JPH06224015A - Manufacture of rare earth-fe-n intermetallic compound magnetic material particle and magnetic material powder of rare earth-fe-n intermetallic compound produced by same - Google Patents

Manufacture of rare earth-fe-n intermetallic compound magnetic material particle and magnetic material powder of rare earth-fe-n intermetallic compound produced by same

Info

Publication number
JPH06224015A
JPH06224015A JP5027365A JP2736593A JPH06224015A JP H06224015 A JPH06224015 A JP H06224015A JP 5027365 A JP5027365 A JP 5027365A JP 2736593 A JP2736593 A JP 2736593A JP H06224015 A JPH06224015 A JP H06224015A
Authority
JP
Japan
Prior art keywords
magnetic material
intermetallic compound
hydrogen
ingot
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5027365A
Other languages
Japanese (ja)
Inventor
Kurisutodouro Kurisu
クリストドウロ クリス
Takuo Takeshita
拓夫 武下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP5027365A priority Critical patent/JPH06224015A/en
Publication of JPH06224015A publication Critical patent/JPH06224015A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0596Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure

Abstract

PURPOSE:To provide the R-Fe-N intermetallic compound magnetic material particles comprising rare earth element excluding La (represented by R hereinafter) and Fe, N and the manufacturing method thereof. CONSTITUTION:Within the title manufacturing method of R-Fe-N intermetallic compound magnetic particles where R is rare earth element except La, an ingot represented by R2+kFe17 (where 0.01<k<1.0) is homogenized and then heated from room temperature in hydrogen atmosphere or mixed gas of hydrogen and nitrogen to be held at the heated-temperature if necessary and later, the temperature cycling process in hydrogen atmosphere cooling down to the room temperature is repeated exceeding one time and after hydrogen occcluding in hydrogen atmosphere, the ingot is successively dehydrogenated in the vacuum atmosphere at the same temperature so as to hold the cracked particles produced by cooling down and cracking the ingot in nitrogen atmosphere as well as the magnetic material particles mainly comprising the single crystalline particles of R2Fe17Nx intermetallic compound having mean particle diameter of 10-200mum are produced by said manufacturing method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、Laを除く希土類元
素(以下、Rで示す)とFeとNからなるR−Fe−N
金属間化合物磁性材料粉末の製造法およびその製造法に
より得られたR−Fe−N金属間化合物磁性材料粉末に
関するものであり、さらに具体的には、Sm2 Fe17
x 金属間化合物磁性材料粉末の製造法およびその製造法
により得られたSm2 Fe17x 金属間化合物磁性材料
粉末に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to R-Fe-N composed of a rare earth element other than La (hereinafter represented by R), Fe and N.
The present invention relates to a method for producing an intermetallic compound magnetic material powder and an R—Fe—N intermetallic compound magnetic material powder obtained by the production method, and more specifically to Sm 2 Fe 17 N
The present invention relates to a method for producing an x intermetallic compound magnetic material powder and an Sm 2 Fe 17 N x intermetallic compound magnetic material powder obtained by the production method.

【0002】[0002]

【従来の技術】従来、R2 Fe17x で表される成分組
成のR−Fe−N金属間化合物は硬磁性材料となること
は知られており、特にR2 Fe17x 金属間化合物粉末
をバインダーで固めてボンド磁石を製造することも知ら
れている。前記R2 Fe17x金属間化合物磁性材料粉
末のうちでも特にSm2 Fe17x 金属間化合物磁性材
料粉末の研究は進んでいる。
Conventionally, R-Fe-N intermetallic compound of component composition represented by R 2 Fe 17 N x is is known that a hard magnetic material, in particular R 2 Fe 17 N x intermetallic It is also known to harden compound powder with a binder to produce a bonded magnet. Among the R 2 Fe 17 N x intermetallic compound magnetic material powders, research on Sm 2 Fe 17 N x intermetallic compound magnetic material powders is in progress.

【0003】例えば、日本応用磁気学会誌 Vol.1
6,No.2,1992,P163〜168には、Sm
2 Fe17の成分組成を有する鋳塊をAr雰囲気中、温
度:1000℃、50時間保持の条件で均質化処理を行
ったのち、250メッシュ以下に粉砕し、この粉砕粉末
を1.5ton/cm2 の圧力で圧縮成形して圧粉体を
作製し、この圧粉体を炉内に装入し、炉内に200ml
/minの水素ガスを流しながら650〜850℃に昇
温し、この温度に1時間保持した後、この温度を保持し
たまま1×10-2Torrの真空雰囲気中に30分間保
持して脱水素処理し、一旦炉冷し、この炉冷した圧粉体
を再び500℃、100ml/minの窒素ガス気流中
に4時間保持することにより窒化処理を行い、この窒化
処理した圧粉体を粉砕してSm2 Fe17x 金属間化合
物磁性材料粉末を製造する方法が記載されている。
For example, Journal of Applied Magnetics of Japan, Vol. 1
6, No. 2, 1992, P163 to 168, Sm
2 An ingot having a composition of Fe 17 was homogenized in an Ar atmosphere at a temperature of 1000 ° C. for 50 hours and then crushed to 250 mesh or less. Compressed at a pressure of 2 to make a green compact, load the green compact into the furnace, and add 200 ml into the furnace.
The temperature was raised to 650 to 850 ° C. while flowing hydrogen gas at a flow rate of 1 / min, held at this temperature for 1 hour, and then kept at this temperature in a vacuum atmosphere of 1 × 10 −2 Torr for 30 minutes for dehydrogenation. Then, the furnace-cooled green compact was once treated, and the furnace-cooled green compact was again held in a nitrogen gas stream of 500 ° C. and 100 ml / min for 4 hours to perform a nitriding treatment, and the nitrided green compact was crushed. Sm 2 Fe 17 N x intermetallic compound magnetic material powder is described.

