JPH051356A - Rare earth magnet material - Google Patents

Rare earth magnet material

Info

Publication number
JPH051356A
JPH051356A JP17732091A JP17732091A JPH051356A JP H051356 A JPH051356 A JP H051356A JP 17732091 A JP17732091 A JP 17732091A JP 17732091 A JP17732091 A JP 17732091A JP H051356 A JPH051356 A JP H051356A
Authority
JP
Japan
Prior art keywords
rare earth
magnet
alloy
magnet material
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17732091A
Other languages
Japanese (ja)
Inventor
Toshiharu Suzuki
俊治 鈴木
Toshihiko Miura
敏彦 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP17732091A priority Critical patent/JPH051356A/en
Publication of JPH051356A publication Critical patent/JPH051356A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a rare earth bond magnet capable of securing excellent magnetic performance and temp. characteristics even when hydrogen is not contained and furthermore having sufficient heat resistance. CONSTITUTION:This is a magnet material contg. rare earth metal (R) and C, N and Fe in the ratio of 5 to 15% R, 0.1 to 20% C, 0.1 to 20% N and the balance Fe (where C+N is regulated to 5 to 25%), in which the above rare earth metal is constituted of at least one kind among Sm, Ce, Nd, Pr and S, furthermore contg. an R2 Fe17 type intermetallic compound as a main phase and in which a part of the above Fe is substituted by total <=40at.% Co according to desire.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、R2 Fe 17型化合物を
主相とする希土類金属−鉄−炭素−窒素系の希土類磁石
材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth metal-iron-carbon-nitrogen based rare earth magnet material containing an R 2 Fe 17 type compound as a main phase.

【0002】[0002]

【従来の技術】近年、各種電子部品・機器の小型化にと
もなって高性能な永久磁石が要求されている。1980年代
に開発されたNd −Fe −B系永久磁石は高い磁気性能
を有し、かつそれ以前に開発されたSm −Co 系永久磁
石と比較して豊富で安価な原料で構成されているなどの
理由により工業的に広く利用されつつある。
2. Description of the Related Art In recent years, with the miniaturization of various electronic parts and equipment, high-performance permanent magnets have been required. The Nd-Fe-B system permanent magnets developed in the 1980s have high magnetic performance and are composed of abundant and inexpensive raw materials as compared with the Sm-Co system permanent magnets developed before that. For this reason, it is being widely used industrially.

【0003】ところで、このNd −Fe −B系永久磁石
は,そのキュリー点が約300 ℃と低いために温度特性が
悪く、150 ℃以上となるような雰囲気での使用は不向き
とされている。この対策としてFe の一部をCo で置換
することも行われているが、キュリー点が若干上昇する
反面、ごく少量のCo 置換でも保磁力が大きく低下する
という問題がある。また温度特性の別の対策として、N
d の一部をDy で置換することも行われているが、Dy
が高価でありしかも飽和磁束密度の低下を招くために、
実際上温度特性の改良は困難な状況にあった。
By the way, the Nd--Fe--B system permanent magnet has a low Curie point of about 300.degree. C. and thus has poor temperature characteristics, and is not suitable for use in an atmosphere of 150.degree. As a countermeasure against this, a part of Fe is replaced with Co, but the Curie point is slightly increased, but there is a problem that the coercive force is significantly reduced even with a very small amount of Co replacement. As another measure for temperature characteristics, N
It is also done to replace part of d with Dy, but Dy
Is expensive and causes a decrease in saturation magnetic flux density,
In reality, it was difficult to improve the temperature characteristics.

【0004】そこで最近、希土類金属−鉄−窒素−水素
系合金が磁石材料になり得ることが報告されている(例
えば、特開平2−57663号公報参照)。これによれ
ば、合金中に窒素と水素とが共存した場合に、Nd −F
e −B系永久磁石と同等の飽和磁束密度とそれ以上の高
いキュリー点が期待できるとしている。
Therefore, it has recently been reported that a rare earth metal-iron-nitrogen-hydrogen alloy can be used as a magnet material (see, for example, Japanese Patent Application Laid-Open No. 2-57663). According to this, when nitrogen and hydrogen coexist in the alloy, Nd-F
It is said that a saturation magnetic flux density equivalent to that of an e-B system permanent magnet and a higher Curie point higher than that can be expected.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記希土類金
属−鉄−窒素−水素系永久磁石によれば、合金中の水素
が温度や圧力の変化によって比較的容易に放出、吸蔵現
象を起こすため、磁気特性の長期安定性が損なわれ易
く、その上、引火爆発の危険性ある水素ガスあるいはア
ンモニヤ分解ガスを取り扱うために、製造性に難点があ
るという問題があった。
However, according to the above rare earth metal-iron-nitrogen-hydrogen permanent magnet, hydrogen in the alloy is relatively easily released and occludes due to changes in temperature and pressure. There is a problem that the long-term stability of magnetic properties is easily impaired, and in addition, since hydrogen gas or ammonia decomposition gas, which has a risk of ignition and explosion, is handled, there is a problem in productivity.

