JPH10241923A - Rare-earth magnet material, its manufacture, and rare-earth bond magnet using it - Google Patents

Rare-earth magnet material, its manufacture, and rare-earth bond magnet using it

Info

Publication number
JPH10241923A
JPH10241923A JP9038234A JP3823497A JPH10241923A JP H10241923 A JPH10241923 A JP H10241923A JP 9038234 A JP9038234 A JP 9038234A JP 3823497 A JP3823497 A JP 3823497A JP H10241923 A JPH10241923 A JP H10241923A
Authority
JP
Japan
Prior art keywords
rare earth
magnet material
rare
magnet
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9038234A
Other languages
Japanese (ja)
Inventor
Masahiro Tobiyo
飛世  正博
Hiroshi Okajima
弘 岡島
Katsunori Iwasaki
克典 岩崎
Masaaki Tokunaga
雅亮 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP9038234A priority Critical patent/JPH10241923A/en
Publication of JPH10241923A publication Critical patent/JPH10241923A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a magnet material having a peculiar large coercive force which has a small temperature coefficient by forming a crystalline structure containing monoclinic and/or hexagonal R3 (Fe, M, B)29 Ny as a main phase by using an R-Fe-B-N magnet material having a specific ratio of components. SOLUTION: A rare-earth magnet material has a composition of RαFe100-(α+β+γ+δ) Mβ Bγ Nδcontaining monoclinic and/or hexagonal R3 (Fe, M, B)29 Ny as a main phase. The R and Y respectively represent one or two or more kinds of rare-earth elements including Y and one or two or more kinds of elements selected from among Al, Ti, V, Cr, Mn, Cu, Ga, Zr, Nb, Mo, Hf, Ta, and W and the α, β, γ, and δ are atomic percentages respectively set at 5<=α<=18, 1<=β<=50, 0.1<=γ<=5, and 4<=δ<=30. Therefore, a rare-earth magnet material and a bond magnet having high Curie temperatures and high thermal stability can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は希土類磁石材料およ
びその製造方法ならびにそれを用いた希土類ボンド磁石
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth magnet material, a method for producing the same, and a rare earth bonded magnet using the same.

【0002】[0002]

【従来の技術】従来より、希土類ボンド磁石用磁粉とし
て超急冷したNd-Fe-B系磁粉が多用されているが、
キュリー温度が300℃前後と低く、固有保磁力(以後
iHcと記す)の温度係数(η)が大きいために高温で
の使用が制限されてきた。最近、Sm2Fe17化合物が
窒素を吸蔵することによりNd2Fe14B化合物よりも
160℃も高い470℃というキュリー温度を示すとと
もに、その異方性磁界もNd2Fe14B化合物の異方性
磁界(75kOe)を大きく上回る260kOeになる
ことが報告され、ボンド磁石用磁粉として工業化が検討
されている。Sm2Fe17の窒化物Sm2Fe17Nxはガ
ス窒化法等で作製されるが、Sm2Fe17Nx磁粉の粒径
を数μm程度にしないと5kOe以上の高い保磁力が得
られないとともに、この粒径の磁粉は容易に酸化してそ
の磁石特性を劣化させ、かつ急激な酸化にともなう発火
の危険性を伴うので現在のところ実用化が困難である。
このSm2Fe17Nx磁粉は粒径が数μmであるのでボン
ド磁石に圧縮成形する際、成形体密度を上げることがで
きず高エネルギー積の希土類ボンド磁石を得られないと
とともに、成形性が非常に悪く作業効率を著しく低下さ
せるという問題がある。また、メカニカルアロイング法
などの特殊な製造方法で高い保磁力が得られることが報
告されているが、この方法は実験室規模の少量生産に適
するものの、コストパーフォーマンスの点で劣るため量
産に至っていない。さらに、Sm2Fe17Nx窒化物以外
にもThMn12型の結晶構造を有したNd(Fe,M)
12Nx合金(MはV、Ti、Mn、Mo等の遷移金属)
や、TbCu7型の結晶構造を有したSmFe7Nx合金
等が検討されているが、磁気特性の点で不十分であった
り生産性が悪く高コストになる等の理由で実用化されて
いない。
2. Description of the Related Art Conventionally, ultra-quenched Nd-Fe-B-based magnetic powder has been frequently used as a rare earth bonded magnet magnetic powder.
Since the Curie temperature is as low as about 300 ° C. and the temperature coefficient (η) of the intrinsic coercive force (hereinafter referred to as iHc) is large, use at high temperatures has been restricted. Recently, the Sm2Fe17 compound has a Curie temperature of 470 ° C., which is 160 ° C. higher than that of the Nd2Fe14B compound due to storage of nitrogen, and its anisotropic magnetic field is 260 kOe, which is much larger than the anisotropic magnetic field (75 kOe) of the Nd2Fe14B compound. It has been reported that industrialization as a magnetic powder for bonded magnets is being studied. Sm2Fe17 nitride, Sm2Fe17Nx, is produced by a gas nitriding method or the like. However, unless the particle size of the Sm2Fe17Nx magnetic powder is reduced to about several micrometers, a high coercive force of 5 kOe or more cannot be obtained, and the magnetic powder having this particle size is easily oxidized. At the present time, it is difficult to put the magnet into practical use because of the deterioration of its magnet properties and the danger of ignition accompanying rapid oxidation.
Since this Sm2Fe17Nx magnetic powder has a particle size of several μm, when compacting it into a bonded magnet, the density of the compact cannot be increased, and a rare-earth bonded magnet with a high energy product cannot be obtained, and the formability is extremely poor. There is a problem that the efficiency is significantly reduced. In addition, it has been reported that high coercive force can be obtained by a special manufacturing method such as mechanical alloying method, but this method is suitable for small-scale production on a laboratory scale, but is inferior in cost performance, so mass production is difficult. Not reached. Further, in addition to Sm2Fe17Nx nitride, Nd (Fe, M) having a ThMn12 type crystal structure
12Nx alloy (M is a transition metal such as V, Ti, Mn, Mo)
Also, an SmFe7Nx alloy having a TbCu7 type crystal structure has been studied, but has not been put to practical use because of insufficient magnetic properties, poor productivity and high cost.

【0003】Collocottらによって最初にProc. 12th
Int.Workshop on RE Magnets and Applications,
Canbera, pp.437-444,1992 (unpublished)に報告さ
れたR3(Fe,M)29合金もその窒化物R3(Fe,
M)29Nyが一軸磁気異方性を示すことから永久磁石材
料として有望であることが示唆されている。この合金系
のSm3(Fe,Ti)29Ny合金をボールミルで平均
粒径15μmまで微粉砕することによって保磁力を高め
られることがBo-Ping Hu et al.(J.Phys.:Condens.M
atter 6(1994)L197-L200)によって報告されている。し
かし、このものも平均粒径が15μmと小さいため成形
体密度の不足や成形性が悪い等の理由でボンド磁石用磁
粉として実用化することは難しい。一方、Margarian e
t al.は、J.Appl.Phys.76(1994)6135-6155においてこ
のR3(Fe,M)29合金は非常に不安定で900〜1
000℃で他の相に分解してしまうと報告している。し
たがってこのR3(Fe,M)29合金は高温でのみ安定
に存在する相と言える。本発明者らの実験によってもこ
のことは確認されており、さらに付け加えるとこのR3
(Fe,M)29合金の単相を得ることは非常に難しく、
ThMn12型やTh2Zn17型の結晶構造を有するR
(Fe,M)合金やFe-M合金が非常に生成し易いの
である。
[0003] Proc.
Int.Workshop on RE Magnets and Applications,
The R3 (Fe, M) 29 alloy reported in Canbera, pp. 437-444, 1992 (unpublished) also has its nitride R3 (Fe,
M) 29Ny exhibits uniaxial magnetic anisotropy, suggesting that it is promising as a permanent magnet material. Bo-Ping Hu et al. (J. Phys .: Condens. M.) found that the coercive force can be increased by finely pulverizing this alloy-based Sm3 (Fe, Ti) 29 Ny alloy with a ball mill to an average particle size of 15 μm.
atter 6 (1994) L197-L200). However, these powders also have a small average particle size of 15 μm, so that it is difficult to put them into practical use as magnetic powders for bonded magnets because of insufficient compact density and poor moldability. On the other hand, Margarian e
t al., in J. Appl. Phys. 76 (1994) 6135-6155, this R3 (Fe, M) 29 alloy is very unstable and 900-1
Reported to decompose into other phases at 000 ° C. Therefore, it can be said that this R3 (Fe, M) 29 alloy is a phase that exists stably only at high temperatures. This has been confirmed by the experiments of the present inventors.
It is very difficult to obtain a single phase of (Fe, M) 29 alloy,
R having a crystal structure of ThMn12 type or Th2Zn17 type
(Fe, M) alloy and Fe-M alloy are very easy to form.

【0004】また、特開平8-111305ではこのR3
(Fe,M)29合金を用いてNまたはCを導入すること
により粗粉末で高い保磁力が得られることが開示され、
R3(Fe,M)29母合金を作製したのちにアンモニア
ガスあるいはメタンガスを用いて窒化あるいは浸炭処理
を行うことにより上記のSm2Fe17化合物にN、Cを
導入したときと同様にN、CがR3(Fe,M)29相の
格子間距離を拡げて自発磁化およびキュリー温度が増大
する。すなわち、格子間距離を拡げる目的でNあるいは
Cの導入がなされており、各々の元素の単独添加でもこ
の目的は達成可能である。NとCの両者を用いる場合に
は母合金にCを含有させた後Nを導入する方法も考えら
れるが、特開平8-111305ではCが窒化処理前の
母合金に含まれそれによってR3(Fe,M,C)29相
を安定化させるとかあるいは母合金中のR3(Fe,
M,C)29相の割合を高める役割を果たしているもので
はない。
In Japanese Patent Application Laid-Open No. Hei 8-111305, this R3
It is disclosed that a high coercive force can be obtained with a coarse powder by introducing N or C using an (Fe, M) 29 alloy,
After preparing an R3 (Fe, M) 29 mother alloy, nitriding or carburizing treatment is performed using ammonia gas or methane gas, whereby N and C become R3 ( The spontaneous magnetization and the Curie temperature increase by increasing the interstitial distance of the (Fe, M) 29 phase. That is, N or C is introduced for the purpose of increasing the interstitial distance, and this object can be achieved by adding each element alone. When both N and C are used, a method may be considered in which C is contained in the master alloy and then N is introduced. However, in Japanese Patent Application Laid-Open No. H08-111305, C is contained in the master alloy before the nitriding treatment, whereby R3 ( Stabilization of the (Fe, M, C) 29 phase or R3 (Fe,
M, C) does not play a role in increasing the proportion of 29 phases.

