JP2019062156A - Method for manufacturing r-t-b based sintered magnet - Google Patents

Method for manufacturing r-t-b based sintered magnet Download PDF

Info

Publication number
JP2019062156A
JP2019062156A JP2017187705A JP2017187705A JP2019062156A JP 2019062156 A JP2019062156 A JP 2019062156A JP 2017187705 A JP2017187705 A JP 2017187705A JP 2017187705 A JP2017187705 A JP 2017187705A JP 2019062156 A JP2019062156 A JP 2019062156A
Authority
JP
Japan
Prior art keywords
alloy
sintered magnet
based sintered
diffusion source
magnet material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017187705A
Other languages
Japanese (ja)
Other versions
JP7000774B2 (en
Inventor
國吉 太
Futoshi Kuniyoshi
太 國吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2017187705A priority Critical patent/JP7000774B2/en
Priority to CN201811140238.9A priority patent/CN109585108B/en
Publication of JP2019062156A publication Critical patent/JP2019062156A/en
Application granted granted Critical
Publication of JP7000774B2 publication Critical patent/JP7000774B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a method which enables the enhancement of magnet characteristics of an R-T-B based sintered magnet.SOLUTION: A method for manufacturing an R-T-B based sintered magnet comprises: a step of preparing R1-T-B based sintered magnet materials (R1 is a rare earth element, and T is Fe or a combination of Fe and Co); a step of preparing an alloy including 40 mass% or more of a rare earth element R2 necessarily including at least one of Dy and Tb; a step of performing a thermal treatment on the alloy at a temperature in a range from a temperature lower than a melting point of the alloy by 230°C up to the melting point and pulverizing the resultant alloy after the thermal treatment, thereby obtaining a diffusion source; and a diffusion step of setting the R1-T-B based sintered magnet materials and the diffusion source in a process chamber, and heating the R1-T-B based sintered magnet materials and the diffusion source to a temperature equal to or lower than a sintering temperature of the R1-T-B based sintered magnet materials to diffuse at least one of Dy and Tb included in the diffusion source from the surface of the R1-T-B based sintered magnet materials to inside. In the method, the alloy is an alloy produced by a strip cast method.SELECTED DRAWING: None

Description

本開示は、R−T−B系焼結磁石(Rは希土類元素、TはFe又はFeとCo)の製造方法に関する。   The present disclosure relates to a method for producing an RTB-based sintered magnet (R is a rare earth element, T is Fe or Fe and Co).

14B型化合物を主相とするR−T−B系焼結磁石は、永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)や、ハイブリッド車搭載用モータ等の各種モータや家電製品等に使用されている。 An RTB-based sintered magnet having an R 2 T 14 B-type compound as a main phase is known as the highest performance magnet among permanent magnets, and is used as a voice coil motor (VCM) of a hard disk drive or It is used for various motors such as motors for hybrid vehicles and household appliances.

R−T−B系焼結磁石は、高温で固有保磁力HcJ(以下、単に「HcJ」と表記する)が低下するため、不可逆熱減磁が起こる。不可逆熱減磁を回避するため、モータ用等に使用する場合、高温下でも高いHcJを維持することが要求されている。 In the RTB -based sintered magnet, irreversible heat demagnetization occurs because the intrinsic coercivity H cJ (hereinafter simply referred to as “H cJ ”) decreases at high temperature. In order to avoid irreversible heat demagnetization, it is required to maintain high H cJ even under high temperature when used for a motor or the like.

R−T−B系焼結磁石は、R14B型化合物相中のRの一部を重希土類元素RH(Dy、Tb)で置換すると、HcJが向上することが知られている。高温で高いHcJを得るためには、R−T−B系焼結磁石中に重希土類元素RHを多く添加することが有効である。しかし、R−T−B系焼結磁石において、Rとして軽希土類元素RL(Nd、Pr)を重希土類元素RHで置換すると、HcJが向上する一方、残留磁束密度B(以下、単に「B」と表記する)が低下してしまうという問題がある。また、重希土類元素RHは希少資源であるため、その使用量を削減することが求められている。 The RTB-based sintered magnet is known to improve H cJ when a part of R in the R 2 T 14 B type compound phase is replaced with the heavy rare earth element RH (Dy, Tb) . In order to obtain high HcJ at high temperature, it is effective to add a large amount of heavy rare earth element RH to the RTB-based sintered magnet. However, in the R-T-B based sintered magnet, when the light rare earth element RL (Nd, Pr) is replaced by the heavy rare earth element RH as R, H cJ is improved while the residual magnetic flux density B r (hereinafter simply referred to as “ There is a problem that B r "is reduced. In addition, since the heavy rare earth element RH is a scarce resource, it is required to reduce its use amount.

そこで、近年、Bを低下させないように、より少ない重希土類元素RHによってR−T−B系焼結磁石のHcJを向上させることが検討されている。例えば、重希土類元素RHのフッ化物又は酸化物や、各種の金属M又はM合金をそれぞれ単独、又は混合して焼結磁石の表面に存在させ、その状態で熱処理することにより、保磁力向上に寄与する重希土類元素RHを磁石内に拡散させることが提案されている。 In recent years, so as not to reduce the B r, to improve the H cJ of the R-T-B based sintered magnets have been studied with less heavy rare-earth element RH. For example, fluoride or oxide of heavy rare earth element RH, or various metals M or M alloys may be individually or mixed to be present on the surface of a sintered magnet, and heat treated in this state to improve coercivity. It has been proposed to diffuse the contributing heavy rare earth element RH into the magnet.

特許文献1は、R 14B型化合物を主相とするR−T−B系焼結体の表面に、RとMを含有する合金の粉末を存在させる工程と、加熱処理によって合金粉末からR元素を焼結体の内部に拡散させる工程とを含む希土類磁石の製造方法を開示している。ここで、RはSc及びYを含む希土類元素から選ばれる1種又は2種以上の元素、TはFe及び/又はCoである。また、RはSc及びYを含む希土類元素から選ばれる1種又は2種以上の元素、Mは、B、C、Al、Si、Ti等の金属元素である。 Patent Document 1, the surface of the R 1 -T-B based sintered body as a main phase an R 1 2 T 14 B type compound, a step of the presence of powder of an alloy containing R 2 and M, heat treatment It discloses a method for manufacturing a rare-earth magnet and a step of diffusing from the alloy powder R 2 element in the interior of the sintered body by. Here, R 1 is one or more elements selected from rare earth elements including Sc and Y, and T is Fe and / or Co. Further, R 2 is one or more elements selected from rare earth elements including Sc and Y, and M is a metal element such as B, C, Al, Si or Ti.

特開2011−14668号公報JP, 2011-14668, A

特許文献1に開示されている製造方法では、RとMを含有する合金の粉末として、急冷合金粉末が用いられている。この急冷合金粉末は、R−M金属間化合物相の平均粒径が3μm以下の微結晶又は非晶質合金を含有している。 In the manufacturing method disclosed in Patent Document 1, a quenched alloy powder is used as a powder of an alloy containing R 2 and M. The rapidly solidified alloy powder contains a microcrystalline or amorphous alloy having an average particle diameter of 3 μm or less of the R 2 -M intermetallic compound phase.

本開示は、Dy及びTbの少なくとも一方を含む拡散源を用いる方法において、Dy及びTbの少なくとも一方をより均一に拡散することにより磁石個体間の磁気特性(HcJ)ばらつきの低減を実現する。 The present disclosure achieves reduction in magnetic property (H cJ ) variation among individual magnets by diffusing at least one of Dy and Tb more uniformly in a method using a diffusion source including at least one of Dy and Tb.

本開示によるR−T−B系焼結磁石の製造方法は、例示的な実施形態において、R1−T−B系焼結磁石素材(R1は希土類元素、TはFe又はFeとCo)を用意する工程と、Dy及びTbの少なくとも一方を必ず含む希土類元素R2を全体の40質量%以上含有する合金を用意する工程と、前記合金に前記合金の融点よりも230℃低い温度以上、融点以下の温度で熱処理を行い、熱処理後の合金を粉砕することにより拡散源を得る工程と、前記R1−T−B系焼結磁石素材及び前記拡散源を処理容器内に配置し、前記R1−T−B系焼結磁石素材及び前記拡散源を前記R1−T−B系焼結磁石素材の焼結温度以下の温度に加熱して、前記拡散源に含まれるDy及びTbの少なくとも一方を前記R1−T−B系焼結磁石素材の表面から内部に拡散する拡散工程と、を含み、前記合金は、ストリップキャスト法によって作製された合金である。   In an exemplary embodiment, a method of manufacturing an RTB-based sintered magnet according to the present disclosure is provided with an R1-TB-based sintered magnet material (R1 is a rare earth element, T is Fe or Fe and Co). And preparing an alloy containing at least 40% by mass of a rare earth element R2 containing at least one of Dy and Tb, and a temperature not lower than the melting point of the alloy but not lower than 230 ° C. Heat treatment at a temperature to crush the alloy after heat treatment to obtain a diffusion source, the R1-T-B sintered magnet material and the diffusion source are disposed in a processing vessel, and the R1-T- The B-based sintered magnet material and the diffusion source are heated to a temperature equal to or lower than the sintering temperature of the R1-T-B-based sintered magnet material, and at least one of Dy and Tb contained in the diffusion source is Inside from the surface of a T-B based sintered magnet material Anda diffusion step of diffusing the said alloy is an alloy made by the strip casting method.