【0006】本発明は、上記従来の問題に鑑みてなされ
たもので、水素を含まなくてもNd−Fe −B系永久磁
石と同等の磁気性能およびそれより優れた温度特性を確
保できる希土類磁石材料を提供することを目的とする。
The present invention has been made in view of the above problems, and is a rare earth magnet capable of ensuring magnetic performance equivalent to that of a Nd-Fe-B system permanent magnet and excellent temperature characteristics even without containing hydrogen. Intended to provide material.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明にかかる希土類磁石材料は、希土類金属
(R)、C、NおよびFe が原子百分率で、5〜15%R
− 0.1〜20%C− 0.1〜20%N−残部Fe の割合(ただ
し、C+Nは5〜25%)で含まれ、前記希土類金属はS
m ,Ce ,Nd ,Pr の少なくとも一種から成り、かつ
2 Fe 17型化合物を主相として含むこと特徴とする。
In order to achieve the above object, in the rare earth magnet material according to the present invention, rare earth metals (R), C, N and Fe are 5 to 15% R in atomic percentage.
-0.1 to 20% C-0.1 to 20% N-The balance Fe is contained in the ratio (however, C + N is 5 to 25%), and the rare earth metal is S.
It is characterized in that it is composed of at least one of m, Ce, Nd and Pr and contains an R 2 Fe 17 type compound as a main phase.

【0008】本発明において、上記Fe はその一部をC
o で置換しても良いもので、この場合は、該Co を総量
の40%以下に抑えるようにする。
In the present invention, a part of Fe is C
It may be replaced with o, and in this case, the Co content is controlled to 40% or less of the total amount.

【0009】本発明は、上記したように希土類金属とし
てはSm ,Ce,Nd ,Pr の少なくとも一種を選択し
たことを特徴とするものであるが、磁気性能やコストの
調整のため、さらにLa ,Eu ,Gd ,Tb ,Dy ,H
o ,Er ,Tm ,Yb ,Luの少なくとも一種を併せて
選択することができる。この希土類金属については、そ
の含有量が原子百分率(at%)で5%未満では保磁力が
減少し、15%を越えると飽和磁束密度あるいは残留磁束
密度が小さくなって実用的な永久磁石になりにくいの
で、これを5〜15at%とした。
The present invention is characterized in that at least one of Sm, Ce, Nd and Pr is selected as the rare earth metal as described above, but La, La and Eu, Gd, Tb, Dy, H
At least one of o, Er, Tm, Yb and Lu can be selected together. Regarding this rare earth metal, if the content is less than 5% in atomic percentage (at%), the coercive force will decrease, and if it exceeds 15%, the saturation magnetic flux density or the residual magnetic flux density will be small, making it a practical permanent magnet. Since it is difficult, it was set to 5 to 15 at%.

【0010】CおよびNについては、それら両者の合計
が5%未満では結晶磁気異方性が小さくなって保磁力が
きわめて小さくなり、一方25%を越えると軟磁性のα−
Feの増加によって保磁力が小さくなるので、これを5
〜20at%とした。またCあるいはN単独の含有量はいず
れも 0.1〜20at%の範囲内であれば磁気特性の向上に効
果がある。
Regarding C and N, the crystal magnetic anisotropy becomes small and the coercive force becomes extremely small when the total of both of them is less than 5%, while the coercive force becomes extremely small, while when they exceed 25%, the soft magnetic α-
Since the coercive force becomes smaller as Fe increases,
It was set to -20 at%. Further, if the content of C or N alone is within the range of 0.1 to 20 at%, it is effective in improving the magnetic characteristics.