【0005】[0005]

【発明が解決しようとする課題】ボンド磁石の耐熱性を
向上するためにはiHcの絶対値を高くするとともにi
Hcの温度係数(η)を小さくする必要があるので、異
方性磁界が大きいとともにキュリー温度が高い希土類磁
石粉末が必要である。前述したようにR-Fe-N系合金
は従来のNd-Fe-B系合金よりも異方性磁界が大きく
かつキュリー温度が高いことからiHcの温度係数
(η)の小さい材料として期待されているが、R-Fe-
N系合金で5kOe以上の高いiHcを得るには上記の
通り数μmの微粉状にする必要があり、この微粉末は通
常工業生産で用いられている6〜10ton/cm2
度の成形圧力ではボンド磁石の成形体密度を十分に上げ
ることができず高エネルギー積を獲得できないととも
に、酸化し易く不安定でさらに成形性が非常に悪いもの
である。上記従来の問題を踏まえて、本発明の課題はi
Hcが大きいとともに従来に比べてiHcの温度係数
(η)が小さい熱安定性に優れた希土類磁石材料および
その製造方法ならびにそれを用いた希土類ボンド磁石を
提供することである。本発明者らは鋭意検討の結果、異
方性磁界およびキュリー温度が高い独自の磁石粉末をボ
ンド磁石用に開発したもので、本発明によれば粒径が大
きい粗粉末でもって高iHcでかつiHcの温度係数
(η)が小さい希土類磁石材料を提供できるという優れ
た特長を有している。すなわち、本発明におけるBの役
割は上記のC、Nの作用とは全く異なりその主相に固溶
してR3(Fe,M,B)29相の安定化に寄与するもの
である。理想的にはこの相単相で母合金を構成可能であ
り、その母合金にNを導入することにより従来のR3
(Fe,M)29主相の窒化物に比べてiHcが大でかつ
iHcの温度係数(η)が小であるとともにキュリー温
度が約480±20℃と高く、高エネルギー積の希土類
磁石材料および希土類ボンド磁石を提供可能である。
In order to improve the heat resistance of the bonded magnet, the absolute value of iHc must be increased and i
Since it is necessary to reduce the temperature coefficient (η) of Hc, a rare-earth magnet powder having a large anisotropic magnetic field and a high Curie temperature is required. As described above, the R-Fe-N alloy is expected to be a material having a small temperature coefficient (η) of iHc because the R-Fe-N alloy has a larger anisotropic magnetic field and a higher Curie temperature than the conventional Nd-Fe-B alloy. But R-Fe-
In order to obtain a high iHc of 5 kOe or more with an N-based alloy, it is necessary to form a fine powder of several μm as described above, and this fine powder is formed at a molding pressure of about 6 to 10 ton / cm 2 which is usually used in industrial production. The density of the molded body of the bonded magnet cannot be sufficiently increased to obtain a high energy product, and it is easily oxidized and unstable, and the formability is very poor. In view of the above conventional problems, the problem of the present invention is i
An object of the present invention is to provide a rare-earth magnet material having a large Hc and a small temperature coefficient (η) of iHc as compared with the related art and having excellent thermal stability, a method for producing the same, and a rare-earth bonded magnet using the same. As a result of intensive studies, the present inventors have developed a unique magnet powder having a high anisotropic magnetic field and a high Curie temperature for bonded magnets. According to the present invention, a coarse powder having a large particle size has a high iHc and It has an excellent feature that a rare earth magnet material having a small temperature coefficient (η) of iHc can be provided. That is, the role of B in the present invention is completely different from that of C and N described above, and contributes to the stabilization of the R3 (Fe, M, B) 29 phase by forming a solid solution in its main phase. Ideally, a master alloy can be composed of this single phase. By introducing N into the master alloy, the conventional R3
Rare earth magnet materials having a high energy product, iHc being large and iHc having a small temperature coefficient (η) and having a high Curie temperature of about 480 ± 20 ° C. Rare earth bonded magnets can be provided.

【0006】[0006]

【課題を解決するための手段】本発明者らはボンド磁石
の成形工程における成形容易性およびそれに用いた希土
類磁石粉末の良好な耐酸化性と高磁石特性とを確保する
目的で、平均粒径が20μm以上の粗粉で高いiHcと
飽和磁化、および低いiHcの温度係数(η)を有する
R-Fe-N系磁石粉末を得るために種々のR-Fe-N系
合金に添加物を加えた組成を鋭意検討した結果、R-F
e-M-B-N系磁石材料を見出し本発明を成すに至っ
た。すなわち、本発明は、成分組成がRαFe100-(α+
β+γ+δ)MβBγNδであり、単斜晶および/または
六方晶の結晶構造を有したR3(Fe,M,B)29Ny
を主相として含み、前記RはYを含めた希土類元素のい
ずれか1種または2種以上であり、前記MはAl、T
i、V、Cr、Mn、Cu、Ga、Zr、Nb、Mo、
Hf、Ta、Wのいずれか1種または2種以上からな
り、前記α、β、γ、δは原子百分率で下記の範囲にあ
ることを特徴とする希土類磁石材料である。 5≦α≦18 1≦β≦50 0.1≦γ≦5 4≦δ≦30
Means for Solving the Problems The inventors of the present invention aimed at ensuring the ease of molding in the molding step of bonded magnets and the good oxidation resistance and high magnet properties of the rare-earth magnet powder used therefor, and the average particle diameter was assured. In order to obtain R-Fe-N magnet powder having high iHc and saturation magnetization and low iHc temperature coefficient (η) in coarse powder having a particle size of 20 μm or more, additives were added to various R-Fe-N alloys. As a result of intensive studies on the composition
The inventors have found an e-MBN-based magnet material and have accomplished the present invention. That is, in the present invention, the component composition is RαFe100- (α +
β + γ + δ) MβBγNδ, R3 (Fe, M, B) 29Ny having a monoclinic and / or hexagonal crystal structure
Wherein R is any one or more of rare earth elements including Y, and M is Al, T
i, V, Cr, Mn, Cu, Ga, Zr, Nb, Mo,
A rare earth magnet material comprising at least one of Hf, Ta, and W, wherein α, β, γ, and δ are in the following ranges in atomic percentage. 5 ≦ α ≦ 18 1 ≦ β ≦ 50 0.1 ≦ γ ≦ 5 4 ≦ δ ≦ 30

【0007】上記希土類元素RとしてはY、La、C
e、Pr、Nd、Sm、Eu、Gd、Tb、Dy、H
o、Er、Tm、Yb、Luのいずれか1種または2種
以上を含めばよく、ミッシュメタルやジジム等の2種以
上の希土類元素の混合物を用いてもよい。好ましい希土
類元素RとしてはY、Ce、Pr、Nd、Sm、Gd、
Dy、Erのいずれか1種または2種以上であり、さら
に好ましくはY、Ce、Pr、Nd、Smのいずれか1
種または2種以上であり、特に好ましいのはSmであ
る。ここで、希土類元素Rは工業的生産により入手可能
な純度でよく、製造上混入が避けられないO、H、C、
Al、Si、Na、Mg、Ca等の不純物元素が含有さ
れていてもよい。本発明の希土類磁石材料はR成分を5
〜18原子%含有する。R成分が5原子%未満になると
鉄成分を多く含む軟磁性相の析出を促進してiHcが低
下し、18原子%を越えると非磁性のRリッチ化合物が
析出して飽和磁束密度を低下させるので好ましくない。
さらに好ましいR成分範囲は6〜12原子%である。
The rare earth elements R include Y, La, C
e, Pr, Nd, Sm, Eu, Gd, Tb, Dy, H
At least one of o, Er, Tm, Yb, and Lu may be included, and a mixture of two or more rare earth elements such as misch metal and dymium may be used. Preferred rare earth elements R include Y, Ce, Pr, Nd, Sm, Gd,
Any one or more of Dy and Er, and more preferably any one of Y, Ce, Pr, Nd and Sm
Species or a combination of two or more, and particularly preferred is Sm. Here, the rare earth element R may have a purity that can be obtained by industrial production, and O, H, C, which cannot be avoided in production.
Impurity elements such as Al, Si, Na, Mg, and Ca may be contained. The rare earth magnet material of the present invention has an R component of 5
-18 atomic%. When the R component is less than 5 atomic%, the precipitation of a soft magnetic phase containing a large amount of iron component is promoted to lower iHc. When the R component exceeds 18 atomic%, a non-magnetic R-rich compound is precipitated to lower the saturation magnetic flux density. It is not preferable.
A more preferable range of the R component is 6 to 12 atomic%.

【0008】Feは47原子%以上を含有することが好
ましい。Feが47原子%未満では飽和磁化が小さくな
り好ましくない。
It is preferable that Fe contains 47 atomic% or more. If Fe is less than 47 atomic%, the saturation magnetization is undesirably small.

【0009】上記M元素はB元素との共存下においてR
3(Fe,M,B)29相を安定させ、かつ後述するよう
に窒化時の分解温度を上昇させるのに有効である。R3
(Fe,M,B)29相を生成させるに要するM元素の添
加量はM元素の種類毎に異なるが、M元素のいずれでも
50原子%を越えて添加すると、ThMn12型の結晶構
造を有するR(Fe,M,B)12相の生成率が大きくな
りiHcが急激に低下する。M元素が1原子%未満では
Th2Zn17型の結晶構造を有するR2(Fe,M,B)
17相の生成率が大きくなりR3(Fe,M,B)29相の
存在比率が相対的に低下し、いずれも好ましくない。よ
ってM元素の好ましい添加量は1〜50原子%である。
M元素のうちで好ましい元素はTi、Mn、Cr、Z
r、Vのいずれか1種または2種以上である。R3(F
e,M,B)29相を生成するにはM元素が必須である
が、Bを含有しないR3(Fe,M)29相は上述の通り
不安定であり、均質化処理や窒化処理時に他の相に分解
し易いのでR3(Fe,M)29Ny相単相の希土類磁石
粉末を得ることが非常に困難である。
[0009] The above-mentioned M element is used in the presence of R
This is effective for stabilizing the 3 (Fe, M, B) 29 phase and increasing the decomposition temperature during nitriding as described later. R3
The amount of the M element required to form the (Fe, M, B) 29 phase varies depending on the type of the M element. However, if any of the M elements exceeds 50 atomic%, a ThMn12 type crystal structure is obtained. The generation rate of the R (Fe, M, B) 12 phase increases, and iHc drops sharply. If the M element is less than 1 atomic%, R2 (Fe, M, B) having a Th2 Zn17 type crystal structure
The generation rate of the 17 phase is increased, and the abundance ratio of the R3 (Fe, M, B) 29 phase is relatively reduced, and neither is preferable. Therefore, the preferable addition amount of the element M is 1 to 50 atomic%.
Preferred elements among the M elements are Ti, Mn, Cr, and Z.
Any one or two or more of r and V. R3 (F
The element M is essential to form the e, M, B) 29 phase, but the R 3 (Fe, M) 29 phase containing no B is unstable as described above, Therefore, it is very difficult to obtain a single-phase R3 (Fe, M) 29 Ny rare earth magnet powder.