本開示によるR−T−B系焼結磁石の製造方法は、もう一つの例示的な実施形態において、R1−T−B系焼結磁石素材(R1は希土類元素、TはFe又はFeとCo)を用意する工程と、Dy及びTbの少なくとも一方を必ず含む希土類元素R2を全体の40質量%以上含有する合金を粉砕して合金の粉末を用意する工程と、前記合金の粉末に前記合金の粉末の融点よりも230℃低い温度以上、融点以下の温度で熱処理を行い、前記合金の粉末から拡散源を得る工程と、前記R1−T−B系焼結磁石素材及び前記拡散源を処理容器内に配置し、前記R1−T−B系焼結磁石素材及び前記拡散源を前記R1−T−B系焼結磁石素材の焼結温度以下の温度に加熱して、前記拡散源に含まれるDy及びTbの少なくとも一方を前記R1−T−B系焼結磁石素材の表面から内部に拡散する拡散工程とを含み、前記合金は、ストリップキャスト法によって作製された合金である。   In another exemplary embodiment, the method for producing an RTB-based sintered magnet according to the present disclosure is, in another exemplary embodiment, an R1-T-B-based sintered magnet material (R1 is a rare earth element, T is Fe or Fe and Co and Co). B) preparing an alloy powder by pulverizing an alloy containing at least 40 mass% of the entire rare earth element R2 including at least one of Dy and Tb, and preparing the powder of the alloy Heat treatment is performed at a temperature lower than the melting point of the powder by 230 ° C. and lower than the melting point to obtain a diffusion source from the powder of the alloy, the R1-T-B sintered magnet material and the diffusion source are treated And the heat source is contained in the diffusion source by heating the R1-T-B sintered magnet material and the diffusion source to a temperature equal to or lower than the sintering temperature of the R1-T-B sintered magnet material. At least one of Dy and Tb is the R1-T-B. And a diffusion step of diffusing from the surface to the inside of the sintered magnet material, wherein the alloy is an alloy made by the strip casting method.

ある実施形態において、前記合金は、RHRLM1M2合金(RHはSc、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luからなる群から選ばれる1種以上であり、Tb及びDyの少なくとも一方を必ず含む、RLはLa、Ce、Pr、Nd、Pm、Sm、Euからなる群から選ばれる1種以上であり、Pr及びNdの少なくとも一方を必ず含む、M1、M2はCu、Fe、Ga、Co、Ni、Alから選ばれる1種以上、M1=M2でもよい)である。   In one embodiment, the alloy is a RHRLM1M2 alloy (RH is at least one selected from the group consisting of Sc, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, and at least Tb and Dy). RL is at least one member selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, and Eu, and includes at least one of Pr and Nd. M1 and M2 are Cu, Fe, and the like. One or more selected from Ga, Co, Ni, and Al, and M1 may be M2).

ある実施形態において、前記合金は、RHM1M2合金(RHはSc、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luからなる群から選ばれる1種以上であり、Tb及びDyの少なくとも一方を必ず含む、M1、M2はCu、Fe、Ga、Co、Ni、Alから選ばれる1種以上、M1=M2でもよい)である。   In one embodiment, the alloy is one or more selected from the group consisting of RHM1M2 alloys (RH is Sc, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and at least Tb and Dy M1 and M2, which always include one, are one or more selected from Cu, Fe, Ga, Co, Ni, and Al, and M1 may be M2).

本開示の実施形態によれば、Dy及びTbの少なくとも一方を含む拡散源の組織が改質されているため、磁気特性のばらつきを抑制しつつR−T−B系焼結磁石のHcJを向上させることが可能になる。 According to the embodiment of the present disclosure, since the structure of the diffusion source including at least one of Dy and Tb is modified, the H cJ of the RTB -based sintered magnet can be suppressed while suppressing the dispersion of the magnetic characteristics. It is possible to improve.

本開示の実施形態において、用意されたR1−T−B系焼結磁石素材の一部を模式的に示す断面図である。In the embodiment of the present disclosure, it is a cross-sectional view schematically showing a part of the prepared R1-T-B-based sintered magnet material. 本開示の実施形態において、拡散源と接触した状態にあるR1−T−B系焼結磁石素材の一部を模式的に示す断面図である。In embodiment of this indication, it is sectional drawing which shows typically a part of R1-TB based sintered magnet raw material in the state in contact with a diffusion source.

本明細書において、希土類元素とは、スカンジウム(Sc)、イットリウム(Y)、及びランタノイドからなる群から選択された少なくとも1種の元素をいう。ここで、ランタノイドとは、ランタンからルテチウムまでの15の元素の総称である。R1及びRは希土類元素であり、R2は、Dy及びTbの少なくとも一方を必ず含む希土類元素である。   As used herein, the rare earth element refers to at least one element selected from the group consisting of scandium (Sc), yttrium (Y), and lanthanides. Here, lanthanoid is a generic term of 15 elements from lanthanum to lutetium. R1 and R are rare earth elements, and R2 is a rare earth element containing at least one of Dy and Tb.

本開示によるR−T−B系焼結磁石の製造方法の例示的な実施形態は、
1.R1−T−B系焼結磁石素材(R1は希土類元素、TはFe又はFeとCo)を用意する工程と、
2.Dy及びTbの少なくとも一方を必ず含む希土類元素R2を全体の40質量%以上含有する合金を用意する工程と、
3.前記合金に前記合金の融点よりも230℃低い温度以上、融点以下の温度で熱処理を行い、熱処理後の合金を粉砕することにより拡散源を得る工程と、
4.前記R1−T−B系焼結磁石素材及び前記拡散源を処理容器内に配置し、前記R1−T−B系焼結磁石素材及び前記拡散源を前記R1−T−B系焼結磁石素材の焼結温度以下の温度に加熱して、前記拡散源に含まれるDy及びTbの少なくとも一方を前記R1−T−B系焼結磁石素材の表面から内部に拡散する拡散工程を含む。
An exemplary embodiment of a method of manufacturing an RTB based sintered magnet according to the present disclosure is:
1. Preparing a R1-T-B based sintered magnet material (R1 is a rare earth element, T is Fe or Fe and Co);
2. Preparing an alloy containing at least 40% by weight or more of a rare earth element R2 which always contains at least one of Dy and Tb;
3. Heat treating the alloy at a temperature not less than 230 ° C. and not more than the melting point of the alloy and crushing the alloy after the heat treatment to obtain a diffusion source;
4. The R1-T-B based sintered magnet material and the diffusion source are disposed in a processing vessel, and the R1-T-B-based sintered magnet material and the diffusion source are referred to as the R1-T-B based sintered magnet material And the diffusion step of diffusing at least one of Dy and Tb contained in the diffusion source from the surface of the R1-T-B based sintered magnet material to the inside by heating to a temperature not higher than the sintering temperature of

本発明において、前記合金は、ストリップキャスト法によって作製された合金である。   In the present invention, the alloy is an alloy produced by a strip casting method.

また、本開示によるR−T−B系焼結磁石のもう一つの例示的な実施形態は、
1´.R1−T−B系焼結磁石素材(R1は希土類元素、TはFe又はFeとCo)を用意する工程、
2´.Dy及びTbの少なくとも一方を必ず含む希土類元素R2を全体の40質量%以上含有する合金を粉砕して合金の粉末を用意する工程、
3´.前記合金の粉末に前記合金の粉末の融点よりも230℃低い温度以上、融点以下の温度で熱処理を行い、前記合金の粉末から拡散源を得る工程、
4´.前記R1−T−B系焼結磁石素材及び前記拡散源を処理容器内に配置し、前記R1−T−B系焼結磁石素材及び前記拡散源を前記R1−T−B系焼結磁石素材の焼結温度以下の温度に加熱して、前記拡散源に含まれるDy及びTbの少なくとも一方を前記R1−T−B系焼結磁石素材の表面から内部に拡散する拡散工程を含む。
Also, another exemplary embodiment of the RTB-based sintered magnet according to the present disclosure is:
1 '. Preparing an R1-T-B based sintered magnet material (R1 is a rare earth element, T is Fe or Fe and Co);
2 '. Crushing an alloy containing at least 40% by mass of a rare earth element R2 necessarily containing at least one of Dy and Tb to prepare a powder of the alloy;
3 '. Heat treating the powder of the alloy at a temperature not lower than the melting point of the alloy powder but not lower than the melting point by 230 ° C. to obtain a diffusion source from the powder of the alloy;
4 '. The R1-T-B based sintered magnet material and the diffusion source are disposed in a processing vessel, and the R1-T-B-based sintered magnet material and the diffusion source are referred to as the R1-T-B based sintered magnet material And the diffusion step of diffusing at least one of Dy and Tb contained in the diffusion source from the surface of the R1-T-B based sintered magnet material to the inside by heating to a temperature not higher than the sintering temperature of

本開示において、前記合金は、ストリップキャスト法によって作製された合金である。   In the present disclosure, the alloy is an alloy produced by a strip casting method.