【0011】Co については、キュリー点を上昇させて
温度特性を向上させかつ耐食性を改善させる効果を有す
るが、総量として40%を越える場合には結晶磁気異方性
が減少して充分な保磁力が得られなくなるので、これを
40at%以下とした。なお、磁気特性の改良調整のため、
Fe の一部をさらにTi ,V,Cr ,Mn ,Cu ,Zn
,Zr ,Nb ,Mo ,W,Hf ,Ta などの他の遷移
金属で置換することもできる。
Co has the effect of raising the Curie point to improve temperature characteristics and corrosion resistance, but when the total amount exceeds 40%, the magnetocrystalline anisotropy decreases and sufficient coercive force is obtained. Will not be obtained, so
It was set to 40 at% or less. In order to improve and adjust the magnetic characteristics,
Part of Fe is further divided into Ti, V, Cr, Mn, Cu and Zn.
, Zr, Nb, Mo, W, Hf, Ta, etc. can be substituted.

【0012】本発明にかかる希土類磁石材料を製造する
には、一例として希土類金属と鉄(およびコバルト)と
から成る合金粉末を得、この合金粉末を所定の温度で浸
炭性ガスおよび窒化ガスと接触させて、炭素または窒素
を合金中に侵入させる方法を採用することができる。こ
の場合、前記合金粉末を得る方法として、例えば希土類
金属と鉄(およびコバルト)とを所定比率で配合した原
料を高周波誘導炉で溶解・鋳造し、得られた合金インゴ
ットをジョークラッシャーなどにより機械的に粉砕する
方法、合金溶湯を回転するロール面へ直接射出する急冷
法、合金溶湯をガスや液中に高速で噴射させるアトマイ
ズ法、溶解に代えて固体金属同士の相互拡散を利用する
メカニカルアロイング法などを採用することができる。
また前記合金粉末に炭素または窒素を侵入させる方法も
任意であり、例えば浸炭処理としては、吸熱型変成ガス
を用いる汎用のガス浸炭法、固体浸炭剤を用いる浸炭
法、有機溶剤滴下浸炭法、減圧された真空炉に炭化水素
系ガスを導入して行う真空浸炭法などを採用することが
でき、一方、窒化処理としては、加圧された窒素ガスを
用いたり、窒素ガスと他の還元性ガスとを併用するよう
にしても良い。なお、前記浸炭処理または窒化処理に代
えて出発合金中に炭素または窒素を含有させて良いこと
はもちろんである。
In order to manufacture the rare earth magnet material according to the present invention, as an example, an alloy powder composed of a rare earth metal and iron (and cobalt) is obtained, and the alloy powder is contacted with a carburizing gas and a nitriding gas at a predetermined temperature. Then, a method of invading carbon or nitrogen into the alloy can be adopted. In this case, as a method for obtaining the alloy powder, for example, a raw material in which a rare earth metal and iron (and cobalt) are mixed in a predetermined ratio is melted and cast in a high frequency induction furnace, and the obtained alloy ingot is mechanically cut by a jaw crusher or the like. Crushing method, quenching method that directly injects molten alloy into the rotating roll surface, atomizing method that injects molten alloy at high speed into gas or liquid, mechanical alloying that utilizes mutual diffusion of solid metals instead of melting The law etc. can be adopted.
Further, a method of invading carbon or nitrogen into the alloy powder is also optional, and for example, as the carburizing treatment, a general-purpose gas carburizing method using an endothermic shift gas, a carburizing method using a solid carburizing agent, an organic solvent dropping carburizing method, decompression A vacuum carburizing method that introduces a hydrocarbon-based gas into a controlled vacuum furnace can be adopted.On the other hand, as the nitriding treatment, pressurized nitrogen gas is used, or nitrogen gas and other reducing gas are used. And may be used together. It is needless to say that carbon or nitrogen may be contained in the starting alloy instead of the carburizing treatment or nitriding treatment.