【0010】窒化に供する母合金中のR3(Fe,M)2
9相の割合が低いと窒化してもその窒化物R3(Fe,
M)29Nyの生成比率が低いので良好な磁石特性を得ら
れない。この点を考慮して本発明者らは、上記Bおよび
M元素が共存した場合に60体積%以上好ましくは75
体積%以上の単相に近い安定なR3(Fe,M,B)29
相が得られることを見出した。したがって、窒化処理前
の母合金においてR3(Fe,M,B)29相の存在割合
を飛躍的に高めることができ、窒化処理後の希土類磁石
材料中に占めるR3(Fe,M,B)29Ny相の存在割
合が従来のBを含まないR3(Fe,M)29相を窒化し
た場合に比べて格段に増大するので高磁束密度と、高保
磁力を発生させることが可能となる。本発明においてB
の好ましい含有量は0.1〜5原子%である。Bが0.1
原子%未満および5原子%を越えるとR3(Fe,M,
B)29Ny窒化物相が不安定となり他の相へ分解し易く
なるので好ましくない。すなわち、R3(Fe,M,
B)29相を安定化する作用は上記B添加量の範囲にある
ときに発揮されるのである。このような微量のB添加に
よる有効性はこれまで知られていない。例えば、Sm2
Fe17合金にB、C、Nを加えていったときの固溶限
について、H.Horiuchi et al(J.Alloys.Comp.222(19
95)131-135)の報告によればCは約7原子%、Nは約1
4原子%まで固溶するのに対しBは約1原子%までしか
固溶せず、Bの固溶による格子の拡がりおよびキュリー
温度の上昇はごくわずかであるとされている。これらは
C、N、Bをいずれも侵入型の元素として考えこれらの
元素の導入により格子間距離の拡張をねらったものであ
り、本発明のように微量のB添加により上記主相の安定
化を図るという手法はこれまで見出されていなかった。
本発明におけるBとM元素の共存効果は上記の通り母合
金中のR3(Fe,M,B)29相の存在割合を高めて、
均質化処理や窒化処理においてαFe等の他相への分解
を抑制する効果を有している。例えば、従来では均質化
処理においてR3(Fe、M)29相が安定な加熱温度範
囲が狭く、また窒化温度が高い場合や長時間窒化を行う
場合は一度生成した窒化相:R3(Fe,M)29Nyが
不安定でαFe等が生成してしまい得られた磁石材料の
保磁力が大きく低下するが、本発明の場合はBを適量添
加することで広い均質化処理温度および窒化温度の範囲
を採用可能で、生産性の向上、希土類磁石材料の磁石品
質の安定化にも有効である。さらに、B添加によってR
3(Fe,M,B)29相の安定化に寄与するM元素の含
有範囲が従来のR3(Fe,M)29相の場合に比べて広
まると同時に、従来よりM元素を減らせるので飽和磁束
密度(残留磁束密度)すなわちエネルギー積が増大する
という効果も有している。
[0010] R3 (Fe, M) 2 in the master alloy to be subjected to nitriding
If the ratio of the 9 phases is low, the nitride R3 (Fe,
M) Since the production ratio of 29Ny is low, good magnet properties cannot be obtained. In view of this point, the present inventors consider that when the above-mentioned elements B and M coexist, the content is 60% by volume or more, preferably 75% by volume.
Stable R3 (Fe, M, B) 29 close to a single phase with volume% or more
It has been found that a phase is obtained. Therefore, the proportion of the R3 (Fe, M, B) 29 phase in the master alloy before the nitriding treatment can be significantly increased, and R3 (Fe, M, B) 29 Ny occupying in the rare earth magnet material after the nitriding treatment. Since the proportion of the phase is remarkably increased as compared with the conventional case where the R3 (Fe, M) 29 phase not containing B is nitrided, a high magnetic flux density and a high coercive force can be generated. In the present invention, B
Is preferably 0.1 to 5 atomic%. B is 0.1
If it is less than 5 atomic% or more than 5 atomic%, R3 (Fe, M,
B) It is not preferable because the 29Ny nitride phase becomes unstable and is easily decomposed into another phase. That is, R3 (Fe, M,
B) The effect of stabilizing the 29 phase is exhibited when the content of B is in the above range. The effectiveness of adding such a small amount of B has not been known so far. For example, Sm2
Regarding the solid solubility limit when B, C and N were added to the Fe17 alloy, H. Horiuchi et al (J. Alloys. Comp. 222 (19
95) 131-135) reports that C is about 7 atomic% and N is about 1%.
While B forms a solid solution up to 4 atomic%, B forms a solid solution only up to about 1 atomic%, and it is said that the expansion of the lattice and the increase in Curie temperature due to the solid solution of B are very small. These are all intended to expand interstitial distance by introducing C, N, and B as interstitial elements, and to stabilize the main phase by adding a small amount of B as in the present invention. The technique of trying to achieve this has not been found so far.
The coexistence effect of the B and M elements in the present invention increases the proportion of the R3 (Fe, M, B) 29 phase in the master alloy as described above,
It has an effect of suppressing decomposition of αFe or the like into another phase in the homogenization treatment or the nitriding treatment. For example, conventionally, in the homogenization treatment, the heating temperature range in which the R3 (Fe, M) 29 phase is stable is narrow, and when the nitriding temperature is high or when nitriding is performed for a long time, the nitrided phase once formed: R3 (Fe, M). ) 29Ny is unstable and αFe etc. are generated, and the coercive force of the obtained magnetic material is greatly reduced. In the case of the present invention, however, by adding an appropriate amount of B, a wide range of homogenization temperature and nitriding temperature can be obtained. It can be adopted and is effective for improving productivity and stabilizing the magnet quality of rare earth magnet materials. Further, by adding B, R
The content range of the M element contributing to the stabilization of the 3 (Fe, M, B) 29 phase is wider than that of the conventional R3 (Fe, M) 29 phase, and at the same time, the M element can be reduced more than before so that the saturation is achieved. It also has the effect of increasing the magnetic flux density (residual magnetic flux density), that is, the energy product.

【0011】R3(Fe,M,B)29相に導入される窒
素Nは4〜30原子%とすることが好ましい。窒素Nが
4原子%未満では磁化が低くなるとともに、30原子%
を越えると保磁力を向上させることが困難である。より
好ましい窒素Nの含有量は10〜20原子%である。
The nitrogen N introduced into the R3 (Fe, M, B) 29 phase is preferably 4 to 30 atomic%. If the nitrogen N content is less than 4 at%, the magnetization becomes low and
If it exceeds, it is difficult to improve the coercive force. More preferably, the content of nitrogen N is 10 to 20 atomic%.

【0012】また、Feの0.01〜30原子%をCo
および/またはNiで置換することが好ましく、Coお
よび/またはNiの導入によりキュリー温度が上昇する
とともにiHcの温度係数(η)ならびに耐酸化性も向
上する効果がある。Coおよび/またはNiによるFe
置換量のより好ましい範囲は1〜20原子%である。置
換量が30原子%を越えると飽和磁束密度およびiHc
の顕著な低下を招来するとともに、1原子%未満ではC
oおよび/またはNiの添加効果が認められない。
Further, 0.01 to 30 atomic% of Fe is Co
And / or Ni is preferred, and the introduction of Co and / or Ni has the effect of increasing the Curie temperature and improving the temperature coefficient (η) of iHc and oxidation resistance. Fe by Co and / or Ni
A more preferable range of the substitution amount is 1 to 20 atomic%. If the substitution amount exceeds 30 atomic%, the saturation magnetic flux density and iHc
Is significantly reduced, and at less than 1 atomic%, C
No effect of adding o and / or Ni is observed.

【0013】本発明のR成分の50原子%以上好ましく
は70%以上をSmとすることにより、際立って高いi
Hcが得られるので好ましい。また、本発明の希土類磁
石材料の平均粒径を20〜500μmとすることが好ま
しい。20μm未満では酸化による品質劣化および成形
性劣化が顕著となり、500μmを超えると通常の窒化
条件では窒素の拡散距離が粒子径の大きな粉末粒子に対
して不十分となり易く粉末粒子内に均一に窒化物が形成
されない不具合を生じて好ましくない。より好ましい平
均粒径の範囲は30〜400μmである。また、R3
(Fe,M,B)29Ny相の結晶粒内にM元素または
M化合物が析出した組織を有した場合に高いiHcと、
低いiHcの温度係数(η)を得ることができる。
By making 50% by atom or more, preferably 70% or more of the R component of the present invention Sm, a remarkably high i
This is preferable because Hc is obtained. Further, it is preferable that the rare earth magnet material of the present invention has an average particle diameter of 20 to 500 μm. If it is less than 20 μm, quality deterioration and formability deterioration due to oxidation become remarkable, and if it exceeds 500 μm, under normal nitriding conditions, the diffusion distance of nitrogen tends to be insufficient for powder particles having a large particle diameter, and nitrides are uniformly formed in the powder particles. Is not preferred because of the disadvantage that no is formed. A more preferable range of the average particle size is 30 to 400 μm. Also, R3
High iHc when the (Fe, M, B) 29Ny phase crystal grains have a structure in which M element or M compound is precipitated;
A low temperature coefficient (η) of iHc can be obtained.

【0014】また、本発明によれば希土類磁石材料にお
けるR3(Fe,M,B)29Ny相の存在比率が60体
積%好ましくは75体積%のものを容易に提供可能であ
る。
Further, according to the present invention, it is possible to easily provide a rare earth magnet material having an R3 (Fe, M, B) 29Ny phase having an abundance of 60% by volume, preferably 75% by volume.

【0015】また、本発明は、その磁石粉末が高分子重
合体、純金属、合金のいずれかにより結合されてボンド
磁石を構成する希土類磁石材料であって、前記磁石粉末
の25〜100℃における固有保磁力(iHc)の温度
係数(η)が−0.45以上であるとともに、25℃に
おける固有保磁力(iHc)が8kOe以上であること
を特徴とする希土類磁石材料である。
Further, the present invention provides a rare earth magnet material in which the magnet powder is bonded by any one of a polymer, a pure metal, and an alloy to form a bonded magnet, wherein the magnet powder at 25 to 100 ° C. A rare earth magnet material characterized in that the temperature coefficient (η) of the intrinsic coercive force (iHc) is −0.45 or more and the intrinsic coercive force (iHc) at 25 ° C. is 8 kOe or more.

【0016】また、本発明は、成分組成がRαFe100-
(α+β+γ+δ+ε+ζ)MβBγNδHεOζであり、単
斜晶および/または六方晶の結晶構造を有したR3(F
e,M,B)29Nyを主相として含み、前記RはYを含
む希土類元素のいずれか1種または2種以上であり、前
記MはAl、Ti、V、Cr、Mn、Cu、Ga、Z
r、Nb、Mo、Hf、Ta、Wのいずれか1種または
2種以上からなり、前記α、β、γ、δ、ε、ζは原子
百分率で下記の範囲にあることを特徴とする希土類磁石
材料である。 5≦α≦18 1≦β≦50 0.1≦γ≦5 4≦δ≦30 0.5≦ε≦10 1≦ζ≦5 本発明の希土類磁石材料は窒化に供するまでの工程で水
素処理を施すことや粉砕粒度を調整することによって、
最終の窒化磁性粉において水素Hを0.5〜10原子%
および/または酸素Oを1〜5原子%含ませることがで
きる。水素を0.5〜10原子%含んだ場合は窒化の効
率を向上させる効果がある。これは既にR3(Fe,
M,B)29相に存在している水素を窒素が置き換えて
いくために短時間で窒素がR3(Fe,M,B)29相
に拡散できるためと考えられる。しかし、水素が0.5
原子%未満ではその効果が認められず、10原子%を越
えると飽和磁化が減少するとともに拡散した水素が余剰
となるので化学的に不安定になってしまう。次に、酸素
は1〜5原子%含有した場合にiHcの温度係数(η)
を大きくする効果が認められる。酸素が1原子%未満で
はその有効性は認められず、5原子%を越えると磁化お
よびiHcの低下が顕著になるので好ましくない。
Further, according to the present invention, the component composition is RαFe100-
(α + β + γ + δ + ε + ζ) MβBγNδHεOζ, which has a monoclinic and / or hexagonal crystal structure of R3 (F
e, M, B) 29Ny as a main phase, R is one or more of rare earth elements including Y, and M is Al, Ti, V, Cr, Mn, Cu, Ga, Z
a rare earth element comprising at least one of r, Nb, Mo, Hf, Ta, and W, wherein α, β, γ, δ, ε, and あ る are in the following ranges in atomic percentage. It is a magnet material. 5 ≦ α ≦ 18 1 ≦ β ≦ 50 0.1 ≦ γ ≦ 5 4 ≦ δ ≦ 30 0.5 ≦ ε ≦ 10 1 ≦ ζ ≦ 5 The rare earth magnet material of the present invention is subjected to hydrogen treatment in the process until it is subjected to nitriding. By adjusting the grinding particle size by applying
In the final nitrided magnetic powder, hydrogen H is 0.5 to 10 atomic%.
And / or 1 to 5 atomic% of oxygen O. When containing 0.5 to 10 atomic% of hydrogen, there is an effect of improving the efficiency of nitriding. This is already R3 (Fe,
It is considered that nitrogen can diffuse into the R3 (Fe, M, B) 29 phase in a short time because nitrogen replaces hydrogen existing in the (M, B) 29 phase. However, when hydrogen is 0.5
If the content is less than 10 atomic%, the effect is not recognized. If the content is more than 10 atomic%, the saturation magnetization decreases and the diffused hydrogen becomes excessive, so that it becomes chemically unstable. Next, the temperature coefficient (η) of iHc when oxygen is contained at 1 to 5 atomic%.
The effect of increasing is recognized. If oxygen is less than 1 atomic%, its effectiveness is not recognized, and if it exceeds 5 atomic%, magnetization and iHc are remarkably reduced, which is not preferable.

