
平均粉末粒径と保持時間の影響を見たものである。図2
より、窒化粉末は粒径が大きいほど酸化による重量増加
率が小さくなり、長期安定性に優れることが示されてい
る。
FIG. 2 shows the effects of the average powder particle size and the holding time on the increase in the oxidized weight of the nitride powder. Figure 2
From the above, it is shown that the larger the particle size of the nitriding powder, the smaller the weight increase rate due to oxidation and the more excellent long-term stability.

【0018】実施例2 実施例1において製作したSm 2 Fe 173 組成の平均
粒径5〜 180μmの窒化粉末に混合金属(金属バインダ
ー)として、Sn ,Zn ,Pb,In ,Al ,Mg ,C
u あるいはそれらの合金を10重量%添加し、実施例1と
同様に混合、成形した。その後、この成形体を電気炉に
装入しアルゴンガス雰囲気中所定の温度で2時間の熱処
理を行って磁石試料1〜7を製作し、これらを実施例1
と同様の磁気特性の測定試験に供した。また比較のた
め、前記金属バインダーを全く含まない磁石試料8を製
作し、これも同様の磁気特性の測定試験に供した。結果
を表1に示す。なお、表1中の混合金属の数値は重量%
を表している。また、表中の記号※は比較材を表してい
る。
Example 2 Nitride powder having an Sm 2 Fe 17 N 3 composition and an average particle size of 5 to 180 μm prepared in Example 1 was mixed with Sn, Zn, Pb, In, Al, Mg, as a mixed metal (metal binder). C
u or their alloy was added by 10% by weight, and mixed and shaped in the same manner as in Example 1. Then, this molded body was charged into an electric furnace and heat-treated at a predetermined temperature for 2 hours in an argon gas atmosphere to manufacture magnet samples 1 to 7, which were manufactured in Example 1.
It was subjected to the same measurement test of magnetic properties as in. For comparison, a magnet sample 8 containing no metal binder was manufactured and was also subjected to the same magnetic characteristic measurement test. The results are shown in Table 1. In addition, the numerical value of the mixed metal in Table 1 is% by weight.
Is represented. The symbol * in the table indicates the comparative material.

【0019】[0019]

【表1】[Table 1]

【0020】表1から明らかなように、本発明にかかる
磁石試料1〜6はいずれも、残留磁束密度Br 、保磁力
iHc 共に高い値が得られ、本発明において規定したい
わゆる低融点金属・合金類の使用が磁気特性の向上に効
果があることが明らかとなった。これに対して、比較例
試料7は磁気特性において本発明にかかる磁石試料には
及ばず、Cu が磁石用バインダーとして適さないことが
分かった。また比較例試料8は金属バインダーを使用し
ていないため強度が低く、保磁力 iHc も低い。
As is clear from Table 1, all the magnet samples 1 to 6 according to the present invention have a residual magnetic flux density Br and a coercive force.
High values were obtained for both iHc, and it became clear that the use of so-called low melting point metals and alloys specified in the present invention was effective in improving the magnetic properties. On the other hand, the comparative sample 7 was inferior to the magnet sample according to the present invention in magnetic characteristics, and it was found that Cu was not suitable as a binder for magnets. Further, the sample of Comparative Example 8 has a low strength because it does not use a metal binder, and has a low coercive force iHc.

【0021】実施例3 実施例1において製作した平均粒径25μmの窒化粉末
に、粒径5μmのZn 粉末を1〜40重量%添加し、ボー
ルミルにより混合した。この混合粉末を15 kOeの磁界
を印加しながら7 ton/cm2 の圧力で圧縮成形し、この
成形体を電気炉に装入して、アルゴンガス雰囲気中 500
℃で1時間熱処理を行って磁石体試料11〜17を製作
し、これらを実施例1と同様の磁気特性の測定試験に供
した。結果を表2に示す。
Example 3 1 to 40% by weight of Zn powder having a particle size of 5 μm was added to the nitride powder having an average particle size of 25 μm manufactured in Example 1 and mixed by a ball mill. This mixed powder was compression-molded at a pressure of 7 ton / cm 2 while applying a magnetic field of 15 kOe, and this molded body was placed in an electric furnace and placed in an argon gas atmosphere for 500
Heat treatment was performed at 1 ° C. for 1 hour to manufacture magnet body samples 11 to 17, and these were subjected to the same magnetic characteristic measurement test as in Example 1. The results are shown in Table 2.