【0013】本発明にかかる希土類磁石材は、ボンド磁
石あるいは焼結磁石として用いてよいものである。ボン
ド磁石として用いる場合は、例えば上記した浸炭および
窒化処理後の粉末にエポキシ樹脂あるいはフェノール樹
脂などの熱硬化性樹脂を混合し、金型により圧縮成形し
た後、所定温度( 100〜170℃)でキュアして磁石とす
る方法、該合金粉末に亜鉛、錫、鉛などの金属を混合成
形した後、所定温度(200〜500 ℃)で焼成して磁石と
する方法、あるいは該合金粉末にナイロン樹脂などの熱
可塑性樹脂を混合し、射出成形を行って磁石とする方法
などを採用することができる。一方、焼結磁石として用
いる場合は、例えば該粉末にステアリン酸等の潤滑剤を
混合して成形し、不活性ガスまたは真空中で焼結する方
法を採用することができる。なお、いずれの場合も、成
形時に磁場を作用させることによって異方性磁石とする
ことができる。
The rare earth magnet material according to the present invention may be used as a bonded magnet or a sintered magnet. When used as a bonded magnet, for example, the carburized and nitrided powder described above is mixed with a thermosetting resin such as an epoxy resin or a phenol resin, compression-molded by a mold, and then at a predetermined temperature (100 to 170 ° C.). A method of curing to a magnet, a method of mixing and molding a metal such as zinc, tin or lead into the alloy powder, and then firing at a predetermined temperature (200 to 500 ° C.) to form a magnet, or a nylon resin to the alloy powder. It is possible to adopt a method in which a thermoplastic resin such as the above is mixed and injection molding is performed to obtain a magnet. On the other hand, when used as a sintered magnet, for example, a method of mixing the powder with a lubricant such as stearic acid, molding the mixture, and sintering the mixture in an inert gas or in a vacuum can be employed. In any case, an anisotropic magnet can be obtained by applying a magnetic field during molding.

【0014】[0014]

【作用】上記のように構成した希土類磁石材料において
は、CまたはNがR2 Fe 17型金属間化合物の結晶格子
内に侵入し、飽和磁束密度、キュリー点および結晶磁気
異方性を大幅に増大させる作用をなす。また、合金中に
水素を含まないので長期的に性能が安定し、しかも製造
過程で水素を取り扱うことが無いので安全性も高まる。
In the rare earth magnet material constructed as described above, C or N penetrates into the crystal lattice of the R 2 Fe 17 type intermetallic compound, and the saturation magnetic flux density, the Curie point and the crystal magnetic anisotropy are significantly increased. Acts to increase. Further, since the alloy does not contain hydrogen, the performance is stable for a long period of time, and since hydrogen is not handled in the manufacturing process, safety is improved.

【0015】[0015]

【実施例】以下、本発明の実施例を添付図面にもとずい
て説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0016】実施例1 すべて純度99.9%のサマリウム(Sm )、電解鉄(およ
び電解コバルト)、4.3 %の炭素を含む銑鉄を所定の比
率で配合し、アルミナルツボに装入して高周波誘導炉に
よって溶解し、鋳型内に鋳込んで各種組成を有する合金
インゴットを製作した。この合金インゴット内部には多
くの場合成分偏析がみられるため、これをアルゴンガス
雰囲気下で1000℃、12時間保持してその後急冷する熱処
理を行った。次に、この合金インゴットをジョークラッ
シャーに供して数mmの大きさに粗粉砕し、続いてスタン
プミルによってさらに粉砕して50〜200 μm の合金粉末
を得た。
Example 1 Samarium (Sm) having a purity of 99.9%, electrolytic iron (and electrolytic cobalt), and pig iron containing 4.3% of carbon were mixed at a predetermined ratio, charged into an alumina crucible, and charged by a high frequency induction furnace. Alloys were melted and cast into a mold to produce alloy ingots having various compositions. In many cases, segregation of the components was observed inside the alloy ingot. Therefore, the alloy ingot was heat-treated by holding it in an argon gas atmosphere at 1000 ° C for 12 hours and then rapidly cooling it. Next, this alloy ingot was subjected to a jaw crusher to roughly crush it into a size of several mm, and then further crushed by a stamp mill to obtain an alloy powder of 50 to 200 μm.

【0017】次に,上記合金粉末をステンレス製小皿に
いれて電気炉に装入し、窒素ガス雰囲気下で5気圧、45
0 ℃、8時間保持して窒素を侵入せしめ、その後ボール
ミルにより再度粉砕して平均粒径20μmの粉末試料1〜
20を製作し、これらを磁気特性、キュリー点および成
分の測定試験に供した。磁気特性の測定は、これらの粉
末試料を15kOe の磁界中で所定のホルダーに詰めた
後、振動試料型磁力計(略称VSM)を用いて行い、キ
ュリー点の測定もVSMによった。また成分分析は、サ
マリウム、鉄およびコバルトについてはICP発光分析
法により、炭素は燃焼法により、窒素については蒸留中
和滴定法によりそれぞれ行った。
Next, the above alloy powder is put into a stainless steel small plate and charged into an electric furnace, and the atmosphere is kept under a nitrogen gas atmosphere at 5 atm.
Hold at 0 ° C for 8 hours to allow nitrogen to infiltrate, and then pulverize again with a ball mill to obtain powder samples 1 to 20 having an average particle size of 1 μm.
20 were manufactured and these were subjected to a measurement test of magnetic properties, Curie points and components. The magnetic properties were measured by packing these powder samples in a predetermined holder in a magnetic field of 15 kOe and then using a vibrating sample magnetometer (abbreviated as VSM), and the Curie point was also measured by VSM. Further, the component analysis was carried out by ICP emission spectrometry for samarium, iron and cobalt, by combustion method for carbon, and by distillation neutralization titration method for nitrogen.