上記1〜4と上記1´〜4´との違いは、合金に対して熱処理を行い、熱処理後の合金を粉砕することにより拡散源を得る場合(上記1〜4)と、合金を粉砕して得た合金の粉末に対して熱処理を行うことにより拡散源を得る場合(上記1´〜4´)との違いのみである。そのため、上記1〜4について説明し、上記1´〜4´の説明は省略する。   The difference between the above 1 to 4 and the above 1 'to 4' is that when heat treatment is performed on the alloy and the diffusion source is obtained by crushing the alloy after the heat treatment (the above 1 to 4), the alloy is crushed This is only the difference from the cases (1 'to 4' above) where the diffusion source is obtained by heat treating the powder of the alloy obtained above. Therefore, the said 1-4 are demonstrated and description of said 1'-4 'is abbreviate | omitted.

以下、本開示の実施形態を説明する。なお、必要以上に詳細な説明は省略する場合がある。たとえば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。本発明者らは、当業者が本開示を十分に理解するために添付図面及び以下の説明を提供する。これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。   Hereinafter, embodiments of the present disclosure will be described. In addition, detailed description more than necessary may be omitted. For example, detailed description of already well-known matters and redundant description of substantially the same configuration may be omitted. This is to avoid unnecessary redundancy in the following description and to facilitate understanding by those skilled in the art. The inventors provide the attached drawings and the following description so that those skilled in the art can fully understand the present disclosure. They are not intended to limit the subject matter recited in the claims.

1.R1−T−B系焼結磁石素材を用意する工程
Dy及びTbの少なくとも一方が拡散される対象のR1−T−B系焼結磁石素材(R1は希土類元素、TはFe又はFeとCo)を用意する。R1−T−B系焼結磁石素材としては、公知の磁石素材を使用することができる。
1. Process of preparing an R1-T-B-based sintered magnet material R1-T-B-based sintered magnet material to which at least one of Dy and Tb is diffused (R1 is a rare earth element, T is Fe or Fe and Co) Prepare. A well-known magnet material can be used as a R1-T-B type | system | group sintered magnet material.

R1−T−B系焼結磁石素材は、例えば以下の組成を有する。
希土類元素R1:12〜17原子%
B(B(ボロン)の一部はC(カーボン)で置換されていてもよい):5〜8原子%
添加元素M(Al、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、及びBiからなる群から選択された少なくとも1種):0〜5原子%
T(Feを主とする遷移金属元素であって、Coを含んでもよい)及び不可避不純物:残部
ここで、希土類元素R1は、主としてNd、Prであるが、Dy及びTbの少なくとも一方を含んでもよい。
The R1-T-B based sintered magnet material has, for example, the following composition.
Rare earth element R: 1:12 to 17 atomic%
B (part of B (boron) may be substituted by C (carbon)): 5 to 8 atomic%
Selected from the group consisting of additive elements M (Al, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb, and Bi At least one) 0: 5 at%
T (a transition metal element mainly composed of Fe and may contain Co) and unavoidable impurities: Remaining part Here, the rare earth element R1 is mainly Nd, Pr, but also contains at least one of Dy and Tb Good.

上記組成のR1−T−B系焼結磁石素材は、公知の任意の製造方法によって製造され得る。R1−T−B系焼結磁石素材は、焼結上がりの状態でもよいし、切削加工や研磨加工が施されていてもよい。R1−T−B系焼結磁石素材の形状及び大きさは任意である。   The R1-T-B-based sintered magnet material of the above composition can be manufactured by any known manufacturing method. The R1-T-B-based sintered magnet material may be in a sintered state, or may be subjected to cutting or polishing. The shape and size of the R1-T-B based sintered magnet material are arbitrary.

2.合金を用意する工程
[合金]
合金は、Dy及びTbの少なくとも一方を必ず含む希土類元素R2を全体の40質量%以上含有する合金である。Dy及びTbの少なくとも一方を必ず含む希土類元素R2を全体の40質量%以上含有する合金とは、例えば、希土類元素R2がDy及びTbの少なくとも一方のみから構成されてもよいし、希土類元素R2がDy及びTbの少なくとも一方とPr及びNdの少なくとも一方とから構成されてもよい。いずれの場合も希土類元素R2が合金全体の40質量%以上を占めていればよい。希土類元素R2が全体の40質量%未満であると、高いHcJが得られない可能性がある。合金の典型例は、RHM1M2合金、及び、RHRLM1M2合金である。以下、これらの合金の例について説明する。
2. Process of preparing alloy [alloy]
The alloy is an alloy containing 40 mass% or more of the entire rare earth element R2 including at least one of Dy and Tb. With an alloy containing at least 40 mass% of the entire rare earth element R2 including at least one of Dy and Tb, for example, the rare earth element R2 may be composed of at least one of Dy and Tb, or the rare earth element R2 is It may be composed of at least one of Dy and Tb and at least one of Pr and Nd. In any case, the rare earth element R2 may occupy 40% by mass or more of the entire alloy. If the rare earth element R2 is less than 40% by mass of the whole, high H cJ may not be obtained. Typical examples of alloys are RHM1M2 alloy and RHRLM1M2 alloy. Hereinafter, examples of these alloys will be described.

(RHM1M2合金)
合金の例は、例えばRHM1M2合金(RHはSc、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luからなる群から選ばれる1種以上であり、Tb及びDyの少なくとも一方を必ず含む、M1、M2はCu、Fe、Ga、Co、Ni、Alから選ばれる1種以上、M1=M2でもよい)である。
(RHM1M2 alloy)
Examples of the alloy are, for example, RHM 1 M 2 alloy (RH is at least one selected from the group consisting of Sc, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and at least one of Tb and Dy And M1 and M2 are one or more selected from Cu, Fe, Ga, Co, Ni, and Al, and M1 may be M2).

RHM1M2合金の典型例は、DyFe合金、DyAl合金、DyCu合金、TbFe合金、TbAl合金、TbCu合金、DyFeCu合金、TbCuAl合金などである。   Typical examples of the RHM1M2 alloy are DyFe alloy, DyAl alloy, DyCu alloy, TbFe alloy, TbAl alloy, TbCu alloy, DyFeCu alloy, TbCuAl alloy and the like.

(RHRLM1M2合金)
合金の他の例は、RHRLM1M2合金(RHはSc、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luからなる群から選ばれる1種以上であり、Tb及びDyの少なくとも一方を必ず含む、RLはLa、Ce、Pr、Nd、Pm、Sm、Euからなる群から選ばれる1種以上であり、Pr及びNdの少なくとも一方を必ず含む、M1、M2はCu、Fe、Ga、Co、Ni、Alから選ばれる1種以上、M1=M2でもよい)である。RHRLM1M2合金の典型例は、TbNdCu合金、DyNdCu合金、TbNdFe合金、DyNdFe合金、TbNdCuAl合金、DyNdCuAl合金、TbNdCuCo合金、DyNdCuCo合金、TbNdCoGa合金、DyNdCoGa合金、TbNdPrCu合金、DyNdPrCu合金、TbNdPrFe合金、DyNdPrFe合金などである。なお、合金は、上記のRHM1M2合金、及び、RHRLM1M2合金に限定されない。Dy及びTbの少なくとも一方を必ず含む合金であって、希土類元素R2を全体の40質量%以上含有する合金であれば、他の元素、及び不純物を含んでいてもよい。
(RHRLM1M2 alloy)
Another example of the alloy is a RHRLM1M2 alloy (RH is at least one selected from the group consisting of Sc, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and at least one of Tb and Dy Inclusively, RL is one or more selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, and Eu, and invariably contains at least one of Pr and Nd, M1, M2 is Cu, Fe, Ga, One or more selected from Co, Ni, and Al, M1 may be M2). Typical examples of the RHRLM1M2 alloy are TbNdCu alloy, DyNdCu alloy, TbNdFe alloy, DyNdFe alloy, TbNdCuAl alloy, DyNdCuAl alloy, TbNdCuCo alloy, DyNdCuCo alloy, TbNdCoGa alloy, DyNdCoGa alloy, TbNdPrCu alloy, DyNdPhFe alloy is there. The alloy is not limited to the above-described RHM1M2 alloy and RHRLM1M2 alloy. As long as it is an alloy that always contains at least one of Dy and Tb and contains 40% by mass or more of the rare earth element R2, it may contain other elements and impurities.