【0022】[0022]

【表1】[Table 1]

【0023】表2から明らかなように、本発明にかかる
Zn 混合量が3〜30%の磁石試料12〜16において、
6000G以上の高い残留磁束密度Br が得られ、かつ優れ
た保磁力 iHc が得られている。これに対し、Zn 混合
量の少ない比較例試料11は、磁気特性が低い他に磁石
として必要な強度が不足していた。また、比較例試料1
7はZn 含有量が過多であるために残留磁束密度Br が
他に比べて低い。
As is clear from Table 2, in the magnet samples 12 to 16 having a Zn content of 3 to 30% according to the present invention,
A high residual magnetic flux density Br of 6000 G or more is obtained and an excellent coercive force iHc is obtained. On the other hand, the comparative sample 11 containing a small amount of Zn was poor in magnetic properties and was insufficient in strength required as a magnet. In addition, Comparative Example Sample 1
In No. 7, since the Zn content is excessive, the residual magnetic flux density Br is lower than the others.

【0024】実施例4 実施例1で製作した平均粒径50μmの窒化粉末と、この
粉末をさらに3μmに粉砕した得た粉末に、それぞれ亜
鉛粉末を10重量%添加してボールミルにより混合し、こ
の混合粉末を15 kOe の磁界を印加しながら4〜10 Ton
/cm2 の圧力で圧縮成形した。その後、この成形体を電
気炉に装入して、アルゴンガス雰囲気中、 500℃で2時
間熱処理を行って複数の磁石体試料を得、これらの磁気
特性をB−Hトレーサーによって測定した。
Example 4 10 wt% of zinc powder was added to each of the nitriding powder having an average particle size of 50 μm produced in Example 1 and the powder obtained by further pulverizing this powder to 3 μm, and mixed by a ball mill. The mixed powder is applied with a magnetic field of 15 kOe for 4-10 Ton
It was compression molded at a pressure of / cm 2 . Then, the molded body was charged into an electric furnace and heat-treated at 500 ° C. for 2 hours in an argon gas atmosphere to obtain a plurality of magnet body samples, and the magnetic characteristics of these magnet body samples were measured by a BH tracer.

【0025】図3は、最大磁気エネルギー積BHmax と
磁石体密度に及ぼす平均粉末粒径と成形圧力の影響を見
たものである。同図より、50μmの粗粉末を使用した磁
石体試料は比較的低圧成形においても高密度化し、また
成形圧力4 ton/cm2 以上でBHmax 10MGOe 以上の
優れた磁気特性が得られ、微粉末を用いるよりも生産上
好適であることが明らかとなった。
FIG. 3 shows the effects of the average powder particle size and the molding pressure on the maximum magnetic energy product BHmax and the magnet body density. As shown in the figure, a magnet body sample using 50 μm coarse powder has a high density even in relatively low pressure molding, and has excellent magnetic characteristics of BHmax 10 MGOe or more at a molding pressure of 4 ton / cm 2 or more. It became clear that it is more suitable for production than it is used.