【0016】各試験結果を表1〜表3に示す。なお表1
はCおよびNで整理した結果を、表2はSm で整理した
結果を、表3はCo で整理した結果をそれぞれ示してい
る。また各表中、4πIm は最大磁束密度を、iHc は
保磁力を、Tc はキュリー点をそれぞれ表している。な
お最大磁束密度は飽和磁束密度の測定が困難なため最大
測定磁界20kOe での磁束密度を採用した。さらに各表
中、試料番号に付した符号#は比較例を表している。
The test results are shown in Tables 1 to 3. Table 1
Shows the results sorted by C and N, Table 2 shows the results sorted by Sm, and Table 3 shows the results sorted by Co. In each table, 4πIm represents the maximum magnetic flux density, iHc represents the coercive force, and Tc represents the Curie point. Since it is difficult to measure the saturation magnetic flux density, the maximum magnetic flux density was set at the maximum measured magnetic field of 20 kOe. Further, in each table, the symbol # attached to the sample number represents a comparative example.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【表3】 [Table 3]

【0020】表1〜表3から明らかなように、本発明に
かかる磁石粉末試料2〜7、11〜14および16〜1
9は、いずれも最大磁束密度4πIm 、保磁力iHc 、
キュリー点Tc ともに高い値が得られた。特にキュリー
点については、約 340〜600℃と高い値を示し、Nd −
Fe −B系永久磁石のキュリー点約 310℃と比較しても
十分に高い値となることが明らかになった。なお、炭素
および窒素の含有量の少ない比較例試料1および9、S
m 含有量の少ない比較例試料10は、保磁力iHc が他
に比してきわめて小さくなっているが、これはX線回折
分析によれば合金中に多量に存在するαFe がその原因
になったものと推察される。またSm またはCo を過剰
に含有する比較例試料15、20では保磁力の低下と同
時に、最大磁束密度4πIm も低下している。
As is clear from Tables 1 to 3, magnet powder samples 2 to 7, 11 to 14 and 16 to 1 according to the present invention.
9 is the maximum magnetic flux density 4π Im, coercive force iHc,
A high Curie point Tc was obtained. Especially for the Curie point, it shows a high value of about 340-600 ℃, and Nd-
It was revealed that the value is sufficiently high even when compared with the Curie point of the Fe-B system permanent magnet of about 310 ° C. In addition, Comparative Example Samples 1 and 9 having a low carbon and nitrogen content, S
The coercive force iHc of the comparative sample 10 having a small amount of m is much smaller than the others, which is caused by a large amount of αFe in the alloy according to X-ray diffraction analysis. It is presumed to be a thing. Further, in Comparative Example Samples 15 and 20 containing an excessive amount of Sm or Co, the maximum magnetic flux density 4πIm also decreased at the same time as the coercive force decreased.