本開示において、合金は、ストリップキャスト法によって作製されている。   In the present disclosure, the alloy is made by strip casting.

ストリップキャスト法では、回転するロール上に溶湯を流し、薄板状に急冷凝固させることにより、薄板状の合金を連続的に鋳造する方法である。形成される合金は薄板状を呈しており、その厚みは100μmオーダー(例えば100μm〜500μm程度)である。本開示では、後述するように、合金に対して熱処理を行うことにより、結晶が粗大化し、最終的には、拡散源として好適な組織構造を持つに至る。   The strip casting method is a method of continuously casting a thin plate-like alloy by pouring a molten metal on a rotating roll and quenching and solidifying the thin plate. The alloy to be formed has a thin plate shape, and its thickness is on the order of 100 μm (for example, about 100 μm to about 500 μm). In the present disclosure, as described later, by performing heat treatment on the alloy, crystals are coarsened, and finally, it has a texture suitable as a diffusion source.

合金の溶湯を、ストリップキャスト法によって急冷凝固する場合、冷却速度を厳密に制御することは難しい。このため、合金を粉砕した後の粉末粒子ごとに組織の構造がばらつきやすい。例えば、合金内に生成される微小な結晶粒のサイズが粒子ごとに大きく変化し得る。具体的には、平均結晶粒径が1μmの粒子が形成されたり、平均結晶粒径が3μmの粒子が形成されたりする。このような組織の構造および平均結晶粒径のばらつきが生じると、後述する拡散工程において、粒子を構成する相の溶融温度、およびDy、Tbを拡散源として供給するレートにばらつきが生じる。このようなばらつきは、最終的に磁石特性のばらつきを招来する。   When the molten alloy is rapidly solidified by strip casting, it is difficult to precisely control the cooling rate. For this reason, the structure of the structure is likely to vary among powder particles after the alloy is crushed. For example, the size of the fine grains produced in the alloy can vary widely from grain to grain. Specifically, particles having an average crystal grain size of 1 μm are formed, or particles having an average crystal grain size of 3 μm are formed. Such variations in the structure of the structure and the average grain size cause variations in the melting temperature of the phase constituting the particles and in the rate at which Dy and Tb are supplied as a diffusion source in the diffusion step described later. Such variations eventually lead to variations in magnet characteristics.

このような課題を解決するため、本開示の実施形態では、以下に説明する熱処理を行う。   In order to solve such a subject, in the embodiment of the present disclosure, heat treatment described below is performed.

3.拡散源を得る工程
[合金の熱処理]
本開示の実施形態では、合金に対して、前記合金の融点よりも230℃低い温度以上、融点以下の温度で熱処理を行う。
3. Process to obtain diffusion source [heat treatment of alloy]
In an embodiment of the present disclosure, heat treatment is performed on the alloy at a temperature not less than 230 ° C. lower than the melting point of the alloy and not more than the melting point.

これにより、合金を構成する粒子の結晶性が改質される。そして、前記合金(熱処理後の合金)を粉砕することにより均一性に優れた拡散源を得ることができ、前記拡散源を用いることにより拡散工程における磁気特性のばらつきを抑制することができる。合金の粉砕は、ピンミル粉砕等の公知の粉砕方法により粉砕すればよく、粉砕後の粉末粒子のサイズは、300μm以下(好ましくは200μm以下)であり得る。また、熱処理の時間は例えば30分以上10時間以下であり得る。このような拡散源は、金属間化合物相の平均結晶粒径が3μm超となる。好ましくは、拡散源における金属間化合物相の平均結晶粒径は3.5μm以上20μm以下である。ここで金属間化合物相とは、拡散源を構成する粉末粒子内における金属間化合物の結晶粒全体のことをいう。拡散源を構成する粉末粒子内における金属間化合物が複数種類ある場合は、一番含有量の多い金属間化合物の結晶粒全体のことをいう。   This modifies the crystallinity of the particles that make up the alloy. And the diffusion source excellent in uniformity can be obtained by grinding the alloy (alloy after heat treatment), and the dispersion of the magnetic characteristics in the diffusion process can be suppressed by using the diffusion source. The alloy may be ground by a known grinding method such as pin milling, and the size of the powder particles after grinding may be 300 μm or less (preferably 200 μm or less). The heat treatment time may be, for example, 30 minutes or more and 10 hours or less. In such a diffusion source, the average crystal grain size of the intermetallic compound phase is more than 3 μm. Preferably, the average crystal grain size of the intermetallic compound phase in the diffusion source is 3.5 μm or more and 20 μm or less. Here, the intermetallic compound phase refers to the entire crystal grains of the intermetallic compound in the powder particle constituting the diffusion source. When there are a plurality of types of intermetallic compounds in the powder particle constituting the diffusion source, the whole grains of the intermetallic compound having the highest content are said.

合金の粉末に対する熱処理温度が前記合金の粉末の融点より230℃低い温度未満であると、温度が低すぎるため合金の粉末を構成する粉末粒子の結晶性が改善しない可能性があり、融点を超えると粉末どうしが溶着して拡散処理を効率よくできない可能性がある。   If the heat treatment temperature for the powder of the alloy is less than 230 ° C. lower than the melting point of the powder of the alloy, the temperature is too low and the crystallinity of the powder particles constituting the powder of the alloy may not be improved. And powder may be deposited and the diffusion process may not be efficient.

この熱処理は、炉内の雰囲気を調整することにより、熱処理後の拡散源における酸素含有量を0.5質量%以上4.0質量%以下にすることが好ましい。合金の表面の全体を意図的に酸化させることにより、粉末粒子と大気との接触時間や湿度の差異などによって生じ得る粒子ごとの特性ばらつきを低減することができ、拡散工程における磁気特性のばらつきを更に低減することができる。また、大気中の酸素と接して発火する可能性が低減する。このため、拡散源の品質管理が容易になる。   In the heat treatment, it is preferable to adjust the oxygen content in the diffusion source after the heat treatment to 0.5 mass% or more and 4.0 mass% or less by adjusting the atmosphere in the furnace. By intentionally oxidizing the entire surface of the alloy, it is possible to reduce the variation in characteristics between particles which may occur due to the contact time between the powder particles and the atmosphere or the difference in humidity, and the variation in magnetic characteristics in the diffusion process. It can be further reduced. In addition, the possibility of ignition on contact with oxygen in the atmosphere is reduced. This facilitates quality control of the diffusion source.

拡散源は、実施形態において、粉末の状態にある。粉末状態にある拡散源の粒度は篩わけすることによって調整され得る。また、篩わけで排除される粉末が10質量%以内であれば、その影響は少ないので、篩わけせずに用いてもよい。   The diffusion source, in embodiments, is in the form of a powder. The particle size of the diffusion source in powder form can be adjusted by sieving. Moreover, since the influence is small if the powder excluded by sieving is 10 mass% or less, it may be used without sieving.

また、粉末の状態にある拡散源は、必要に応じて、バインダと共に造粒され得る。   Also, the diffusion source in the form of powder may be granulated with a binder, if necessary.

[拡散助剤]
合金に対して上記の熱処理を行い、更に前記合金を粉砕することによって作製された拡散源は、拡散助剤として機能する合金の粉末を更に含んでいても良い。このような合金の一例は、RLM1M2合金である。RLはLa、Ce、Pr、Nd、Pm、Sm、Euからなる群から選ばれる1種以上であり、Pr及びNdの少なくとも一方を必ず含む、M1、M2はCu、Fe、Ga、Co、Ni、Alから選ばれる1種以上であり、M1=M2でもよい。RLM1M2合金の典型例は、NdCu合金、NdFe合金、NdCuAl合金、NdCuCo合金、NdCoGa合金、NdPrCu合金、NdPrFe合金などである。これらの合金の粉末は、上述の合金の粉末と混合して用いられる。複数種のRLM1M2合金粉末が合金の粉末に混合されていてもよい。
[Diffusion aid]
The diffusion source produced by subjecting the alloy to the above-described heat treatment and then grinding the alloy may further include a powder of the alloy that functions as a diffusion aid. An example of such an alloy is RLM1 M2 alloy. RL is one or more selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, and Eu, and includes at least one of Pr and Nd, and M1 and M2 are Cu, Fe, Ga, Co, Ni And one or more selected from Al, and M1 may be M2. Typical examples of RLM1M2 alloys are NdCu alloy, NdFe alloy, NdCuAl alloy, NdCuCo alloy, NdCoGa alloy, NdPrCu alloy, NdPrFe alloy and the like. The powders of these alloys are used in combination with the powders of the above-mentioned alloys. Plural kinds of RLM1M2 alloy powder may be mixed in the powder of the alloy.