【0017】また、本発明は上記の特長ある磁石粉末を
高分子重合体、純金属、合金のいずれかのバインダーで
結合した希土類ボンド磁石であって、前記希土類ボンド
磁石の25〜100℃における固有保磁力(iHc)の
温度係数(η)が−0.45以上であるとともに、25
℃における保磁力(bHc)が6kOe以上であること
を特徴とする希土類ボンド磁石である。
Further, the present invention relates to a rare earth bonded magnet comprising the above-mentioned characteristic magnet powder bound by a binder of a polymer, a pure metal, or an alloy, wherein the rare earth bonded magnet has a specific property at 25 to 100 ° C. The temperature coefficient (η) of the coercive force (iHc) is -0.45 or more,
A rare-earth bonded magnet having a coercive force (bHc) at 6 ° C. of 6 kOe or more.

【0018】また、本発明は、成分組成がRαFe100-
(α+β+γ+δ)MβBγNδであり、単斜晶および/ま
たは六方晶の結晶構造を有したR3(Fe,M,B)29
Nyを主相として含み、前記RはYを含めた希土類元素
のいずれか1種または2種以上であり、前記MはAl、
Ti、V、Cr、Mn、Cu、Ga、Zr、Nb、M
o、Hf、Ta、Wのいずれか1種または2種以上から
なり、前記α、β、γ、δは原子百分率で下記の範囲に
ある希土類磁石材料を製造するに際して、窒化処理前に
700〜1250℃で均質化処理を行うことを特徴とす
る希土類磁石材料の製造方法である。 5≦α≦18 1≦β≦50 0.1≦γ≦5 4≦δ≦30
Further, according to the present invention, the component composition is RαFe100-
(α + β + γ + δ) MβBγNδ and R3 (Fe, M, B) 29 having a monoclinic and / or hexagonal crystal structure
N is contained as a main phase, R is any one or more of rare earth elements including Y, M is Al,
Ti, V, Cr, Mn, Cu, Ga, Zr, Nb, M
o, Hf, Ta, W or one or more of them, wherein α, β, γ, and δ are in atomic percentage in the following range. A method for producing a rare-earth magnet material, wherein a homogenization treatment is performed at 1250 ° C. 5 ≦ α ≦ 18 1 ≦ β ≦ 50 0.1 ≦ γ ≦ 5 4 ≦ δ ≦ 30

【0019】また、本発明は、成分組成がRαFe100-
(α+β+γ+δ+ε+ζ)MβBγNδHεOζであり、単
斜晶および/または六方晶の結晶構造を有したR3(F
e,M,B)29Nyを主相として含み、前記RはYを含
む希土類元素のいずれか1種または2種以上であり、前
記MはAl、Ti、V、Cr、Mn、Cu、Ga、Z
r、Nb、Mo、Hf、Ta、Wのいずれか1種または
2種以上からなり、前記α、β、γ、δ、ε、ζは原子
百分率で下記の範囲にある希土類磁石材料を製造するに
際して、窒化処理前に700〜1250℃で均質化処理
を行うことを特徴とする希土類磁石材料の製造方法であ
る。
Further, the present invention relates to the present invention, wherein the component composition is RαFe100-
(α + β + γ + δ + ε + ζ) MβBγNδHεOζ, which has a monoclinic and / or hexagonal crystal structure of R3 (F
e, M, B) 29Ny as a main phase, R is one or more of rare earth elements including Y, and M is Al, Ti, V, Cr, Mn, Cu, Ga, Z
r, Nb, Mo, Hf, Ta, W, or any one or more of the above, α, β, γ, δ, ε, and ζ produce a rare earth magnet material in the following range in atomic percentage. In this case, a homogenization treatment is performed at 700 to 1250 ° C. before the nitriding treatment.

【0020】[0020]

【発明の実施の形態】以下本発明を詳説する。本発明の
希土類磁石材料は単斜晶および/または六方晶の結晶構
造を有するR3(Fe,M,B)29Ny相の単相のも
のが理想的であるが、この主相の他に磁石特性に寄与し
ない他の化合物(以後副相と呼ぶ)を含有することがで
きる。この副相としてTh2Zn17型、TbCu7型、T
hMn12型などの結晶構造を有するR-Fe-M-B-N系
磁性化合物を含んでいてもよいが、上記の通り本発明の
主相の含有比率は60体積%以上が好ましく、75体積
%以上がより好ましい。R3(Fe,M,B)29Ny
主相は、母合金全部または母合金を主に構成するR3
(Fe,M,B)29相の結晶格子間に窒素が侵入して
その結晶格子が膨張することによって得られるが、その
結晶構造はR3(Fe,M,B)29相とほぼ同じ対称
性を有する。例えば母合金粉末として原子%表示でSm
9.4Fe84.0B2.0Ti4.5の組成のものを選んだ場合、
窒素を導入することによって結晶磁気異方性が面内異方
性から一軸異方性に変化し永久磁石材料として好適なも
のになる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The rare earth magnet material of the present invention is ideally a single phase of R3 (Fe, M, B) 29Ny phase having a monoclinic and / or hexagonal crystal structure. (Hereinafter referred to as a subphase). Th2 Zn17 type, TbCu7 type, T2
Although it may contain an R-Fe-MBN-based magnetic compound having a crystal structure such as hMn12 type, the content ratio of the main phase of the present invention is preferably 60% by volume or more, and 75% by volume as described above. The above is more preferable. R3 (Fe, M, B) 29Ny
The main phase is R3 which mainly constitutes the entire master alloy or the master alloy.
Nitrogen invades between the crystal lattices of the (Fe, M, B) 29 phase and expands the crystal lattice. The crystal structure has the same symmetry as the R3 (Fe, M, B) 29 phase. Having. For example, as mother alloy powder,
If a composition of 9.4Fe84.0B2.0Ti4.5 is selected,
By introducing nitrogen, the magnetocrystalline anisotropy changes from in-plane anisotropy to uniaxial anisotropy, making the material suitable as a permanent magnet material.

【0021】本発明にかかる希土類ボンド磁石は、上記
希土類磁石材料を高分子重合体、純金属、合金等のいず
れかのバインダーで固めてなるものであるが、高分子重
合体としてはエポキシ樹脂やフェノール樹脂等に代表さ
れる熱硬化樹脂またはポリアミド樹脂やEEA樹脂等の
熱可塑性樹脂または合成ゴムや天然ゴム等の公知のもの
を用い得る。また、純金属または合金としては亜鉛や錫
などの公知の低融点金属や低融点合金を用いることがで
きる。また、希土類ボンド磁石の成形方法としては圧縮
成形や射出成形などの公知の成形方法を採用できる。
The rare earth bonded magnet according to the present invention is obtained by solidifying the above rare earth magnet material with a binder such as a polymer, a pure metal or an alloy. A thermosetting resin represented by a phenol resin, a thermoplastic resin such as a polyamide resin or an EEA resin, or a known resin such as a synthetic rubber or a natural rubber can be used. In addition, as the pure metal or alloy, a known low melting point metal or alloy such as zinc or tin can be used. Further, as a molding method of the rare earth bonded magnet, a known molding method such as compression molding or injection molding can be adopted.

【0022】本発明によれば、R3(Fe,M,B)29
Ny主相の存在比率の高い希土類磁石材料を容易かつ安
定に作製できるので、キュリー温度が約480±20℃
と高く熱安定性に優れるとともに平均粒径で20〜50
0μmの幅広い粒径にわたって略一定の高いiHcと低
いiHcの温度係数(η)を有した希土類磁石粉末を提
供できると同時に、高磁石特性の等方性や異方性ボンド
磁石を容易に製作することができる。
According to the present invention, R 3 (Fe, M, B) 29
The Curie temperature is about 480 ± 20 ° C. because a rare earth magnet material having a high proportion of the Ny main phase can be easily and stably manufactured.
And high thermal stability and an average particle size of 20 to 50
It is possible to provide a rare earth magnet powder having a substantially constant high iHc and a low iHc temperature coefficient (η) over a wide particle diameter of 0 μm, and at the same time easily manufacture an isotropic or anisotropic bonded magnet having high magnet properties. be able to.

【0023】次に、本発明の代表的な製造工程を説明す
る。
Next, a typical manufacturing process of the present invention will be described.

【0024】(母合金の調整)本発明の磁石材料はBと
M元素との複合添加により窒化処理に供するR-Fe-M
-B系母合金中のR3(Fe,M,B)29相の含有比率を
高めたものである。R-Fe-M-B系母合金は例えば高
周波溶解法、アーク溶解法、超急冷法、ストリップキャ
スト法、ガスアトマイズ法、還元拡散法、メカニカルア
ロイング法等のいずれかを用いて合金化される。上記方
法で得た合金を水素雰囲気下で加熱保持し、続いて脱水
素処理を行い水素化物を分解させて母合金相に再結合さ
せてもよい。ここで、高周波溶解法またはアーク溶解法
を用いた場合には上記合金が凝固する際にαFeを主成
分とする軟磁性相が析出し易いが、この軟磁性相は窒化
処理後も残留し保磁力を低下させる要因となるので好ま
しくない。この軟磁性相の生成を抑えるには溶製した母
合金を真空中またはアルゴンガス雰囲気で700〜12
50℃×0.5〜100時間の加熱条件で均質化処理す
ることが望ましい。従来のR3(Fe,M)29相は上
記の通り900〜1000℃で分解するのに対し、本発
明では700〜1250℃という広い均質化処理温度を
許容できる利点を有している。
(Adjustment of Master Alloy) The magnet material of the present invention is subjected to nitriding treatment by adding a complex of B and M elements to R-Fe-M.
The content ratio of the R3 (Fe, M, B) 29 phase in the -B-based master alloy is increased. The R-Fe-MB base alloy is alloyed using any one of, for example, a high-frequency melting method, an arc melting method, a super-quenching method, a strip casting method, a gas atomizing method, a reduction diffusion method, and a mechanical alloying method. . The alloy obtained by the above-described method may be heated and held under a hydrogen atmosphere, followed by a dehydrogenation treatment to decompose the hydride and recombine it with the mother alloy phase. Here, when the high-frequency melting method or the arc melting method is used, a soft magnetic phase containing αFe as a main component is likely to precipitate when the above alloy is solidified, but this soft magnetic phase remains and remains after nitriding. It is not preferable because it causes a reduction in magnetic force. In order to suppress the formation of the soft magnetic phase, the molten master alloy is heated in a vacuum or in an argon gas atmosphere at 700 to 12 mm.
It is desirable to perform the homogenization treatment under heating conditions of 50 ° C. × 0.5 to 100 hours. While the conventional R3 (Fe, M) 29 phase decomposes at 900 to 1000 ° C as described above, the present invention has the advantage that a wide homogenization treatment temperature of 700 to 1250 ° C can be tolerated.

【0025】(粉砕)上記方法で溶製した母合金塊また
はメカニカルアロイングしたものを直接窒化することも
可能であるが、窒化処理物のサイズが大きいと窒化処理
時間が長くなるので粗粉砕を行って平均粒径で500μ
m以下に粗粉砕後に窒化することが望ましい。粗粉砕は
例えばディスクミル、バンタムミル、ジョークラッシャ
ー、ボールミルなどの粉砕機を用いて行うことができ
る。また母合金に水素を吸蔵させた後に上記粉砕機で粗
粉砕する方法や、水素の吸蔵と放出とを繰り返して粗粉
砕する方法を用いてもよい。さらに粗粉砕の後、篩で分
級し窒化すると母合金中に均質な窒化物の主相を形成で
きるので好ましく、例えば、窒化処理前に20μm〜1
00μm未満、100μm〜200μm未満、200μ
m〜300μm未満、300μm〜400μm未満、4
00μm〜500μm未満というように篩分すると窒化
処理後の磁石粉末がほぼこれらの篩分粒径になってお
り、上記の均質な窒化物形成効果とともにボンド磁石形
状に応じて要求される成形性の難易に合わせてこれらの
略篩分粒径の磁石粉末を適宜採用できるので実用上好適
なものである。さらに、粗粉砕後、アルゴンガス雰囲気
または真空中で500〜1000℃×0.5〜100時
間でアニールすると磁石特性が向上するが、この効果は
粗粉砕により導入された歪みが緩和されるためと考えら
れる。
(Pulverization) It is also possible to directly nitride the mother alloy ingot smelted by the above method or mechanically alloyed. However, if the size of the nitrided product is large, the nitridation time will be long, so coarse grinding is performed. Go to average particle size 500μ
It is desirable to nitride after coarse grinding to not more than m. Coarse pulverization can be performed using a pulverizer such as a disc mill, a bantam mill, a jaw crusher, and a ball mill. Further, a method in which hydrogen is occluded in the master alloy and then coarsely pulverized by the above pulverizer or a method in which hydrogen is occluded and released repeatedly to coarsely pulverize may be used. Further, after coarse pulverization, it is preferable to classify and nitride with a sieve, since a homogeneous main phase of nitride can be formed in the mother alloy.
Less than 00 μm, 100 μm to less than 200 μm, 200 μm
m to less than 300 μm, 300 to less than 400 μm, 4
When sieved so as to be less than 00 μm to less than 500 μm, the magnet powder after the nitriding treatment has almost the sieved particle size, and together with the above uniform nitride forming effect, the formability required according to the bond magnet shape. These magnet powders having a particle size of approximately sieve can be appropriately used according to the difficulty, so that they are practically suitable. Further, after the coarse pulverization, annealing at 500 to 1000 ° C. for 0.5 to 100 hours in an argon gas atmosphere or vacuum improves the magnetic properties. This effect is because the strain introduced by the coarse pulverization is reduced. Conceivable.