【0021】実施例2 純度99.9%のSm および96%のPr ,Nd ,Ce ,D
y と、電解鉄および銑鉄とを所定の比率で配合、溶解し
て、実施例1と同様な手順により窒化処理、ボールミル
粉砕を経て合金粉末を得た。次に,この合金粉末にエポ
キシ樹脂を3重量%配合し、15kOe の磁界を印加しな
がら5 Ton/cm2 の圧力で圧縮成形し、続いて150 ℃で
1時間キュアして磁石試料21〜26を製作し、これら
を磁気特性の測定試験に供した。結果を表4に示す。な
お磁気特性の測定は、60kOe のパルス磁界を印加した
後、直流式BHトレーサーによって行った。表4に示す
結果より、本発明にかかる磁石試料21〜25は、いず
れも最大磁束密度4πImおよび保磁力iHc ともに高
い値が得られ、Sm 以外の希土類金属が併用できること
が明らかとなった。なお比較例試料26は、希土類金属
の総量が過剰であるために、最大磁束密度および保磁力
ともに低下している。
Example 2 Sm of 99.9% purity and 96% of Pr, Nd, Ce and D
y, electrolytic iron and pig iron were mixed and dissolved at a predetermined ratio, and subjected to nitriding treatment and ball mill grinding in the same procedure as in Example 1 to obtain an alloy powder. Next, 3% by weight of epoxy resin was mixed with this alloy powder, and compression molding was performed at a pressure of 5 Ton / cm 2 while applying a magnetic field of 15 kOe, followed by curing at 150 ° C. for 1 hour to obtain magnet samples 21 to 26. Were manufactured, and these were subjected to a magnetic characteristic measurement test. The results are shown in Table 4. The magnetic characteristics were measured with a DC BH tracer after applying a pulsed magnetic field of 60 kOe. From the results shown in Table 4, in each of the magnet samples 21 to 25 according to the present invention, a high maximum magnetic flux density 4πIm and a high coercive force iHc were obtained, and it became clear that rare earth metals other than Sm can be used in combination. In the comparative sample 26, the maximum magnetic flux density and the coercive force are lowered because the total amount of the rare earth metal is excessive.

【0022】[0022]

【表4】 [Table 4]

【0023】実施例3 純度99.9%のSm と電解鉄とを所定の比率で配合、溶解
して、実施例1と同様の手順により粉砕をして50〜150
μm の合金粉末を得た。次に、この合金粉末をステンレ
ス製小皿にいれて真空炉に装入し、この真空炉にメタン
ガスを0.1 Torrの圧力で連続導入して、1050℃で2時間
保持し、合金粉末に炭素を侵入せしめた。続いて、この
粉末をさらにオートクレーブに装入して窒素ガス雰囲気
下で10気圧、400 〜500 ℃、4時間保持して窒素を侵入
せしめ、さらにボールミルにより粉砕して平均粒径20μ
m の粉末試料を得た。次に、この粉末にエポキシ樹脂を
3重量%配合し、15kOe の磁界を印加しながら5Ton
/cm2 の圧力で圧縮成形し、続いて150 ℃で1時間キュ
アして磁石試料31〜34を製作し、これらを磁気特
性、キュリー点および成分の測定試験に供し、得られた
測定試験結果を表5に示す。これらの結果より、本発明
にかかる磁石試料31〜33は、高い保磁力iHc が得
られ、Sm −Fe 合金にガス浸炭およびガス窒化を連続
して行う方法によっても、優れた磁気特性を得ることが
できることが確認できた。なお比較例試料34は、窒素
総量が過剰であるために、最大磁束密度4πIm および
保磁力ともに低下している。
Example 3 Sm having a purity of 99.9% and electrolytic iron were mixed and dissolved at a predetermined ratio, and pulverized by the same procedure as in Example 1 to obtain 50 to 150.
An alloy powder of μm was obtained. Next, this alloy powder is put in a stainless steel small plate, charged into a vacuum furnace, and methane gas is continuously introduced into this vacuum furnace at a pressure of 0.1 Torr and kept at 1050 ° C for 2 hours to infiltrate carbon into the alloy powder. I'm sorry. Next, this powder was further charged into an autoclave, kept under a nitrogen gas atmosphere at 10 atm at 400 to 500 ° C. for 4 hours to let in nitrogen, and further pulverized by a ball mill to obtain an average particle size of 20 μm.
A powder sample of m 3 was obtained. Next, add 3% by weight of epoxy resin to this powder and apply 5 Ton while applying a magnetic field of 15 kOe.
Compression molding at a pressure of / cm 2 and subsequent curing at 150 ° C. for 1 hour to produce magnet samples 31 to 34, which were subjected to measurement tests of magnetic properties, Curie points and components, and the obtained measurement test results Is shown in Table 5. From these results, the magnet samples 31 to 33 according to the present invention can obtain a high coercive force iHc, and can obtain excellent magnetic properties even by the method of continuously performing gas carburization and gas nitriding on the Sm-Fe alloy. It was confirmed that In the comparative sample 34, the maximum magnetic flux density 4πIm and the coercive force are lowered because the total amount of nitrogen is excessive.