【0026】実施例5 純度99%以上のネオジウム、電解鉄、コバルト、及びT
i またはMo を所定の比率で配合、溶解してTh Mn 12
型結晶構造の化合物を主相とするNd Fe 9 Co2Ti ,
Nd Fe 9 Co 2 Mo 組成の合金インゴットを製作し
た。これを1200℃、12時間アルゴンガス雰囲気下で均質
化処理を行った後、スタンプミルとボールミルによって
粉砕して平均粒径30μmの母合金粉末を得た。次に、こ
の母合金粉末を30気圧の窒素ガス中で 360℃、16時間保
持してNを侵入させて窒化粉末を得た。続いてこの窒化
粉末と、さらにこれを3μm迄に粉砕した粉末に、粒径
5μmのZn 粉末を10重量%添加混合し、この混合粉末
を15 kOe の磁界を印加しながら5 Ton/cm2 の圧力で
圧縮成形した。その後、この成形体を電気炉に装入し
て、アルゴンガス雰囲気中、 375℃で6時間熱処理を行
って磁石体試料21〜24を製作し、これらの実施例1
と同様の磁気特性の測定試験に供した。結果を表3に示
す。
Example 5 Neodymium having a purity of 99% or more, electrolytic iron, cobalt, and T
i or Mo is mixed in a predetermined ratio and dissolved to dissolve Th Mn 12
Nd Fe 9 Co 2 Ti to a compound of type crystal structure as the main phase,
It was produced alloy ingots of Nd Fe 9 Co 2 Mo composition. This was homogenized at 1200 ° C. for 12 hours in an argon gas atmosphere, and then pulverized by a stamp mill and a ball mill to obtain a mother alloy powder having an average particle size of 30 μm. Next, this mother alloy powder was kept at 30 ° C. in nitrogen gas at 360 ° C. for 16 hours to infiltrate N and obtain a nitride powder. Subsequently the powder nitride, the powder was further pulverized into until 3 [mu] m, the particle diameter of 5 [mu] m Zn powder was added and mixed 10% by weight, of the 5 Ton / cm 2 while the mixed powder by applying a magnetic field of 15 kOe It was compression molded with pressure. After that, the molded body was charged into an electric furnace and heat-treated at 375 ° C. for 6 hours in an argon gas atmosphere to manufacture magnet body samples 21 to 24.
It was subjected to the same measurement test of magnetic properties as in. The results are shown in Table 3.

【0027】[0027]

【表3】[Table 3]

【0028】表3から明らかなように、本発明にかかる
30μmの粗粉末を用いた磁石体試料22と24は、合金
種類にかかわらず、3μmの微粉末を用いた磁石体試料
21と23に比べ、優れた磁気特性(BHmax )が得ら
れている。
As is apparent from Table 3, the present invention
The magnet samples 22 and 24 using the coarse powder of 30 μm have excellent magnetic characteristics (BHmax) regardless of the alloy type, as compared with the magnet samples 21 and 23 using the fine powder of 3 μm.

【0029】実施例6 実施例1と同様にしてサマリウムと電解鉄を原料にして
Sm2Fe17 組成の合金インゴットを製作し、均質化処
理、粉砕、窒化処理を行って平均粒径25μmの窒化粉末
を得た。この粉末に、Sn 粉末を6重量%添加混合し、
磁界中で5 Ton/cm2 の圧力で圧縮成形した後、電気炉
中、 100〜 700℃の温度範囲で4時間熱処理を行って複
数の磁石体試料を得、実施例1と同様にこれらの磁気特
性をB−Hトレーサーによって測定した。
Example 6 An alloy ingot of Sm 2 Fe 17 composition was prepared from samarium and electrolytic iron in the same manner as in Example 1, and homogenized, crushed and nitrided to perform nitriding with an average particle size of 25 μm. A powder was obtained. To this powder, 6 wt% of Sn powder was added and mixed,
After compression molding in a magnetic field at a pressure of 5 Ton / cm 2 , heat treatment was performed in an electric furnace in a temperature range of 100 to 700 ° C. for 4 hours to obtain a plurality of magnet body samples. The magnetic properties were measured by BH tracer.

【0030】図4は、磁石体試料の保磁力 iHc に及ぼ
す熱処理温度の影響を見たものである。同図より、保磁
力 iHc は熱処理温度が350 ℃付近でピークとなるが、
100〜600 ℃の温度範囲であれば、2500Oe 以上の優れ
た保磁力 iHc が得られることが明らかとなった。な
お、 700℃で熱処理を行った磁石体試料の表面にはSn
の溶融痕跡が一部認められた.
FIG. 4 shows the effect of the heat treatment temperature on the coercive force iHc of the magnet sample. From the figure, the coercive force iHc peaks at a heat treatment temperature of around 350 ° C.
It has been revealed that an excellent coercive force iHc of 2500 Oe or more can be obtained in the temperature range of 100 to 600 ° C. The surface of the magnet sample that had been heat treated at 700 ° C had Sn
A part of the melting trace of was found.