【0026】(窒化)本発明では公知の窒化処理方法
(例えば、ガス窒化法、イオン窒化法等。)を採用でき
る。一例として、ガス窒化法について説明する。ガス窒
化法は窒素ガス、アンモニアガス、窒素ガスと水素ガス
の混合ガス、アンモニアガスと水素ガスの混合ガス等の
いずれかを上記母合金塊または上記母合金の粗粉砕粉に
接触させて結晶格子内に窒素を導入する工程である。窒
化反応は上記のようなガス種を選ぶこと、加熱温度、加
熱時間、ガス圧力により制御できる。このうち加熱温度
は母合金組成によって異なるが300〜650℃が好ま
しい。母合金の種類によらず300℃未満であると窒化
がほとんど進行せず、また650℃を超えると一旦生成
した窒化物が分解してαFeなどの軟磁性相が生成する
ので好ましくない。窒化後にさらにアルゴン等の不活性
ガス中あるいは真空中あるいは水素ガス中で300〜6
00℃×0.5〜50時間アニールすると保磁力、iH
c、飽和磁化等が向上する場合がある。これはアニール
により窒素が母合金の結晶粒子内にさらに拡散して主相
の窒化物相の割合が増加することや粉末粒子内に均一に
窒化物が形成されて行くためと思われる。
(Nitriding) In the present invention, a known nitriding treatment method (for example, a gas nitriding method, an ion nitriding method, etc.) can be adopted. As an example, a gas nitriding method will be described. In the gas nitriding method, any one of nitrogen gas, ammonia gas, a mixed gas of nitrogen gas and hydrogen gas, a mixed gas of ammonia gas and hydrogen gas, or the like is brought into contact with the above-mentioned mother alloy mass or the coarsely pulverized powder of the above-mentioned mother alloy to form a crystal lattice. This is a step of introducing nitrogen into the inside. The nitriding reaction can be controlled by selecting the above gas species, heating temperature, heating time, and gas pressure. Among these, the heating temperature varies depending on the mother alloy composition, but is preferably 300 to 650 ° C. Irrespective of the type of the mother alloy, if the temperature is lower than 300 ° C., nitriding hardly proceeds, and if the temperature is higher than 650 ° C., the nitride once formed is decomposed to generate a soft magnetic phase such as αFe, which is not preferable. After nitriding, 300 to 6 in an inert gas such as argon or in a vacuum or hydrogen gas.
Coercive force, iH
c, saturation magnetization, etc. may be improved. This is presumably because nitrogen is further diffused into the crystal grains of the mother alloy by annealing to increase the proportion of the main phase nitride phase, and that nitrides are uniformly formed in the powder particles.

【0027】(磁場成形)上記のようにして作成した本
発明の希土類磁石材料粉末を用いて異方性ボンド磁石を
作製するには、その磁石粉末と熱硬化性樹脂または低融
点金属(低融点合金)のバインダーとを適正比率で混合
した後例えば10kOe以上の磁場中で圧縮成形した
り、その磁石粉末と熱可塑性樹脂とを適正比率で配合し
加熱混練して得たコンパウンドを例えば10kOe以上
の磁場中で射出成形する方法を採用できる。等方性のボ
ンド磁石を作製する場合には本発明の希土類磁石材料粉
末を上記樹脂または金属(合金)のバインダー粉末と適
正比率で配合後均一化のために混合した後、磁場無しで
成形体を形成し、その後加熱硬化処理を行えばよい。
(Magnetic field molding) In order to produce an anisotropic bonded magnet using the rare earth magnet material powder of the present invention prepared as described above, the magnet powder and a thermosetting resin or a low melting point metal (low melting point metal) are used. Alloy) at a proper ratio and then compression-molded in a magnetic field of, for example, 10 kOe or more. A compound obtained by blending the magnet powder and the thermoplastic resin at a proper ratio and kneading with heat is used to obtain a compound of, for example, 10 kOe or more. A method of injection molding in a magnetic field can be adopted. When producing an isotropic bonded magnet, the rare earth magnet material powder of the present invention is mixed with the above-mentioned resin or metal (alloy) binder powder at an appropriate ratio and mixed for homogenization, and then molded without a magnetic field. Is formed, and then a heat curing treatment may be performed.

【0028】(着磁)上記のボンド磁石に十分な磁力を
付与するための着磁作業は好ましくは15kOe以上、
より好ましくは20kOe以上の着磁磁場で行うことが
一般的である。
(Magnetization) The magnetizing operation for imparting a sufficient magnetic force to the bond magnet is preferably 15 kOe or more.
More preferably, it is general that the magnetization is performed with a magnetizing magnetic field of 20 kOe or more.

【0029】次に本発明の各物性値の評価方法について
具体的に説明する。 (平均粒径の測定)上記磁石材料粉末の平均粒径はレー
ザー回折式粒度分布測定装置(GALAI社製、CIS
−1型)を用いてその体積相当径分布を測定し、その分
布曲線より平均粒径を求めた。 (磁気特性の測定)上記磁石材料のiHc、飽和磁化
(σ)はその磁石粉末の所定量を樹脂に混ぜて銅容器に
詰め込み、振動試料型磁力計(東英工業(株)製のVS
M-3型)を用いて測定した。ボンド磁石のiHc、残
留磁束密度(Br)、iHcの温度係数(η)は自記磁
束計(東英工業(株)製TRF-5H)を用いて測定し
た。
Next, the method for evaluating each physical property value of the present invention will be specifically described. (Measurement of Average Particle Size) The average particle size of the above magnet material powder was measured by a laser diffraction type particle size distribution analyzer (CIS, manufactured by GALAI).
(-1 type) was used to measure the volume equivalent diameter distribution, and the average particle diameter was determined from the distribution curve. (Measurement of magnetic properties) For the iHc and saturation magnetization (σ) of the magnet material, a predetermined amount of the magnet powder was mixed with a resin and packed in a copper container, and a vibrating sample magnetometer (VS manufactured by Toei Kogyo Co., Ltd.)
M-3). The iHc, residual magnetic flux density (Br), and temperature coefficient (η) of iHc of the bonded magnet were measured using a self-recording magnetometer (TRF-5H manufactured by Toei Kogyo Co., Ltd.).

【0030】(成分分析)上記磁石材料の構成元素のう
ち、窒素、水素、酸素はN,O,Hガス分析装置
((株)堀場製作所製のEMGA1300)を用いてガ
スクロマトグラフィー熱伝導検出法により分析した。ま
た、Sm等の希土類元素はシュウ酸塩重量法、Feは2
クロム酸カリウム容量法、Ti等のM元素とBは誘導結
合型プラズマ発光分析法により分析した。
(Component Analysis) Among the constituent elements of the above magnet material, nitrogen, hydrogen and oxygen were detected by gas chromatography heat conduction detection using an N, O, H gas analyzer (EMGA1300 manufactured by Horiba, Ltd.). Was analyzed by In addition, rare earth elements such as Sm are oxalate gravimetric method, Fe is 2
Potassium chromate capacity method, M element such as Ti and B were analyzed by inductively coupled plasma emission spectrometry.

【0031】(耐酸化性の評価)希土類磁石粉末を大気
中で100℃×相対湿度90%に保持された恒温槽内に
168時間放置した後、取り出して25℃でiHcを測
定し、この恒温槽に入れる前の25℃におけるiHcと
比較して減少率である耐酸化性を求めた。すなわち、 (耐酸化性)=(恒温槽処理後の磁石粉末の25℃にお
けるiHc)÷(恒温槽処理前の磁石粉末の25℃にお
けるiHc)×100(%) で定義した値である。こ
の値が小さいほど耐酸化性に優れるものである。
(Evaluation of Oxidation Resistance) The rare earth magnet powder was left in the air at a constant temperature of 100 ° C. × 90% RH for 168 hours, taken out and measured for iHc at 25 ° C. Oxidation resistance, which is a decrease rate as compared with iHc at 25 ° C. before being put in the bath, was determined. That is, (oxidation resistance) = (iHc at 25 ° C. of magnet powder after thermostatic bath treatment) ÷ (iHc at 25 ° C. of magnet powder before thermostatic bath treatment) × 100 (%). The smaller this value is, the more excellent the oxidation resistance is.

【0032】次に、本発明を実施例により説明するがこ
れらにより本発明が限定されるものではない。 (実施例1〜12)B添加量と磁石特性との相関を見る
ため表1に示される希土類磁石粉末を作製し評価した。
まず、純度99.9%のSm、Fe、Ti、Bを用いて
表1の実施例1〜12の窒化物磁石粉末に対応した母合
金組成になるように各々配合し、アルゴンガス雰囲気の
高周波溶解炉で溶解して実施例1〜12に対応した各母
合金を溶製した。その後、アルゴンガス雰囲気中で11
50℃、20時間の均質化処理を行い、続いてこの母合
金塊をジョークラッシャーとディスクミルを用いて粉砕
した。これらの母合金粉体のX線回折をCu-Kα線を
用いて行ったところ回折線はすべてR3(Fe,M,
B)29相として指数付けできることを確認した。次に
上記各母合金粉末を雰囲気加熱炉に仕込み450℃にお
いて窒素ガス1atm気流中で5時間加熱保持し窒化処
理を行い、続いてアルゴン気流中で420℃で1時間ア
ニールした。この窒化処理した各粉体のX線回折を行っ
たところ母合金で得られたR3(Fe,M,B)29相
のX線回折パターンより低回折角度側にシフトしてお
り、N原子が母合金結晶に侵入することによってその結
晶格子が拡がったことが確認できた。こうして得られた
実施例1〜12の窒化物磁石粉末の組成、平均粒径、2
5℃における飽和磁化の強さ(σ)およびiHc、25
〜100℃におけるiHcの温度係数(η)を測定した
結果を表1に示した。ここで、下記各実施例および各比
較例における各測定は全て表1の測定と同条件で行って
いる。
Next, the present invention will be described with reference to examples, but the present invention is not limited by these examples. (Examples 1 to 12) Rare earth magnet powders shown in Table 1 were prepared and evaluated in order to observe the correlation between the amount of added B and the magnet properties.
First, using Sm, Fe, Ti, and B having a purity of 99.9%, each was blended so as to have a mother alloy composition corresponding to the nitride magnet powders of Examples 1 to 12 in Table 1, and a high-frequency gas in an argon gas atmosphere was used. Each mother alloy corresponding to Examples 1 to 12 was melted by melting in a melting furnace. Then, in an argon gas atmosphere, 11
Homogenization treatment was performed at 50 ° C. for 20 hours, and then this mother alloy mass was pulverized using a jaw crusher and a disc mill. When X-ray diffraction of these mother alloy powders was performed using Cu-Kα radiation, all the diffraction lines were R3 (Fe, M,
B) It was confirmed that indexing was possible as 29 phases. Next, each of the above mother alloy powders was charged into an atmosphere heating furnace, heated and held at 450 ° C. in a stream of nitrogen gas of 1 atm for 5 hours to perform a nitriding treatment, and then annealed at 420 ° C. for 1 hour in an argon stream. X-ray diffraction of each of the nitrided powders showed that the X-ray diffraction pattern of the R3 (Fe, M, B) 29 phase obtained from the mother alloy shifted to a lower diffraction angle side, and N atoms were It was confirmed that the crystal lattice was expanded by invading the mother alloy crystal. The composition, average particle diameter, and composition of the nitride magnet powders of Examples 1 to 12 thus obtained were
Saturation magnetization intensity (σ) at 5 ° C. and iHc, 25
Table 1 shows the results of measuring the temperature coefficient (η) of iHc at 100100 ° C. Here, each measurement in each of the following Examples and Comparative Examples was performed under the same conditions as those in Table 1.