【0024】[0024]

【表5】 [Table 5]

【0025】実施例4 Sm 、電解鉄および銑鉄とを所定の比率で配合、溶解し
て合金インゴットを製作し、次にこのインゴットを石英
管に装入して高周波炉により再溶解し、石英管下部の細
孔から合金溶湯を周速40m/秒で回転する銅製ロール面
に射出急冷した。得られた急冷合金は、厚さ約0.05mm、
幅2mm、長さ10〜50mmの薄片状をしていた。なおX線回
折法による観察の結果、それらの結晶は等方的であり粒
径は0.1μm 以下であった。次にこれらの薄片に、実施
例1と同様に窒素を侵入せしめて試料41〜44を製作
し、成分および磁気特性の測定試験に供した。表6は、
その測定試験結果を示したものである。なお磁気特性の
測定は、振動試料型磁力計を用いて、薄片のまま行っ
た。これらの結果より、本発明にかかる磁石試料41〜
44において、高い保磁力とキュリー点とが得られるこ
とが明らかとなった。
Example 4 Sm, electrolytic iron and pig iron were mixed in a predetermined ratio and melted to produce an alloy ingot, which was then charged into a quartz tube and remelted in a high frequency furnace to form a quartz tube. The molten alloy was injected into the copper roll surface rotating at a peripheral speed of 40 m / sec from the pores in the lower part, and was rapidly cooled. The obtained quenched alloy has a thickness of about 0.05 mm,
It had a flaky shape with a width of 2 mm and a length of 10 to 50 mm. As a result of observation by an X-ray diffraction method, those crystals were isotropic and the particle size was 0.1 μm or less. Next, nitrogen was infiltrated into these thin pieces in the same manner as in Example 1 to prepare samples 41 to 44, and the samples 41 to 44 were subjected to a measurement test of components and magnetic properties. Table 6 shows
The measurement test results are shown. The measurement of the magnetic characteristics was performed using a vibrating sample magnetometer as a thin piece. From these results, the magnet samples 41 to 41 according to the present invention
44, it was revealed that a high coercive force and a Curie point were obtained.

【0026】[0026]

【表6】 [Table 6]

【0027】実施例5 実施例1の12で使用した磁石粉末試料に、15重量%の
亜鉛粉末を配合してボールミルで混合した後、150 kO
e の磁界を印加しながら4 Ton/cm2 の圧力で圧縮成形
し、続いて窒素ガス中で350〜450 ℃、2時間の熱処理
を行って磁石体試料51〜54を製作し、これらを磁気
特性の測定試験に供した。表7は、その測定試験結果を
示したものであり、これより樹脂の代わりに亜鉛のよう
な低融点金属を磁石粉末に混合しても良好な磁気特性が
得られることが明らかとなった。
Example 5 The magnet powder sample used in 12 of Example 1 was blended with 15% by weight of zinc powder and mixed in a ball mill, and then 150 kO.
While applying a magnetic field of e, compression molding is performed at a pressure of 4 Ton / cm 2 , and subsequently heat treatment is performed in nitrogen gas at 350 to 450 ° C. for 2 hours to manufacture magnet body samples 51 to 54, and these are magnetized. It was subjected to a characteristic measurement test. Table 7 shows the results of the measurement test, and it is clear from this that good magnetic characteristics can be obtained even if a low melting point metal such as zinc is mixed with the magnet powder instead of the resin.

【0028】[0028]

【表6】[Table 6]

【0029】実施例6 実施例1の12で使用した磁石粉末試料に、1.5 重量%
のステアリン酸亜鉛を混合した後、15kOe の磁界を印
加しながら1 Ton/cm2 の圧力で圧縮成形し、続いてホ
ットプレスを用いて窒素ガス中で450 ℃、圧力1 Ton/
cm2 、30分間の焼結を行って磁石体試料を製作し、これ
を磁気特性の測定試験に供した。この結果、最大磁束密
度表4πIm =11230 (G)、保磁力iHc =9577(O
e )となり、優れた磁気特性が得られることが明かとな
った。
Example 6 The magnet powder sample used in 12 of Example 1 was added with 1.5% by weight.
After mixing with zinc stearate, the mixture was compression-molded at a pressure of 1 Ton / cm 2 while applying a magnetic field of 15 kOe, and subsequently hot-pressed at 450 ° C. in nitrogen gas at a pressure of 1 Ton / cm 2.
Sintering was carried out for 30 minutes at cm 2 , and a magnet body sample was manufactured, and this was subjected to a magnetic characteristic measurement test. As a result, the maximum magnetic flux density table 4 π Im = 11230 (G) and the coercive force iHc = 9577 (O
It became clear that excellent magnetic characteristics were obtained.