RLM1M2合金の粉末の作製方法は特に限定されない。急冷法又は鋳造法で作製される場合、粉砕性を良くするために、M1≠M2とし、例えば、NdCuAl合金、NdCuCo合金、NdCoGa合金などの3元系以上の合金を採用することが好ましい。RLM1M2合金粉末の粒度は、例えば200μm以下であり、小さいものは10μm程度である。   The method of producing the powder of RLM1M2 alloy is not particularly limited. In the case of producing by a quenching method or a casting method, in order to improve the grindability, it is preferable to adopt M1 ≠ M2, and, for example, a ternary or higher alloy such as NdCuAl alloy, NdCuCo alloy, NdCoGa alloy or the like. The particle size of the RLM 1 M 2 alloy powder is, for example, 200 μm or less, and the smaller one is about 10 μm.

このように本開示の実施形態における拡散源は、熱処理された合金の粉末を必須の構成要素として含み、かつ、他の材料から形成された粉末を含んでいても良い。   Thus, the diffusion source in the embodiment of the present disclosure includes powder of heat-treated alloy as an essential component, and may include powder formed of other materials.

拡散源をRLM1M2合金の粉末と混合して用いる場合、これらの粉末のみの混合では互いに均一に混ざり難いことがある。この理由は、合金の粉末は、一般に、RLM1M2合金の粉末より相対的に粒度が小さいためである。このため、RLM1M2合金の粉末と合金の粉末とバインダを造粒することが好ましい。このような造粒物を用いることによって、RLM1M2合金の粉末と合金の粉末の配合比を粉末全体で均一にできるという利点がある。また、磁石表面に均一に存在させることが可能となる。   When a diffusion source is used by mixing with a powder of RLM 1 M 2 alloy, it may be difficult to mix uniformly with each other only by mixing these powders. The reason for this is that the powder of the alloy is generally smaller in particle size than the powder of the RLM1 M2 alloy. For this reason, it is preferable to granulate the powder of RLM1M2 alloy, the powder of the alloy, and the binder. The use of such a granulated product has the advantage that the compounding ratio of the RLM1M2 alloy powder to the alloy powder can be made uniform throughout the powder. Moreover, it becomes possible to make it exist uniformly on the magnet surface.

バインダとしては、乾燥、又は混合した溶剤が除去されたときに粘着、凝集することなく、拡散源を構成する粉末粒子がさらさらと流動性を持てるものが好ましい。バインダの例としては、PVA(ポリビニルアルコール)などがあげられる。適宜、水などの水系溶剤や、NMP(n−メチルピロリドン)などの有機溶剤を用いて混合してもよい。溶剤は、後述する造粒の過程で蒸発し除去される。   As the binder, preferred is one capable of causing the powder particles constituting the diffusion source to be free flowing and free from sticking or aggregation when the dried or mixed solvent is removed. As an example of a binder, PVA (polyvinyl alcohol) etc. are mention | raise | lifted. As appropriate, mixing may be performed using an aqueous solvent such as water or an organic solvent such as NMP (n-methylpyrrolidone). The solvent is evaporated and removed in the process of granulation described later.

バインダと共に造粒する方法はどのようなものであってもよい。例えば、転動造粒法、流動層造粒法、振動造粒法、高速気流中衝撃法(ハイブリダイゼーション)、粉末とバインダを混合し、固化後解砕する方法、などがあげられる。   Any method may be used for granulation with the binder. For example, a rolling granulation method, a fluidized bed granulation method, a vibration granulation method, an impact method (hybridization) in a high-speed air stream, a method of mixing powder and a binder, crushing after solidification, and the like can be mentioned.

本開示の実施形態において、上記の粉末以外の粉末(第三の粉末)がR1−T−B系焼結磁石素材の表面に存在することを必ずしも排除しないが、第三の粉末が拡散源中のDy及びTbの少なくとも一方をR1−T−B系焼結磁石素材の内部に拡散することを阻害しないように留意する必要がある。R1−T−B系焼結磁石素材の表面に存在する粉末全体に占める「Dy及びTbの少なくとも一方を含有する合金」の質量比率は、70%以上であることが望ましい。   In the embodiment of the present disclosure, although the powder other than the above powder (third powder) is not necessarily excluded from being present on the surface of the R1-T-B-based sintered magnet material, the third powder is in the diffusion source. It is necessary to be careful not to inhibit the diffusion of at least one of Dy and Tb into the inside of the R1-T-B based sintered magnet material. The mass ratio of “an alloy containing at least one of Dy and Tb” in the whole powder present on the surface of the R1-T-B-based sintered magnet material is desirably 70% or more.

4.Dy及びTbの少なくとも一方の拡散工程
R1−T−B系焼結磁石素材及び拡散源をR1−T−B系焼結磁石素材の焼結温度以下の温度に加熱するため、まず、R1−T−B系焼結磁石素材及び拡散源を処理容器内に配置する。このとき、R1−T−B系焼結磁石素材と拡散源とは、処理容器内で接触することが好ましい。
4. In order to heat at least one of the diffusion step R1-T-B based sintered magnet material and diffusion source of Dy and Tb to a temperature not higher than the sintering temperature of the R1-T-B based sintered magnet material, first, R1-T The B-based sintered magnet material and the diffusion source are disposed in the processing vessel. At this time, it is preferable that the R1-T-B-based sintered magnet material and the diffusion source be in contact in the processing container.

[配置]
R1−T−B系焼結磁石素材と拡散源とを接触させる形態は、どのようなものでも良い。例えば、流動浸漬法を用いることにより、粘着剤が塗布されたR1−T−B系焼結磁石素材に粉末状の拡散源を付着させる方法、粉末状の拡散源を収容した処理容器内にR1−T−B系焼結磁石素材をディッピングする方法、R1−T−B系焼結磁石素材に粉末状の拡散源を振り掛ける方法、などがあげられる。また、拡散源を収容した処理容器に振動、搖動、回転を与えたり、処理容器内で拡散源の粉末を流動させてもよい。
[Placement]
The form in which the R1-T-B based sintered magnet material and the diffusion source are in contact with each other may be any form. For example, a method of adhering a powdery diffusion source to an R1-T-B-based sintered magnet material coated with an adhesive by using a fluid immersion method, R1 in a processing container containing a powdery diffusion source A method of dipping a T-B based sintered magnet material, a method of sprinkling a powdery diffusion source on an R1-T-B based sintered magnet material, and the like. Alternatively, the processing container containing the diffusion source may be vibrated, shaken, rotated, or the powder of the diffusion source may be flowed in the processing container.

図1Aは、本開示によるR−T−B系焼結磁石の製造方法で使用され得るR1−T−B系焼結磁石素材100の一部を模式的に示す断面図である。図面には、R1−T−B系焼結磁石素材100の上面100a、及び側面100b、100cが示されている。本開示の製造方法に用いられるR1−T−B系焼結磁石素材の形状及びサイズは、図示されているR1−T−B系焼結磁石素材100の形状及びサイズに限定されない。図示されているR1−T−B系焼結磁石素材100の上面100a、及び側面100b、100cは平坦であるが、R1−T−B系焼結磁石素材100の表面は凹凸又は段差を有していても良いし、湾曲していてもよい。   FIG. 1A is a cross-sectional view schematically showing a part of an R1-T-B-based sintered magnet material 100 that can be used in the method of manufacturing an RTB-based sintered magnet according to the present disclosure. The upper surface 100a and the side surfaces 100b and 100c of the R1-T-B-based sintered magnet material 100 are shown in the drawing. The shape and size of the R1-T-B-based sintered magnet material used in the manufacturing method of the present disclosure are not limited to the shape and size of the illustrated R1-T-B-based sintered magnet material 100. The upper surface 100a and the side surfaces 100b and 100c of the R1-T-B-based sintered magnet material 100 illustrated are flat, but the surface of the R1-T-B-based sintered magnet material 100 has irregularities or steps. It may be curved or may be curved.