【0033】(比較例1〜6)表1に示すようにBを含
有しない母合金組成とするとともに平均粒径を変えた以
外は実施例1と同様にして表1に示される比較例1〜6
の窒化物磁石粉末を作製し評価した。Bを含有していな
いこの比較例1〜6の窒化処理前の母合金粉末にはTh
2Zn17型のSm2(Fe,Ti,B)17相とαFe
および/またはFe-Ti相の生成が認められた。
(Comparative Examples 1 to 6) Comparative Examples 1 to 6 shown in Table 1 were carried out in the same manner as in Example 1 except that a mother alloy composition containing no B was used and the average particle size was changed as shown in Table 1. 6
Was produced and evaluated. The mother alloy powder before nitriding in Comparative Examples 1 to 6 containing no B is Th
2Zn17 type Sm2 (Fe, Ti, B) 17 phase and αFe
And / or formation of an Fe—Ti phase was observed.

【0034】[0034]

【表1】 [Table 1]

【0035】表1より、BとM元素の複合添加の効果が
明らかである。すなわちBを0.1〜5原子%含んだ実
施例1〜12では平均粒径20〜500μmにわたって
8kOe以上の高いiHcが得られているとともに、i
Hcの温度係数(η)も−0.45以上で良好な耐熱性
を有していることがわかる。一方、Bを含まない比較例
のものはいずれもiHcが3kOe未満で、iHcの温
度係数(η)も−0.53以下であり耐熱性に劣ること
がわかる。
Table 1 clearly shows the effect of the complex addition of the B and M elements. That is, in Examples 1 to 12 containing 0.1 to 5 atomic% of B, high iHc of 8 kOe or more was obtained over an average particle size of 20 to 500 μm, and i
It can be seen that the temperature coefficient (η) of Hc is -0.45 or more, indicating that it has good heat resistance. On the other hand, all of the comparative examples containing no B had iHc of less than 3 kOe, and the temperature coefficient (η) of iHc was -0.53 or less, indicating poor heat resistance.

【0036】(実施例13〜15)R成分含有量および
R成分の種類と磁石特性との相関を見るために、表2に
示した磁石粉末組成にするとともに平均粒径72μmと
した以外は上記実施例1と同様な操作によって、表2に
示した磁石粉末を製作するとともに飽和磁化(σ)、i
Hc,iHcの温度係数(η)を測定した。 (比較例7〜10)表2に示した磁石粉末組成にした以
外は実施例13〜15と同様にして、表2に示した磁石
粉末を製作するとともに飽和磁化(σ)、iHc,iH
cの温度係数(η)を測定した。
(Examples 13 to 15) In order to observe the correlation between the R component content and the type of the R component and the magnet properties, the magnet powder composition shown in Table 2 was used and the average particle size was set to 72 μm. By the same operation as in Example 1, the magnet powder shown in Table 2 was manufactured, and the saturation magnetization (σ), i
Temperature coefficients (η) of Hc and iHc were measured. (Comparative Examples 7 to 10) Except that the magnet powder compositions shown in Table 2 were used, the magnet powders shown in Table 2 were produced in the same manner as in Examples 13 to 15, and the saturation magnetization (σ), iHc, iH
The temperature coefficient (η) of c was measured.

【0037】[0037]

【表2】 [Table 2]

【0038】表2から、R成分中のSm比率が50原子
%以上のときに高いiHcと低いiHcの温度係数
(η)が得られることがわかる。
From Table 2, it can be seen that the temperature coefficient (η) of high iHc and low iHc can be obtained when the Sm ratio in the R component is 50 atomic% or more.

【0039】(実施例16〜20)上記表2に続いてR
成分含有量およびR成分の種類と磁石特性との相関を見
るために、表3に示す磁石粉末組成にするとともに平均
粒径を130μmに変更した以外は上記実施例1と同様
な操作によって表3に示す磁石粉末を得るとともに磁
化、iHc、iHcの温度係数(η)を測定した。 (比較例11〜14)表3の磁石粉末組成とした以外は
実施例16〜20と同様の評価を行った。
(Examples 16 to 20) Following Table 2 above, R
In order to see the correlation between the component content and the type of the R component and the magnet properties, the magnet powder composition shown in Table 3 was used and the average particle size was changed to 130 μm. And the temperature coefficient (η) of magnetization, iHc and iHc were measured. (Comparative Examples 11 to 14) Evaluations were made in the same manner as in Examples 16 to 20, except that the magnet powder compositions shown in Table 3 were used.

【0040】[0040]

【表3】 [Table 3]

【0041】表3より、R成分中のSm比率が50原子
%以上でかつR成分が5〜18原子%のときに高いiH
cと低いiHcの温度係数(η)が得られることがわか
る。
From Table 3, it can be seen that high iH is obtained when the Sm ratio in the R component is 50 atomic% or more and the R component is 5 to 18 atomic%.
It can be seen that a temperature coefficient (η) of iHc as low as c can be obtained.

【0042】(実施例21〜24)窒素含有量と磁石特
性との相関を見るために、表4に示す磁石粉末組成およ
び平均粒径を120μmとした以外は上記実施例1と同
様にして表4の磁石粉末を得るとともに、飽和磁化
(σ)、iHc、iHcの温度係数(η)を測定した。 (比較例15、16)表4の磁石粉末組成とした以外は
実施例21〜24と同様の評価を行った。
(Examples 21 to 24) In order to observe the correlation between the nitrogen content and the magnet properties, the table was prepared in the same manner as in Example 1 except that the magnet powder composition and the average particle size shown in Table 4 were set to 120 μm. 4 and the saturation magnetization (σ), iHc, and the temperature coefficient (η) of iHc were measured. (Comparative Examples 15 and 16) Evaluations were made in the same manner as in Examples 21 to 24 except that the magnet powder compositions shown in Table 4 were used.

【0043】[0043]

【表4】 [Table 4]

【0044】表4から窒素量が4〜30原子%含有され
た実施例21〜24では高いiHcと低いiHcの温度
係数(η)が得られることがわかる。比較例15、16
に示したように窒素量が5原子%よりも少ないときと3
0原子%よりも多いときにはiHcが低く3kOe未満
の値である。
From Table 4, it can be seen that in Examples 21 to 24 containing 4 to 30 atomic% of nitrogen, a high iHc and a low iHc temperature coefficient (η) can be obtained. Comparative Examples 15 and 16
As shown in the figure, when the amount of nitrogen is less than 5 atomic%,
When it is more than 0 atomic%, iHc is low and is less than 3 kOe.

【0045】(実施例25〜29)Fe成分をCoまた
はNiで置換した場合の磁石特性を見るために、表5に
示す磁石粉末組成に変更するとともに平均粒径を170
μmとした以外は上記実施例1と同様な操作によって、
表5の磁石粉末を得るとともに、飽和磁化(σ)、iH
c、iHcの温度係数(η)を測定した。 (比較例17〜19)表5の磁石粉末組成とした以外は
実施例25〜29と同様の評価を行った。
(Examples 25 to 29) In order to check the magnet properties when the Fe component was replaced with Co or Ni, the composition was changed to the magnet powder composition shown in Table 5 and the average particle size was changed to 170.
By the same operation as in Example 1 except that μm was used,
While obtaining the magnet powder of Table 5, the saturation magnetization (σ), iH
c, the temperature coefficient (η) of iHc was measured. (Comparative Examples 17 to 19) Evaluations were made in the same manner as in Examples 25 to 29 except that the magnet powder compositions shown in Table 5 were used.

【0046】[0046]

【表5】 [Table 5]

【0047】表5からFeの一部をCoおよび/または
Niで0.01〜30原子%の範囲で置換したとき、耐
酸化性が向上するとともに高いiHc、低いiHcの温
度係数(η)が得られていることがわかる。
As shown in Table 5, when a part of Fe is replaced with Co and / or Ni in the range of 0.01 to 30 atomic%, the oxidation resistance is improved and the temperature coefficient (η) of high iHc and low iHc is increased. It can be seen that it has been obtained.

【0048】(実施例30〜36)上記各実施例の磁石
粉末に含有されるH量およびO量は不可避不純物程度で
あり、例えば重量%表示でH含有量が50ppm以下お
よびO含有量が5000ppm以下であった。しかし、
本発明の磁石粉末は上記の通り製造条件を適宜選択する
ことで不可避不純物含有量を超えてH、Oを含有可能で
ある。積極的に含有させたH量、O量による影響を見る
ために表6に示す組成の磁石粉末を製作するとともに平
均粒径を400μmとした以外は上記実施例1と同様な
操作によって、表6の磁石粉末を得、飽和磁化(σ)、
iHc、iHcの温度係数(η)を測定した。 (比較例20〜24)表6の磁石粉末組成とした以外は
実施例30〜36と同様にして評価した。
(Examples 30 to 36) The amounts of H and O contained in the magnet powder of each of the above examples are inevitable impurities. For example, the H content is 50 ppm or less and the O content is 5000 ppm in weight%. It was below. But,
As described above, the magnet powder of the present invention can contain H and O in excess of the inevitable impurity content by appropriately selecting the production conditions. In order to observe the influence of the amounts of H and O positively contained, a magnet powder having the composition shown in Table 6 was produced, and the average particle diameter was changed to 400 μm. To obtain a magnet powder having a saturation magnetization (σ),
iHc and the temperature coefficient (η) of iHc were measured. (Comparative Examples 20 to 24) Evaluations were made in the same manner as in Examples 30 to 36 except that the magnet powder compositions shown in Table 6 were used.

【0049】[0049]

【表6】 [Table 6]

【0050】表6から水素が0.5〜10原子%および
/または酸素が1〜5原子%にあるときに高いiHcと
飽和磁化(σ)および低い温度係数(η)が得られるこ
とがわかる。また、水素量が0.5〜10原子%および
/または酸素が1〜5原子%の範囲を外れた各比較例の
ものでは特に温度係数(η)が劣化していることがわか
る。
Table 6 shows that when i is 0.5 to 10 atomic% of hydrogen and / or 1 to 5 atomic% of oxygen, high iHc, saturation magnetization (σ) and low temperature coefficient (η) can be obtained. . Further, it can be seen that the temperature coefficient (η) is particularly deteriorated in the comparative examples in which the amount of hydrogen is out of the range of 0.5 to 10 atomic% and / or the amount of oxygen is out of the range of 1 to 5 atomic%.

【0051】(実施例37〜44)M元素の種類および
含有量の磁石特性に対する影響を見るために表7に示す
磁石粉末組成にするとともに平均粒径を170μmとし
た以外は上記実施例1と同様な操作によって表7の磁石
粉末を得、飽和磁化(σ)、iHc、iHcの温度係数
(η)を測定した。 (比較例25、26)表7の磁石粉末とした以外は実施
例37〜44と同様の評価を行った。
(Examples 37 to 44) In order to observe the influence of the type and content of the M element on the magnet properties, the magnet powder composition shown in Table 7 was used and the average particle size was changed to 170 μm. The magnet powder of Table 7 was obtained by the same operation, and the saturation magnetization (σ), iHc, and the temperature coefficient (η) of iHc were measured. (Comparative Examples 25 and 26) The same evaluation as in Examples 37 to 44 was performed except that the magnet powders shown in Table 7 were used.