【0031】実施例7 実施例.1と同様にして製作した、Sm 2 (Fe 0.9
o 0.1173 組成を有する平均粒径25μmの粉末に、
Sn −Zn 合金粉末を5重量%添加混合した。この混合
粉末を、一方は15 kOe の磁界を印加しながら5 Ton/
cm2 の圧力で圧縮成形した後、電気炉に装入して、 350
℃で4時間熱処理を行い、磁石体試料31とした。他
方、成形金型を 350℃に加熱して、15 kOe の磁界を同
様に印加しながら2 Ton/cm2 の圧力で5分間温間圧縮
成形を行い、磁石体試料32とした。得られた磁石試料
31,32の磁気特性(BHmax )は、それぞれ13.3M
GOe ,13.7MGOe であり、温間成形を行うことによ
り本願発明の一要件である熱処理を省略できることが明
らかになった。
Example 7 Example. Sm 2 (Fe 0.9 C manufactured in the same manner as in No. 1)
o 0.1 ) 17 N 3 powder with an average particle size of 25 μm,
5 wt% of Sn-Zn alloy powder was added and mixed. This mixed powder was applied with a magnetic field of 15 kOe on one side and 5 Ton /
After compression molding with a pressure of cm 2 , put it in an electric furnace and
Heat treatment was performed at 4 ° C. for 4 hours to obtain a magnet body sample 31. On the other hand, the molding die was heated to 350 ° C., and while applying a magnetic field of 15 kOe in the same manner, warm compression molding was performed at a pressure of 2 Ton / cm 2 for 5 minutes to obtain a magnet body sample 32. The magnetic characteristics (BHmax) of the obtained magnet samples 31 and 32 are 13.3 M each.
It was found that GOe was 13.7 MGOe, and the heat treatment, which is a requirement of the present invention, can be omitted by performing warm forming.

【0032】[0032]

【発明の効果】以上、詳細に説明したように本発明にか
かる希土類ボンド磁石の製造方法によれば、合金粉末へ
の低融点金属または合金添加とその後の熱処理との組合
せにより、平均粉末粒径が20〜 150μmの粗粉末を用い
ても磁気特性に優れた磁石体を製造することができ、高
圧力で圧縮成形する必要がなくなって型寿命が延長し、
製造性の大幅な向上を達成できる。また粗粉末を使用す
るために、粉末の酸化が抑制でき、得られた磁石体の耐
久信頼性が著しく向上する。
As described above in detail, according to the method for producing a rare earth bonded magnet according to the present invention, the average powder particle size is obtained by combining the low melting point metal or alloy with the alloy powder and the subsequent heat treatment. Can produce magnets with excellent magnetic properties even when using a coarse powder of 20 to 150 μm, the need for compression molding at high pressure is eliminated, and mold life is extended.
A significant improvement in manufacturability can be achieved. Further, since the coarse powder is used, the oxidation of the powder can be suppressed, and the durability reliability of the obtained magnet body is significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】磁石体試料の最大磁気エネルギー積BHmax 、
保磁力 iHc および残留磁束密度Br に及ぼす合金粉末
の平均粒径の影響を示すグラフである。
FIG. 1 shows the maximum magnetic energy product BHmax of a magnet sample,
It is a graph which shows the influence of the average particle diameter of alloy powder on coercive force iHc and residual magnetic flux density Br.

【図2】合金粉末の酸化重量増加に及ぼす平均粉末粒径
と保持時間の影響を示すグラフである。
FIG. 2 is a graph showing the effect of average powder particle size and holding time on the increase in the weight of oxidized alloy powder.

【図3】最大磁気エネルギー積BHmax と磁石体密度に
及ぼす平均粉末粒径と成形圧力の影響を示すグラフであ
る。
FIG. 3 is a graph showing the effects of average powder particle size and molding pressure on maximum magnetic energy product BHmax and magnet body density.