図1Bは、拡散源を構成する粉末粒子30が表面に位置する状態のR1−T−B系焼結磁石素材100の一部を模式的に示す断面図である。R1−T−B系焼結磁石素材100の表面に位置する拡散源を構成している粉末粒子30は、不図示の粘着層を介して、R1−T−B系焼結磁石素材100の表面に付着してもよい。そのような粘着層は、たとえば、R1−T−B系焼結磁石素材100の表面に塗布されて形成され得る。粘着層を利用すれば、R1−T−B系焼結磁石素材100の向きを変えることなく、法線方向が異なる複数の領域(例えば上面100aと側面100b)に対して拡散源の粉末を一つの塗布工程で簡単に付着させることができる。   FIG. 1B is a cross-sectional view schematically showing a part of the R1-T-B-based sintered magnet material 100 in a state where the powder particles 30 constituting the diffusion source are located on the surface. The powder particles 30 constituting the diffusion source located on the surface of the R1-T-B-based sintered magnet material 100 are the surface of the R1-T-B-based sintered magnet material 100 via an adhesive layer (not shown). It may adhere to Such an adhesive layer may be applied to the surface of the R1-T-B-based sintered magnet material 100, for example. If an adhesive layer is used, the powder of the diffusion source is not removed from a plurality of regions (for example, the upper surface 100a and the side surface 100b) having different normal directions without changing the orientation of the R1-T-B based sintered magnet material 100. It can be easily attached in one application process.

使用可能な粘着剤としては、PVA(ポリビニルアルコール)、PVB(ポリビニルブチラール)、PVP(ポリビニルピロリドン)などがあげられる。粘着剤が水系の粘着剤の場合、塗布の前にR1−T−B系焼結磁石素材を予備的に加熱してもよい。予備加熱の目的は余分な溶媒を除去し粘着力をコントロールすること、及び、均一に粘着剤を付着させることである。加熱温度は60〜100℃が好ましい。揮発性の高い有機溶媒系の粘着剤の場合はこの工程は省略してもよい。   Examples of usable pressure-sensitive adhesives include PVA (polyvinyl alcohol), PVB (polyvinyl butyral), PVP (polyvinyl pyrrolidone) and the like. When the pressure-sensitive adhesive is a water-based pressure-sensitive adhesive, the R1-T-B-based sintered magnet material may be preliminarily heated before coating. The purpose of the preheating is to remove excess solvent and control the adhesion, and to adhere the adhesive uniformly. The heating temperature is preferably 60 to 100 ° C. In the case of a highly volatile organic solvent-based adhesive, this step may be omitted.

R1−T−B系焼結磁石素材表面に粘着剤を塗布する方法は、どのようなものでも良い。塗布の具体例としては、スプレー法、浸漬法、ディスペンサーによる塗布などがあげられる。   Any method may be used to apply the adhesive to the surface of the R1-T-B-based sintered magnet material. Specific examples of the application include a spray method, an immersion method, application by a dispenser, and the like.

ある好ましい態様では、R1−T−B系焼結磁石素材の表面全体(全面)に粘着剤が塗布されている。R1−T−B系焼結磁石素材の表面全体ではなく、一部に付着させてもよい。特にR1−T−B系焼結磁石素材の厚さが薄い(例えば2mm程度)場合は、R1−T−B系焼結磁石素材の表面のうち、一番面積の広い一つの表面に拡散源の粉末を付着させるだけで磁石全体にDy及びTbの少なくとも一方を拡散させることができ、HcJを向上させることができる場合がある。 In a preferred embodiment, an adhesive is applied to the entire surface (entire surface) of the R1-T-B-based sintered magnet material. You may make it adhere not to the whole surface of R1-T-B type | system | group sintered magnet raw material but to a part. In particular, when the thickness of the R1-T-B-based sintered magnet material is thin (for example, about 2 mm), the diffusion source is one of the surfaces of the R1-T-B-based sintered magnet material having the largest area. In some cases, it is possible to diffuse at least one of Dy and Tb throughout the magnet simply by depositing the powder of H. It is possible to improve HcJ .

R1−T−B系焼結磁石素材100の表面に接触している拡散源を構成する粉末粒子は、前述したように、均一性に優れた組織を有している。また、ある実施形態として合金粒子の表面の全体が酸化されているため、粉末粒子は大気中の酸素と接して発火する可能性が低減し、かつ、大気雰囲気との接触による特性のばらつきも低減している。このため、後述する拡散のための加熱を行うと、拡散源に含まれるDy及びTbの少なくとも一方をR1−T−B系焼結磁石素材の表面から内部に無駄なく効率的に拡散することができる。   As described above, the powder particles constituting the diffusion source in contact with the surface of the R1-T-B-based sintered magnet material 100 have a structure with excellent uniformity. Further, since the entire surface of the alloy particle is oxidized as an embodiment, the powder particle is less likely to be ignited in contact with oxygen in the atmosphere, and the variation in characteristics due to the contact with the atmosphere is also reduced. doing. Therefore, when heating for diffusion to be described later is performed, it is possible to efficiently diffuse at least one of Dy and Tb contained in the diffusion source from the surface of the R1-T-B based sintered magnet material into the inside without waste. it can.

磁石表面上に位置する拡散源に含まれるDy及びTbの少なくとも一方の量は、R1−T−B系焼結磁石素材に対して、質量比で例えば0.5〜3.0%の範囲内になるように設定され得る。より高いHcJを得るために0.7〜2.0%の範囲内になるように設定されてもよい。 The amount of at least one of Dy and Tb contained in the diffusion source located on the magnet surface is, for example, in the range of 0.5 to 3.0% by mass ratio with respect to the R1-T-B based sintered magnet material It can be set to be It may be set to be in the range of 0.7 to 2.0% in order to obtain higher H cJ .

なお、拡散源に含まれるDy及びTbの少なくとも一方の量は、粉末粒子のDy及びTbの濃度だけでなく、拡散源を構成する粉末粒子の粒度にも依存する。従って、Dy及びTbの濃度を一定にしたまま、拡散源を構成する粉末粒子の粒度を調整することによっても拡散されるDy及びTbの量を調整することが可能である。   The amount of at least one of Dy and Tb contained in the diffusion source depends not only on the concentration of Dy and Tb of the powder particles but also on the particle size of the powder particles constituting the diffusion source. Therefore, it is possible to adjust the amount of Dy and Tb diffused also by adjusting the particle size of the powder particles constituting the diffusion source while keeping the concentrations of Dy and Tb constant.

[加熱処理]
拡散のための加熱処理の温度は、R1−T−B系焼結磁石素材の焼結温度以下(具体的には例えば1000℃以下)である。また、拡散源がRLM1M2合金などの粉末を含む場合は、その合金の融点よりも高い温度、例えば500℃以上である。熱処理時間は例えば10分〜72時間である。また前記熱処理の後必要に応じてさらに400〜700℃で10分〜72時間の熱処理を行ってもよい。
[Heat treatment]
The temperature of the heat treatment for diffusion is equal to or less than the sintering temperature of the R1-T-B based sintered magnet material (specifically, for example, 1000 ° C. or less). When the diffusion source contains a powder such as RLM 1 M 2 alloy, the temperature is higher than the melting point of the alloy, for example, 500 ° C. or more. The heat treatment time is, for example, 10 minutes to 72 hours. Moreover, you may heat-process for 10 minutes-72 hours at 400-700 degreeC further as needed after the said heat processing.

このような加熱処理により、拡散源に含まれるDy及びTbの少なくとも一方をR1−T−B系焼結磁石素材の表面から内部に拡散することができる。   By such heat treatment, at least one of Dy and Tb contained in the diffusion source can be diffused from the surface of the R1-T-B-based sintered magnet material to the inside.

また、上述したように1´〜4´の説明は省略するが、1´〜4´は、ストリップキャスト法によって作製した合金をピンミル粉砕等の公知の方法で粉砕して合金の粉末を用意し、前記合金の粉末に前記合金の粉末の融点よりも230℃低い温度以上、融点以下の温度で熱処理を行う以外は、1〜4と同じ方法で作製すればよい。   Moreover, although 1 '-4' description is abbreviate | omitted as mentioned above, 1 '-4' grind | pulverizes the alloy produced by the strip casting method by well-known methods, such as a pin mill grinding, and prepares the powder of an alloy The powder may be prepared in the same manner as 1 to 4 except that the heat treatment is performed on the powder of the alloy at a temperature which is lower by 230 ° C. than the melting point of the powder of the alloy and not higher than the melting point.

(実験例1)
まず公知の方法で、組成比Nd=23.4、Pr=6.2、B=1.0、Al=0.4、Cu=0.1、Co=1.5、残部Fe(質量%)のR1−T−B系焼結磁石素材を作製した。前記R1−T−B系焼結磁石素材の寸法は、厚さ5.0mm×幅7.5mm×長さ35mmであった。
(Experimental example 1)
First, by a known method, the composition ratio Nd = 23.4, Pr = 6.2, B = 1.0, Al = 0.4, Cu = 0.1, Co = 1.5, balance Fe (mass%) An R1-T-B based sintered magnet material was produced. The dimensions of the R1-T-B based sintered magnet material were 5.0 mm in thickness × 7.5 mm in width × 35 mm in length.