【0052】[0052]

【表7】 [Table 7]

【0053】表7からM元素が1〜50原子%のときに
高いiHcと低いiHcの温度係数(η)が得られるこ
とがわかる。比較例24、25に示したようにM元素が
この範囲にない場合は母合金においてSm3(Fe,M,
B)29相が少量しか生成せず窒化してもiHcが向上
しないことがわかった。
From Table 7, it can be seen that the temperature coefficient (η) of high iHc and low iHc can be obtained when the M element is 1 to 50 atomic%. As shown in Comparative Examples 24 and 25, when the M element was not in this range, Sm3 (Fe, M,
B) It was found that only a small amount of the 29 phase was formed and iHc was not improved by nitriding.

【0054】(実施例45)M元素としてCrを添加し
Feの一部をCoで置換した下記の磁石粉末組成に対応
した母合金を上記実施例1と同様の溶解条件で溶製後、
その母合金を酸素分圧1モル%の窒素気流中で粗粉砕し
篩いによって平均粒度125μmに調整した。このSm
-Fe-Co-B-Cr系合金粉をアンモニア分圧0.35
atm、水素ガス分圧0.65atmのアンモニア-水素
混合ガス気流中で460℃で5時間の窒化処理を行った
後、酸素分圧10-5atmのアルゴン気流中で1時間ア
ニールした。得られた平均粒径74μmのSm9.4Fe
64.1Co4.01.0Cr4.516.50.5をシクロヘキサン
中で30分間ボールミル粉砕した。この粉砕粉の組成は
原子%表示でSm9.2Fe64.0Co4.01.0Cr4.5
16.00.51.0で平均粒径は36μmであった。この磁
粉はiHcが8kOe、iHcの温度係数(η)は−
0.31%/℃という良好な値であった。
(Example 45) A master alloy corresponding to the following magnet powder composition in which Cr was added as an M element and a part of Fe was replaced with Co was melted under the same melting conditions as in Example 1 above.
The mother alloy was roughly pulverized in a nitrogen stream having an oxygen partial pressure of 1 mol%, and adjusted to an average particle size of 125 μm by sieving. This Sm
-Fe-Co-B-Cr based alloy powder with ammonia partial pressure of 0.35
After nitriding for 5 hours at 460 ° C. in an ammonia-hydrogen mixed gas stream of hydrogen gas partial pressure of 0.65 atm, annealing was performed for 1 hour in an argon gas stream of oxygen partial pressure of 10 −5 atm. The obtained Sm 9.4 Fe having an average particle size of 74 μm.
64.1 Co 4.0 B 1.0 Cr 4.5 N 16.5 H 0.5 was ball milled in cyclohexane for 30 minutes. The composition of this pulverized powder is expressed as atomic% Sm 9.2 Fe 64.0 Co 4.0 B 1.0 Cr 4.5 N
At 16.0 H 0.5 O 1.0 , the average particle size was 36 μm. This magnetic powder has an iHc of 8 kOe and a temperature coefficient (η) of iHc of −
The value was as good as 0.31% / ° C.

【0055】(実施例46)純度99.9%のSm、F
e、Co、Bを用いて下記の窒化物粉末に対応した母合
金組成に配合後、アルゴンガス雰囲気下の高周波溶解炉
で溶解した合金溶湯を直径300mmの銅製ロール2本
を設置した双ロール式ストリップキャスターを用いて、
板厚約2mmの薄片状鋳造片を得た。前記鋳造片を50
mm角以下に破断後、雰囲気熱処理炉に仕込み1atm
の水素ガスを供給するとともに500℃まで加熱し水素
を吸収させた後真空にすることにより脱水素を行い水素
吸蔵によって崩壊させて平均粒径100μmまで粗粉砕
した。このSm-Fe-B-Cr系磁性粉を雰囲気熱処理
炉に仕込み460℃においてアンモニア分圧0.35a
tm、水素ガス0.65atmの混合気流中で7時間加
熱処理した。続いて水素ガス気流中で400℃で30分
間アニールを行った。得られた窒化物粉体の組成は原子
%表示でSm9.4Fe67.1Co4.02.0Cr4.518.5
2.5、飽和磁化(σ)は120emu/g、iHcは9kO
e、iHcの温度特性(η)は−0.34%/℃であっ
た。この磁石粉末を電子顕微鏡で観察したところSm3
(Fe,Cr,B)29相内に数十nmの大きさのCrリ
ッチな析出物が認められた。
(Example 46) Sm, F having a purity of 99.9%
e, Co, and B were mixed in the following mother alloy composition corresponding to the nitride powder, and then melted in a high-frequency melting furnace under an argon gas atmosphere. Using a strip caster,
A flaky cast piece having a thickness of about 2 mm was obtained. 50 pieces of the cast piece
After breaking to less than mm square, 1 atm in the atmosphere heat treatment furnace
The hydrogen gas was supplied and heated to 500 ° C. to absorb the hydrogen, and then vacuum was applied to dehydrogenate, collapsed by absorbing hydrogen, and coarsely pulverized to an average particle size of 100 μm. This Sm-Fe-B-Cr-based magnetic powder was charged into an atmosphere heat treatment furnace and the ammonia partial pressure was 0.35a at 460 ° C.
tm and a heat treatment in a mixed gas flow of 0.65 atm of hydrogen gas for 7 hours. Subsequently, annealing was performed at 400 ° C. for 30 minutes in a hydrogen gas stream. The composition of the obtained nitride powder is represented by atom% as Sm 9.4 Fe 67.1 Co 4.0 B 2.0 Cr 4.5 N 18.5 H
2.5 , saturation magnetization (σ) is 120 emu / g, iHc is 9 kO
e, the temperature characteristic (η) of iHc was −0.34% / ° C. Observation of this magnet powder with an electron microscope revealed that Sm3
Cr-rich precipitates having a size of several tens of nm were observed in the (Fe, Cr, B) 29 phase.

【0056】(実施例47〜53)ボンド磁石特性を評
価するために、上記実施例で作製した磁石粉末から表8
に示す組成のものを選択し、これらをエポキシ樹脂と混
合した後、10kOeの磁場中でプレス圧10ton/
cm2で圧縮成形し、さらに硬化のため140℃、1時
間の熱処理を施して等方性ボンド磁石を作製した。これ
らの等方性ボンド磁石の磁気特性を表8に示した。
(Examples 47 to 53) In order to evaluate the properties of the bonded magnet, Table 8 was obtained from the magnet powder prepared in the above example.
Were selected and mixed with an epoxy resin, and then a press pressure of 10 ton /
The molded article was compression-molded at 2 cm 2 and further subjected to a heat treatment at 140 ° C. for 1 hour for curing to produce an isotropic bonded magnet. Table 8 shows the magnetic properties of these isotropic bonded magnets.

【0057】[0057]

【表8】 [Table 8]

【0058】表8から本発明の等方性ボンド磁石が良好
な磁石特性を有していることがわかる。
Table 8 shows that the isotropic bonded magnet of the present invention has good magnet properties.

【0059】上記各実施例の磁石粉末のキュリー温度は
いずれも480±20℃という良好な値を有していた。
The Curie temperature of each of the magnetic powders of the above examples had a good value of 480 ± 20 ° C.

【0060】[0060]