【図4】保磁力 iHc に及ぼす熱処理温度の影響を示す
グラフである。
FIG. 4 is a graph showing the effect of heat treatment temperature on coercive force iHc.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 希土類金属(R),Fe およびNを主成
分とし、かつTh 2Zn 17またはTh Mn 12型結晶構造
の化合物を主相とする平均粒径20〜 150μmの合金粉末
に、Sn ,Zn ,Pb ,In ,Al ,Mg の少なくとも
一種から成る金属粉末を3〜30重量%混合し、この混合
粉末を圧縮成形した後、 100〜 600℃の温度範囲で熱処
理を行なうことを特徴とする希土類ボンド磁石の製造方
法。
1. An alloy powder having a rare earth metal (R), Fe and N as main components and a compound having a Th 2 Zn 17 or Th Mn 12 type crystal structure as a main phase and having an average particle size of 20 to 150 μm and Sn. , Zn, Pb, In, Al and Mg are mixed in an amount of 3 to 30% by weight, the mixed powder is compression-molded and then heat-treated at a temperature range of 100 to 600 ° C. A method of manufacturing a rare earth bonded magnet.
【請求項2】 圧縮成形を 100〜 600℃で行い、その後
の熱処理を省略することを特徴とする請求項1に記載の
希土類ボンド磁石の製造方法。
2. The method for producing a rare earth bonded magnet according to claim 1, wherein the compression molding is performed at 100 to 600 ° C. and the subsequent heat treatment is omitted.
JP4194911A 1992-06-29 1992-06-29 Manufacture of rare earth bonded magnet Pending JPH0620815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4194911A JPH0620815A (en) 1992-06-29 1992-06-29 Manufacture of rare earth bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4194911A JPH0620815A (en) 1992-06-29 1992-06-29 Manufacture of rare earth bonded magnet

Publications (1)

Publication Number Publication Date
JPH0620815A true JPH0620815A (en) 1994-01-28

Family

ID=16332394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4194911A Pending JPH0620815A (en) 1992-06-29 1992-06-29 Manufacture of rare earth bonded magnet

Country Status (1)

Country Link
JP (1) JPH0620815A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220199321A1 (en) * 2020-12-17 2022-06-23 Toyota Jidosha Kabushiki Kaisha Rare-earth magnet and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220199321A1 (en) * 2020-12-17 2022-06-23 Toyota Jidosha Kabushiki Kaisha Rare-earth magnet and method of manufacturing the same

Similar Documents

Publication Publication Date Title
EP0898778B1 (en) Bonded magnet with low losses and easy saturation
JP2001093713A (en) Multi-element-based rare earth-iron lattice interstitial permanent magnet material, permanent magnet composed of the material and manufacture of the material and the permanent magnet
EP0249973B1 (en) Permanent magnetic material and method for producing the same
EP0302947B1 (en) Rare earth element-iron base permanent magnet and process for its production
JPH04184901A (en) Rare earth iron based permanent magnet and its manufacture
JPH01219143A (en) Sintered permanent magnet material and its production
JP3118740B2 (en) Rare earth magnet materials and rare earth bonded magnets
JPH0320046B2 (en)
JP3248077B2 (en) Manufacturing method of rare earth-iron-nitrogen permanent magnet
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JPH06279915A (en) Rare earth magnet material and rare earth bonded magnet
JP2739860B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
JPH0620815A (en) Manufacture of rare earth bonded magnet
JP3168484B2 (en) Method for manufacturing rare earth-iron-nitrogen permanent magnet
JP2720039B2 (en) Rare earth magnet material with excellent corrosion resistance
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPH05315114A (en) Manufacture of rare earth magnet material
JPH0525592A (en) Rare earth magnet material
JPH04365840A (en) Rare earth magnet material
JPH05230502A (en) Production of rare-earth element bond magnet
JPH04318152A (en) Rare earth magnetic material and its manufacture
JPH0521217A (en) Production of rare-earth bond magnet
JPH08111305A (en) Rare earth magnet material and rare earth bonded magnet
JPH0677025A (en) Manufacture of rare earth element-iron-nitrogen permanent magnet
JPH07197102A (en) Rare earth alloy powder and its bonded magnet