【0030】[0030]

【発明の効果】以上、詳細に説明したように、本発明に
かかる希土類磁石材料によれば、Nd−Fe −B系永久
磁石と同等の磁気特性を確保できるばかりか、キュリー
点の上昇による温度特性の大幅な向上が達成でき、さら
には磁石合金中に水素を含まないため性能の長期安定性
を確保し得る効果がある。また、製造過程で水素を取り
扱うことがないので、製造の安全性も高まる効果があ
る。
As described above in detail, according to the rare earth magnet material of the present invention, not only the magnetic characteristics equivalent to those of the Nd-Fe-B system permanent magnet can be secured, but also the temperature due to the increase of the Curie point is obtained. The properties can be significantly improved, and further, since the magnet alloy does not contain hydrogen, long-term stability of the performance can be secured. Further, since hydrogen is not handled in the manufacturing process, there is an effect that the manufacturing safety is increased.

【表7】 [Table 7]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 希土類金属(R)、C、NおよびFe が
原子百分率で、5〜15%R− 0.1〜20%C− 0.1〜20%
N−残部Fe の割合で含まれ(ただし、C+Nは5〜25
%)、前記希土類金属はSm ,Ce ,Nd ,Pr の少な
くとも一種から成り、かつR2 Fe 17型化合物を主相と
して含むこと特徴とする希土類磁石材料。
1. Rare earth metal (R), C, N and Fe in atomic percentage of 5 to 15% R-0.1 to 20% C-0.1 to 20%
Included in the proportion of N-remainder Fe (however, C + N is 5-25
%), The rare earth metal is composed of at least one of Sm, Ce, Nd and Pr, and contains a R 2 Fe 17 type compound as a main phase.
【請求項2】 前記Fe の一部を、総量の40%以下のC
o で置換したことを特徴とする請求項1に記載の希土類
磁石材料。
2. A part of the Fe is 40% or less of the total amount of C.
The rare earth magnet material according to claim 1, wherein the rare earth magnet material is replaced with o.
JP17732091A 1991-06-21 1991-06-21 Rare earth magnet material Pending JPH051356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17732091A JPH051356A (en) 1991-06-21 1991-06-21 Rare earth magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17732091A JPH051356A (en) 1991-06-21 1991-06-21 Rare earth magnet material

Publications (1)

Publication Number Publication Date
JPH051356A true JPH051356A (en) 1993-01-08

Family

ID=16028923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17732091A Pending JPH051356A (en) 1991-06-21 1991-06-21 Rare earth magnet material

Country Status (1)

Country Link
JP (1) JPH051356A (en)

Similar Documents

Publication Publication Date Title
US4898625A (en) Method for producing a rare earth metal-iron-boron permanent magnet by use of a rapidly-quenched alloy powder
EP0369097A1 (en) Magnetic materials containing rare earth element iron nitrogen and hydrogen
JPWO2009150843A1 (en) R-T-Cu-Mn-B sintered magnet
EP0249973A1 (en) Permanent magnetic material and method for producing the same
KR960008185B1 (en) Rare earth-iron system permanent magnet and process for producing the same
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JPH04184901A (en) Rare earth iron based permanent magnet and its manufacture
US6136099A (en) Rare earth-iron series permanent magnets and method of preparation
Fuerst et al. Diffusion‐alloyed additives in die‐upset Nd‐Fe‐B magnets
US7416613B2 (en) Method for compacting magnetic powder in magnetic field, and method for producing rare-earth sintered magnet
JPH0525592A (en) Rare earth magnet material
JP3248077B2 (en) Manufacturing method of rare earth-iron-nitrogen permanent magnet
JP4618437B2 (en) Method for producing rare earth permanent magnet and raw material alloy thereof
JPH051356A (en) Rare earth magnet material
JPH04365840A (en) Rare earth magnet material
JPH05234789A (en) Molding method and manufacture of sintered magnet
JPH06279915A (en) Rare earth magnet material and rare earth bonded magnet
JPH04318152A (en) Rare earth magnetic material and its manufacture
JP2708578B2 (en) Bonded magnet
JP3168484B2 (en) Method for manufacturing rare earth-iron-nitrogen permanent magnet
JP2581179B2 (en) Method for producing rare earth-B-Fe sintered magnet with excellent corrosion resistance
JPH05315114A (en) Manufacture of rare earth magnet material
JPH05230502A (en) Production of rare-earth element bond magnet
JPH0521217A (en) Production of rare-earth bond magnet
JPH04325652A (en) Manufacture of rare earth magnet