次に、およそ表1に示す組成になるように合金をストリップキャスト法により作製して用意した。次に前記合金に表1に示す条件(温度及び時間)で熱処理を行い(但し、No.1は熱処理なし)、熱処理後の合金をピンミル粉砕することにより拡散源(No.1〜12)を得た。拡散源(合金粉末)の粒度は、200μm以下(篩いにより確認)であった。表1における合金の粉末の組成は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。   Next, an alloy was prepared by a strip casting method so as to have a composition approximately as shown in Table 1. Next, heat treatment is performed on the above-mentioned alloy under the conditions (temperature and time) shown in Table 1 (however, No. 1 is not heat treatment), and the diffusion source (No. 1 to 12) is obtained by pin milling the alloy after heat treatment. Obtained. The particle size of the diffusion source (alloy powder) was 200 μm or less (confirmed by sieving). The composition of the powders of the alloys in Table 1 was measured using high frequency inductively coupled plasma emission spectroscopy (ICP-OES).

また、得られた拡散源における金属間化合物相の平均結晶粒径を以下の方法により測定した。まず、拡散源を構成する粉末粒子の断面を走査電子顕微鏡(SEM)で観察しコントラストから相別し、各相の組成をエネルギー分散X線分光(EDX)を用いて分析し金属間化合物相を特定した。次に画像解析ソフト(Scandium)を用いて、一番面積比率の高い金属間化合物相を一番含有量の高い金属間化合物相とし、当該金属間化合物相の結晶粒径を求めた。具体的には金属間化合物相における結晶粒の数及び結晶粒の全面積を画像解析ソフト(Scandium)を用いて求め、求めた結晶粒の全面積を結晶粒の数で割ることにより平均面積を求めた。そして数式1により得られた平均面積から結晶粒径Dを求めた。   Further, the average grain size of the intermetallic compound phase in the obtained diffusion source was measured by the following method. First, the cross section of the powder particle constituting the diffusion source is observed with a scanning electron microscope (SEM), the phase is separated from the contrast, the composition of each phase is analyzed using energy dispersive X-ray spectroscopy (EDX), and the intermetallic compound phase is Identified. Next, using an image analysis software (Scandium), the intermetallic compound phase with the highest area ratio was regarded as the intermetallic compound phase with the highest content, and the crystal grain size of the intermetallic compound phase was determined. Specifically, the number of crystal grains and the total area of crystal grains in the intermetallic compound phase are determined using image analysis software (Scandium), and the total area of crystal grains thus determined is divided by the number of crystal grains to obtain an average area. I asked. The crystal grain size D was determined from the average area obtained by Equation 1.

Figure 2019062156
Figure 2019062156

ここで、Dは結晶粒径、Sは平均面積である。 Here, D is a crystal grain size, and S is an average area.

これらの作業を5回行い(5個の粉末粒子を調べ)、その平均値を求めることで拡散源における金属間化合物相の平均結晶粒径を求めた。結果を表1の平均結晶粒径に示す。なお、No.1は拡散源に熱処理を行っていないため、金属間化合物相の結晶粒径が小さすぎて(1μm以下の微小な結晶粒)測定することができなかった。   These operations were performed five times (five powder particles were examined), and the average value was determined to determine the average grain size of the intermetallic compound phase in the diffusion source. The results are shown in Table 1 average grain size. No. Since No. 1 did not heat-process to a diffusion source, the crystal grain diameter of the intermetallic compound phase was too small, and (microcrystal grain of 1 micrometer or less) was not able to be measured.

次に、R1−T−B系焼結磁石素材に粘着剤を塗布した。塗布方法は、R1−T−B系焼結磁石素材をホットプレート上で60℃に加熱後、スプレー法でR1−T−B系焼結磁石素材全面に粘着剤を塗布した。粘着剤としてPVP(ポリビニルピロリドン)を用いた。   Next, an adhesive was applied to the R1-T-B based sintered magnet material. The coating method was such that the R1-T-B based sintered magnet material was heated to 60 ° C. on a hot plate and then the adhesive was applied to the entire surface of the R1-T-B based sintered magnet material by a spray method. As an adhesive, PVP (polyvinyl pyrrolidone) was used.

次に、粘着剤を塗布したR1−T−B系焼結磁石素材に対して、表1のNo.1〜12の拡散源を付着させた。拡散源を付着させたR1−T−B系焼結磁石素材は、拡散源の種類ごと(No.1〜12ごと)に50個づつ準備した。付着方法は、容器に拡散源(合金粉末)を広げ、粘着剤を塗布したR1−T−B系焼結磁石素材を常温まで降温させた後、容器内で拡散源をR1−T−B系焼結磁石素材全面にまぶすように付着させた。   Next, with respect to the R1-T-B-based sintered magnet material coated with a pressure-sensitive adhesive, No. 1 in Table 1 is used. 1 to 12 diffusion sources were attached. Fifty R 1 -T-B-based sintered magnet materials having diffusion sources attached thereto were prepared for each type of diffusion sources (for each of Nos. 1 to 12). In the adhesion method, the diffusion source (alloy powder) is spread in a container, the R1-T-B based sintered magnet material coated with the adhesive is cooled to room temperature, and then the diffusion source is R1-T-B based in the container It was made to adhere to the entire surface of the sintered magnet material.

次に、前記R1−T−B系焼結磁石素材及び拡散源を処理容器内に配置し、900℃(焼結温度以下)で8時間加熱することにより、前記拡散源に含まれるDy及びTbの少なくとも一方を前記R1−T−B系焼結磁石素材の表面から内部に拡散する拡散工程を行った。拡散後のR−T−B系焼結磁石の中央部分から厚さ4.5mm×幅7.0mm×長さ7.0mmの立方体を切り出し、拡散源の種類ごと(No.1〜12ごと)に10個づつB−Hトレーサにより保磁力を測定し、得られた保磁力の最大値から保磁力の最小値を差し引いた値を磁気特性ばらつき(△HcJ)として求めた。△HcJの値を表1に示す。 Next, the R1-T-B-based sintered magnet material and the diffusion source are disposed in a processing vessel, and heated at 900 ° C. (sintering temperature or less) for 8 hours, Dy and Tb contained in the diffusion source A diffusion step of diffusing at least one of them from the surface of the R1-T-B based sintered magnet material to the inside is performed. A cube of 4.5 mm in thickness × 7.0 mm in width × 7.0 mm in length is cut out from the central portion of the R-T-B-based sintered magnet after diffusion, and each type of diffusion source (for each of Nos. 1 to 12) The coercivity was measured by B-H tracer every 10 pieces, and the value obtained by subtracting the minimum value of the coercivity from the maximum value of the obtained coercivity was determined as the magnetic characteristic variation ( ΔH cJ ). The values of ΔH cJ are shown in Table 1.

Figure 2019062156
Figure 2019062156

表1に示すように、合金の粉末に熱処理をしていないNo.1(比較例)及び熱処理温度が本開示の範囲外であるNo.6(比較例)と比べ本発明例(No.2〜5、No.7〜12)は、いずれも△HcJが半分以下であり拡散工程における磁気特性のばらつきが抑制されている。 As shown in Table 1, the alloy powder was not heat treated. No. 1 (comparative example) and the heat processing temperature are out of the range of this indication. As compared with No. 6 (comparative example), in all of the inventive examples (No. 2 to 5 and No. 7 to 12), ΔH cJ is half or less, and the variation of the magnetic characteristics in the diffusion process is suppressed.

本開示の実施形態は、より少ないDy、TbによってR−T−B系焼結磁石のHcJを向上させることができるため、高い保磁力が求められる希土類焼結磁石の製造に使用され得る。また、本開示は、重希土類元素RH以外の他の金属元素を希土類焼結磁石に表面から拡散させることにも適用され得る。 The embodiment of the present disclosure can improve the HcJ of the RTB-based sintered magnet with less Dy and Tb, and therefore can be used to manufacture a rare earth sintered magnet that requires high coercivity. The present disclosure can also be applied to the diffusion of other metal elements other than the heavy rare earth element RH into the rare earth sintered magnet from the surface.