【発明の効果】平均粒径20〜500μmにわたって高
いiHcおよびiHcの温度係数(η)を有した希土類
磁石粉末を容易に提供できるとともに、優れた耐酸化性
と耐熱性を有した希土類ボンド磁石を容易に提供でき、
工業的に非常に有用なものである。
According to the present invention, it is possible to easily provide a rare earth magnet having high iHc and a high temperature coefficient (η) of iHc over an average particle diameter of 20 to 500 μm, and to provide a rare earth bonded magnet having excellent oxidation resistance and heat resistance. Can be easily provided,
It is very useful industrially.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 徳永 雅亮 埼玉県熊谷市三ケ尻5200番地日立金属株式 会社磁性材料研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masaaki Tokunaga 5200 Mikajiri, Kumagaya-shi, Saitama Pref.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 成分組成がRαFe100-(α+β+γ+δ)
MβBγNδであり、単斜晶および/または六方晶の結
晶構造を有したR3(Fe,M,B)29Nyを主相とし
て含み、前記RはYを含めた希土類元素のいずれか1種
または2種以上であり、前記MはAl、Ti、V、C
r、Mn、Cu、Ga、Zr、Nb、Mo、Hf、T
a、Wのいずれか1種または2種以上からなり、前記
α、β、γ、δは原子百分率で下記の範囲にあることを
特徴とする希土類磁石材料。 5≦α≦18 1≦β≦50 0.1≦γ≦5 4≦δ≦30
1. The composition of the composition is RαFe100- (α + β + γ + δ).
MβBγNδ, containing R3 (Fe, M, B) 29Ny having a monoclinic and / or hexagonal crystal structure as a main phase, wherein R is any one or two of rare earth elements including Y M is Al, Ti, V, C
r, Mn, Cu, Ga, Zr, Nb, Mo, Hf, T
a rare earth magnet material comprising at least one of a and W, wherein α, β, γ, and δ are in the following ranges in atomic percentage. 5 ≦ α ≦ 18 1 ≦ β ≦ 50 0.1 ≦ γ ≦ 5 4 ≦ δ ≦ 30
【請求項2】 成分組成がRαFe100-(α+β+γ+δ+
ε+ζ)MβBγNδHεOζであり、単斜晶および/ま
たは六方晶の結晶構造を有したR3(Fe,M,B)29
Nyを主相として含み、前記RはYを含む希土類元素の
いずれか1種または2種以上であり、前記MはAl、T
i、V、Cr、Mn、Cu、Ga、Zr、Nb、Mo、
Hf、Ta、Wのいずれか1種または2種以上からな
り、前記α、β、γ、δ、ε、ζは原子百分率で下記の
範囲にあることを特徴とする希土類磁石材料。 5≦α≦18 1≦β≦50 0.1≦γ≦5 4≦δ≦30 0.5≦ε≦10 1≦ζ≦5
2. The composition according to claim 1, wherein the composition is RαFe100- (α + β + γ + δ +
ε + {) MβBγNδHεO} and R3 (Fe, M, B) 29 having a monoclinic and / or hexagonal crystal structure
N as a main phase, R is one or more of rare earth elements including Y, and M is Al, T
i, V, Cr, Mn, Cu, Ga, Zr, Nb, Mo,
A rare-earth magnet material comprising at least one of Hf, Ta, and W, wherein α, β, γ, δ, ε, and 原子 are in the following ranges in atomic percentages. 5 ≦ α ≦ 18 1 ≦ β ≦ 50 0.1 ≦ γ ≦ 5 4 ≦ δ ≦ 30 0.5 ≦ ε ≦ 10 1 ≦ ζ ≦ 5
【請求項3】 Fe成分の0.01〜30原子%をCo
および/またはNiで置換したことを特徴とする請求項
1または2に記載の希土類磁石材料。
3. The method of claim 1, wherein 0.01 to 30 atomic% of the Fe component is Co.
The rare earth magnet material according to claim 1, wherein the rare earth magnet material is substituted with Ni.
【請求項4】 R成分の50原子%以上がSmであるこ
とを特徴とする請求項1乃至3のいずれかに記載の希土
類磁石材料。
4. The rare earth magnet material according to claim 1, wherein 50 atomic% or more of the R component is Sm.
【請求項5】 希土類磁石材料の平均粒径が20μm以
上500μm以下であることを特徴とする請求項1乃至
4のいずれかに記載の希土類磁石材料。
5. The rare-earth magnet material according to claim 1, wherein the rare-earth magnet material has an average particle size of 20 μm or more and 500 μm or less.
【請求項6】 R3(Fe,M,B)29Ny相の結晶粒
内にM元素またはM化合物が析出した組織を有すること
を特徴とする請求項1乃至5のいずれかに記載の希土類
磁石材料。
6. The rare earth magnet material according to claim 1, wherein the R3 (Fe, M, B) 29Ny phase has a structure in which M element or M compound is precipitated in the crystal grains. .
【請求項7】 希土類磁石材料におけるR3(Fe,
M,B)29Ny相の存在比率が60体積%以上であるこ
とを特徴とする請求項1乃至6のいずれかに記載の希土
類磁石材料。
7. R3 (Fe,
The rare earth magnet material according to any one of claims 1 to 6, wherein the abundance ratio of (M, B) 29Ny phase is 60% by volume or more.
【請求項8】 その磁石粉末が高分子重合体、純金属、
合金のいずれかにより結合されてボンド磁石を構成する
希土類磁石材料であって、前記磁石粉末の25〜100
℃における固有保磁力(iHc)の温度係数(η)が−
0.45以上であるとともに、25℃における固有保磁
力(iHc)が8kOe以上であることを特徴とする希
土類磁石材料。
8. The method according to claim 1, wherein the magnet powder is a polymer, a pure metal,
A rare earth magnet material which is bonded by any one of alloys to form a bonded magnet, wherein the magnet powder comprises
The temperature coefficient (η) of the intrinsic coercive force (iHc) at
A rare earth magnet material having a specific coercive force (iHc) at 25 ° C. of 8 kOe or more while being 0.45 or more.
【請求項9】 成分組成がRαFe100-(α+β+γ+δ)
MβBγNδであり、単斜晶および/または六方晶の結
晶構造を有したR3(Fe,M,B)29Nyを主相とし
て含み、前記RはYを含めた希土類元素のいずれか1種
または2種以上であり、前記MはAl、Ti、V、C
r、Mn、Cu、Ga、Zr、Nb、Mo、Hf、T
a、Wのいずれか1種または2種以上からなり、前記
α、β、γ、δは原子百分率で下記の範囲にある希土類
磁石材料の粉末を、高分子重合体、純金属、合金のいず
れかのバインダーで結合した希土類ボンド磁石であっ
て、前記ボンド磁石の25〜100℃における固有保磁
力(iHc)の温度係数(η)が−0.45以上である
とともに25℃における保磁力(bHc)が6kOe以
上であることを特徴とする希土類ボンド磁石。 5≦α≦18 1≦β≦50 0.1≦γ≦5 4≦δ≦30
9. The composition having a composition of RαFe100- (α + β + γ + δ)
MβBγNδ, containing R3 (Fe, M, B) 29Ny having a monoclinic and / or hexagonal crystal structure as a main phase, wherein R is any one or two of rare earth elements including Y M is Al, Ti, V, C
r, Mn, Cu, Ga, Zr, Nb, Mo, Hf, T
a, W, or α, β, γ, and δ are powders of a rare-earth magnet material in the following range in atomic percentage, and are selected from polymer polymers, pure metals, and alloys. A rare-earth bonded magnet bonded with the binder, wherein the bond magnet has a temperature coefficient (η) of an intrinsic coercive force (iHc) at 25 to 100 ° C. of −0.45 or more and a coercive force (bHc) at 25 ° C. ) Is 6 kOe or more. 5 ≦ α ≦ 18 1 ≦ β ≦ 50 0.1 ≦ γ ≦ 5 4 ≦ δ ≦ 30
【請求項10】 成分組成がRαFe100-(α+β+γ+δ
+ε+ζ)MβBγNδHεOζであり、単斜晶および/
または六方晶の結晶構造を有したR3(Fe,M,B)2
9Nyを主相として含み、前記RはYを含む希土類元素
のいずれか1種または2種以上であり、前記MはAl、
Ti、V、Cr、Mn、Cu、Ga、Zr、Nb、M
o、Hf、Ta、Wのいずれか1種または2種以上から
なり、前記α、β、γ、δ、ε、ζは原子百分率で下記
の範囲にある希土類磁石材料の粉末を、高分子重合体、
純金属、合金のいずれかのバインダーで結合した希土類
ボンド磁石であって、前記ボンド磁石の25〜100℃
における固有保磁力(iHc)の温度係数(η)が−
0.45以上であるとともに25℃における保磁力(b
Hc)が6kOe以上であることを特徴とする希土類ボ
ンド磁石。 5≦α≦18 1≦β≦50 0.1≦γ≦5 4≦δ≦30 0.5≦ε≦10 1≦ζ≦5
10. A composition having a composition of RαFe100- (α + β + γ + δ
+ ε + ζ) MβBγNδHεOζ, monoclinic and / or
Or R3 (Fe, M, B) 2 having a hexagonal crystal structure
9Ny as a main phase, R is any one or more of rare earth elements including Y, M is Al,
Ti, V, Cr, Mn, Cu, Ga, Zr, Nb, M
o, Hf, Ta, W or any one or more of them, wherein α, β, γ, δ, ε, and ζ are powders of a rare earth magnet material having the following atomic percentages and Coalescing,
A rare earth bonded magnet bonded with a binder of any of a pure metal and an alloy, wherein the bonded magnet has a temperature of 25 to 100 ° C.
Temperature coefficient (η) of intrinsic coercive force (iHc) at
0.45 or more and the coercive force at 25 ° C. (b
Hc) is 6 kOe or more, the rare-earth bonded magnet. 5 ≦ α ≦ 18 1 ≦ β ≦ 50 0.1 ≦ γ ≦ 5 4 ≦ δ ≦ 30 0.5 ≦ ε ≦ 10 1 ≦ ζ ≦ 5
【請求項11】 成分組成がRαFe100-(α+β+γ+
δ)MβBγNδであり、単斜晶および/または六方晶
の結晶構造を有したR3(Fe,M,B)29Nyを主相
として含み、前記RはYを含めた希土類元素のいずれか
1種または2種以上であり、前記MはAl、Ti、V、
Cr、Mn、Cu、Ga、Zr、Nb、Mo、Hf、T
a、Wのいずれか1種または2種以上からなり、前記
α、β、γ、δは原子百分率で下記の範囲にある希土類
磁石材料を製造するに際して、窒化処理前に700〜1
250℃で均質化処理を行うことを特徴とする希土類磁
石材料の製造方法。 5≦α≦18 1≦β≦50 0.1≦γ≦5 4≦δ≦30
11. A composition comprising RαFe100- (α + β + γ +
δ) MβBγNδ, containing R 3 (Fe, M, B) 29 Ny having a monoclinic and / or hexagonal crystal structure as a main phase, wherein R is any one of rare earth elements including Y or M is Al, Ti, V,
Cr, Mn, Cu, Ga, Zr, Nb, Mo, Hf, T
a, W, or α, β, γ, and δ are in atomic percentages and are in the range described below.
A method for producing a rare earth magnet material, wherein a homogenization treatment is performed at 250 ° C. 5 ≦ α ≦ 18 1 ≦ β ≦ 50 0.1 ≦ γ ≦ 5 4 ≦ δ ≦ 30
【請求項12】 成分組成がRαFe100-(α+β+γ+δ
+ε+ζ)MβBγNδHεOζであり、単斜晶および/
または六方晶の結晶構造を有したR3(Fe,M,B)2
9Nyを主相として含み、前記RはYを含む希土類元素
のいずれか1種または2種以上であり、前記MはAl、
Ti、V、Cr、Mn、Cu、Ga、Zr、Nb、M
o、Hf、Ta、Wのいずれか1種または2種以上から
なり、前記α、β、γ、δ、ε、ζは原子百分率で下記
の範囲にある希土類磁石材料を製造するに際して、窒化
処理前に700〜1250℃で均質化処理を行うことを
特徴とする希土類磁石材料の製造方法。 5≦α≦18 1≦β≦50 0.1≦γ≦5 4≦δ≦30 0.5≦ε≦10 1≦ζ≦5
12. A composition having a composition of RαFe100- (α + β + γ + δ
+ ε + ζ) MβBγNδHεOζ, monoclinic and / or
Or R3 (Fe, M, B) 2 having a hexagonal crystal structure
9Ny as a main phase, R is any one or more of rare earth elements including Y, M is Al,
Ti, V, Cr, Mn, Cu, Ga, Zr, Nb, M
o, Hf, Ta, W or any one or more of them, wherein α, β, γ, δ, ε, and ζ are atomic percentages and are in the following ranges. A method for producing a rare earth magnet material, wherein a homogenization treatment is performed beforehand at 700 to 1250C. 5 ≦ α ≦ 18 1 ≦ β ≦ 50 0.1 ≦ γ ≦ 5 4 ≦ δ ≦ 30 0.5 ≦ ε ≦ 10 1 ≦ ζ ≦ 5
JP9038234A 1997-02-21 1997-02-21 Rare-earth magnet material, its manufacture, and rare-earth bond magnet using it Pending JPH10241923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9038234A JPH10241923A (en) 1997-02-21 1997-02-21 Rare-earth magnet material, its manufacture, and rare-earth bond magnet using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9038234A JPH10241923A (en) 1997-02-21 1997-02-21 Rare-earth magnet material, its manufacture, and rare-earth bond magnet using it

Publications (1)

Publication Number Publication Date
JPH10241923A true JPH10241923A (en) 1998-09-11

Family

ID=12519619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9038234A Pending JPH10241923A (en) 1997-02-21 1997-02-21 Rare-earth magnet material, its manufacture, and rare-earth bond magnet using it

Country Status (1)

Country Link
JP (1) JPH10241923A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087185B2 (en) 1999-07-22 2006-08-08 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
EP3382720A4 (en) * 2015-11-24 2018-10-03 Sumitomo Electric Industries, Ltd. Rare earth magnet, and method of producing rare earth magnet
JPWO2020241380A1 (en) * 2019-05-31 2020-12-03

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087185B2 (en) 1999-07-22 2006-08-08 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
EP3382720A4 (en) * 2015-11-24 2018-10-03 Sumitomo Electric Industries, Ltd. Rare earth magnet, and method of producing rare earth magnet
JPWO2020241380A1 (en) * 2019-05-31 2020-12-03
WO2020241380A1 (en) * 2019-05-31 2020-12-03 株式会社村田製作所 Samarium-iron-nitrogen-based magnetic material
EP3978164A4 (en) * 2019-05-31 2023-01-18 Murata Manufacturing Co., Ltd. Samarium-iron-nitrogen-based magnetic material

Similar Documents

Publication Publication Date Title
JP2001093713A (en) Multi-element-based rare earth-iron lattice interstitial permanent magnet material, permanent magnet composed of the material and manufacture of the material and the permanent magnet
US6413327B1 (en) Nitride type, rare earth magnet materials and bonded magnets formed therefrom
US6290782B1 (en) Magnetic material and manufacturing method thereof, and bonded magnet using the same
JP2001189206A (en) Permanent magnet
JP2000114017A (en) Permanent magnet and material thereof
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP2703281B2 (en) Magnetic anisotropic material and method of manufacturing the same
JP3560387B2 (en) Magnetic material and its manufacturing method
JP4170468B2 (en) permanent magnet
JPH08191006A (en) Magnetic material
JP3303044B2 (en) Permanent magnet and its manufacturing method
JP3247508B2 (en) permanent magnet
JPH10241923A (en) Rare-earth magnet material, its manufacture, and rare-earth bond magnet using it
JP3645312B2 (en) Magnetic materials and manufacturing methods
JP3370013B2 (en) Rare earth magnet material and rare earth bonded magnet using the same
JP3469496B2 (en) Manufacturing method of magnet material
JPH045739B2 (en)
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JPH04260302A (en) Magnetic powder and its manufacture and bonded magnet
JPH10289812A (en) Rare-earth magnet material, method of manufacturing rare-earth magnet material and rare-earth bonded magnet by the method
JP3294645B2 (en) Nitride magnetic powder and its production method
JPH11121215A (en) Manufacture of rare-earth magnetic powder
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH06112019A (en) Nitride magnetic material
JP3209291B2 (en) Magnetic material and its manufacturing method