30 拡散源を構成する粉末粒子
100 R1−T−B系焼結磁石素材
100a R1−T−B系焼結磁石素材の上面
100b R1−T−B系焼結磁石素材の側面
100c R1−T−B系焼結磁石素材の側面
30 Powder particle 100 constituting a diffusion source R1-T-B-based sintered magnet material 100a R1-T-B-based sintered magnet material top surface 100b R1-T-B-based sintered magnet material side surface 100c R1-T- Side of B-based sintered magnet material

Claims (4)

R1−T−B系焼結磁石素材(R1は希土類元素、TはFe又はFeとCo)を用意する工程と、
Dy及びTbの少なくとも一方を必ず含む希土類元素R2を全体の40質量%以上含有する合金を用意する工程と、
前記合金に前記合金の融点よりも230℃低い温度以上、融点以下の温度で熱処理を行い、熱処理後の合金を粉砕することにより拡散源を得る工程と、
前記R1−T−B系焼結磁石素材及び前記拡散源を処理容器内に配置し、前記R1−T−B系焼結磁石素材及び前記拡散源を前記R1−T−B系焼結磁石素材の焼結温度以下の温度に加熱して、前記拡散源に含まれるDy及びTbの少なくとも一方を前記R1−T−B系焼結磁石素材の表面から内部に拡散する拡散工程と、
を含み、
前記合金は、ストリップキャスト法によって作製された合金である、R−T−B系焼結磁石の製造方法。
Preparing a R1-T-B based sintered magnet material (R1 is a rare earth element, T is Fe or Fe and Co);
Preparing an alloy containing at least 40% by weight or more of the rare earth element R2 invariably containing at least one of Dy and Tb;
Heat treating the alloy at a temperature not less than 230 ° C. and not more than the melting point of the alloy and crushing the alloy after the heat treatment to obtain a diffusion source;
The R1-T-B based sintered magnet material and the diffusion source are disposed in a processing vessel, and the R1-T-B-based sintered magnet material and the diffusion source are referred to as the R1-T-B based sintered magnet material A diffusion step of heating at a temperature equal to or lower than the sintering temperature of D. to diffuse at least one of Dy and Tb contained in the diffusion source from the surface of the R1-T-B based sintered magnet material to the inside;
Including
The method for producing an RTB-based sintered magnet, wherein the alloy is an alloy produced by a strip casting method.
R1−T−B系焼結磁石素材(R1は希土類元素、TはFe又はFeとCo)を用意する工程と、
Dy及びTbの少なくとも一方を必ず含む希土類元素R2を全体の40質量%以上含有する合金を粉砕して合金の粉末を用意する工程と、
前記合金の粉末に前記合金の粉末の融点よりも230℃低い温度以上、融点以下の温度で熱処理を行い、前記合金の粉末から拡散源を得る工程と、
前記R1−T−B系焼結磁石素材及び前記拡散源を処理容器内に配置し、前記R1−T−B系焼結磁石素材及び前記拡散源を前記R1−T−B系焼結磁石素材の焼結温度以下の温度に加熱して、前記拡散源に含まれるDy及びTbの少なくとも一方を前記R1−T−B系焼結磁石素材の表面から内部に拡散する拡散工程と、
を含み、
前記合金は、ストリップキャスト法によって作製された合金である、R−T−B系焼結磁石の製造方法。
Preparing a R1-T-B based sintered magnet material (R1 is a rare earth element, T is Fe or Fe and Co);
Pulverizing an alloy containing at least 40% by mass of a rare earth element R2 necessarily containing at least one of Dy and Tb to prepare a powder of the alloy;
Heat treating the powder of the alloy at a temperature not lower than the melting point of the alloy powder but not lower than the melting point by 230 ° C. to obtain a diffusion source from the powder of the alloy;
The R1-T-B based sintered magnet material and the diffusion source are disposed in a processing vessel, and the R1-T-B-based sintered magnet material and the diffusion source are referred to as the R1-T-B based sintered magnet material A diffusion step of heating at a temperature equal to or lower than the sintering temperature of D. to diffuse at least one of Dy and Tb contained in the diffusion source from the surface of the R1-T-B based sintered magnet material to the inside;
Including
The method for producing an RTB-based sintered magnet, wherein the alloy is an alloy produced by a strip casting method.
前記合金は、RHRLM1M2合金(RHはSc、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luからなる群から選ばれる1種以上であり、Tb及びDyの少なくとも一方を必ず含む、RLはLa、Ce、Pr、Nd、Pm、Sm、Euからなる群から選ばれる1種以上であり、Pr及びNdの少なくとも一方を必ず含む、M1、M2はCu、Fe、Ga、Co、Ni、Alから選ばれる1種以上、M1=M2でもよい)である、請求項1又は2に記載のR−T−B系焼結磁石の製造方法。   The alloy is a RHRLM1M2 alloy (RH is at least one selected from the group consisting of Sc, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, and always contains at least one of Tb and Dy. RL is one or more selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, and Eu, and includes at least one of Pr and Nd, and M1 and M2 are Cu, Fe, Ga, Co, Ni The method for producing an RTB-based sintered magnet according to claim 1 or 2, wherein M1 is at least one selected from Al, and M1 may be M2. 前記合金は、RHM1M2合金(RHはSc、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luからなる群から選ばれる1種以上であり、Tb及びDyの少なくとも一方を必ず含む、M1、M2はCu、Fe、Ga、Co、Ni、Alから選ばれる1種以上、M1=M2でもよい)である、請求項1又は2に記載のR−T−B系焼結磁石の製造方法。   The alloy is one or more selected from the group consisting of RHM 1 M 2 alloy (RH is Sc, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and always contains at least one of Tb and Dy. The R-T-B-based sintered magnet according to claim 1 or 2, wherein M1 and M2 are one or more selected from Cu, Fe, Ga, Co, Ni, and Al, and M1 may be M2). Method.
JP2017187705A 2017-09-28 2017-09-28 Manufacturing method of RTB-based sintered magnet Active JP7000774B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017187705A JP7000774B2 (en) 2017-09-28 2017-09-28 Manufacturing method of RTB-based sintered magnet
CN201811140238.9A CN109585108B (en) 2017-09-28 2018-09-28 Method for producing R-T-B sintered magnet and diffusion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017187705A JP7000774B2 (en) 2017-09-28 2017-09-28 Manufacturing method of RTB-based sintered magnet

Publications (2)

Publication Number Publication Date
JP2019062156A true JP2019062156A (en) 2019-04-18
JP7000774B2 JP7000774B2 (en) 2022-02-04

Family

ID=66177586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017187705A Active JP7000774B2 (en) 2017-09-28 2017-09-28 Manufacturing method of RTB-based sintered magnet

Country Status (1)

Country Link
JP (1) JP7000774B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112820528A (en) * 2020-05-06 2021-05-18 廊坊京磁精密材料有限公司 Method for improving coercive force of sintered neodymium iron boron

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5057111B2 (en) 2009-07-01 2012-10-24 信越化学工業株式会社 Rare earth magnet manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112820528A (en) * 2020-05-06 2021-05-18 廊坊京磁精密材料有限公司 Method for improving coercive force of sintered neodymium iron boron

Also Published As

Publication number Publication date
JP7000774B2 (en) 2022-02-04

Similar Documents

Publication Publication Date Title
KR101642999B1 (en) Rare earth magnet and its preparation
TWI509642B (en) Rare earth permanent magnet and its manufacturing method
JP5472236B2 (en) Rare earth magnet manufacturing method and rare earth magnet
JP5874951B2 (en) Method for producing RTB-based sintered magnet
JP6051892B2 (en) Method for producing RTB-based sintered magnet
EP3499530B1 (en) Method of producing r-t-b sintered magnet
JP6221233B2 (en) R-T-B system sintered magnet and manufacturing method thereof
WO2012008623A1 (en) Process for producing rare-earth magnet, and rare-earth magnet
EP1479787A1 (en) Sinter magnet made from rare earth-iron-boron alloy powder for magnet
JP5209349B2 (en) Manufacturing method of NdFeB sintered magnet
JP5643355B2 (en) Manufacturing method of NdFeB sintered magnet
JP2014160760A (en) Method for manufacturing r-t-b-based sintered magnet
JP6939339B2 (en) Manufacturing method of RTB-based sintered magnet
CN109585108B (en) Method for producing R-T-B sintered magnet and diffusion source
JP6939336B2 (en) Diffusion source
JP6939337B2 (en) Manufacturing method of RTB-based sintered magnet
JP2019060009A (en) Diffusion source
JP2019062158A (en) Method for manufacturing r-t-b based sintered magnet
JP7000774B2 (en) Manufacturing method of RTB-based sintered magnet
US11062843B2 (en) Method for producing sintered R-T-B based magnet and diffusion source
CN109585151B (en) Method for producing R-T-B sintered magnet and diffusion source
CN113593882A (en) 2-17 type samarium-cobalt permanent magnet material and preparation method and application thereof
JP2019062157A (en) Method for manufacturing r-t-b based sintered magnet
JP6760169B2 (en) Manufacturing method of RTB-based sintered magnet
JP6939338B2 (en) Manufacturing method of RTB-based sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211207

R150 Certificate of patent or registration of utility model

Ref document number: 7000774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350