【0004】そして、この方法で得られたSm2 Fe17
x 金属間化合物磁性材料粉末の磁気特性は、残留磁束
密度Br:7.2KG,保磁力iHc:8.7kOe,
最大エネルギー積(BH)max:7.8MGOeであ
り、本来のSm2 Fe17x金属間化合物の残留磁束密
度Br:15.4KGの半分程度であるから等方性磁性
材料粉末であると結論づけている。
The Sm 2 Fe 17 obtained by this method
The magnetic properties of the N x intermetallic compound magnetic material powder are as follows: residual magnetic flux density Br: 7.2 KG, coercive force iHc: 8.7 kOe,
The maximum energy product (BH) max: 7.8 MGOe, and the residual magnetic flux density Br: 15.4 KG of the original Sm 2 Fe 17 N x intermetallic compound is about half, so it is concluded that the powder is an isotropic magnetic material powder. ing.

【0005】すなわち、R−Fe−N金属間化合物磁性
材料粉末を製造する方法として、R2 Fe17金属間化合
物鋳塊を、不活性ガス雰囲気中、温度:900〜120
0℃に保持して均質化処理し、前記均質化処理したR2
Fe17金属間化合物鋳塊を機械粉砕して粉末とし、この
粉末をプレス成形して圧粉体とし、この圧粉体を水素雰
囲気中、650〜950℃に昇温保持して鋳塊に水素を
吸蔵させる水素吸蔵処理を施し、引き続いて、650〜
950℃の範囲内の真空雰囲気中に保持することにより
前記水素吸蔵鋳塊から強制的に水素を放出させて脱水素
処理を施し(以下、水素吸蔵処理を施したのち脱水素処
理処理する操作を水素処理と総称する)、ついで、冷却
し、粉砕することによりR2 Fe17金属間化合物微粉末
を作製し、このR2 Fe17金属間化合物微粉末を窒素雰
囲気中に保持してR2 Fe17x金属間化合物磁性材料
粉末を製造する方法は知られているのである。
That is, as a method for producing the R-Fe-N intermetallic compound magnetic material powder, an R 2 Fe 17 intermetallic compound ingot was placed in an inert gas atmosphere at a temperature of 900 to 120.
The homogenized R 2 was maintained at 0 ° C., and the homogenized R 2
Fe 17 intermetallic compound ingot is mechanically pulverized into powder, and this powder is press-molded into a green compact, and this green compact is heated to 650 to 950 ° C. in a hydrogen atmosphere and is kept in the ingot. Hydrogen storage process for storing
By holding in a vacuum atmosphere in the range of 950 ° C., hydrogen is forcibly released from the hydrogen storage ingot to perform dehydrogenation treatment (hereinafter, the hydrogen storage treatment is performed and then the dehydrogenation treatment is performed. R 2 Fe 17 intermetallic compound fine powder is prepared by cooling and pulverizing, and the R 2 Fe 17 intermetallic compound fine powder is held in a nitrogen atmosphere to produce R 2 Fe. A method for producing 17 N x intermetallic compound magnetic material powder is known.

【0006】[0006]

【発明が解決しようとする課題】しかし、前記方法によ
り製造されたR−Fe−N金属間化合物磁性材料粉末
は、等方性磁性粉末であるために、このR−Fe−N金
属間化合物磁性材料粉末を使用して作製した磁石は十分
な磁気特性が得られず、一層磁気特性の優れた磁石を得
るためには異方性のR−Fe−N金属間化合物磁性材料
粉末が求められている。
However, since the R-Fe-N intermetallic compound magnetic material powder produced by the above method is an isotropic magnetic powder, the R-Fe-N intermetallic compound magnetic material is magnetic. Magnets produced using material powders do not have sufficient magnetic properties, and anisotropic R-Fe-N intermetallic compound magnetic material powders are required to obtain magnets with even better magnetic properties. There is.

【0007】[0007]

【課題を解決するための手段】そこで、本発明者等は、
磁気異方性に優れたR−Fe−N金属間化合物磁性材料
粉末を製造すべく研究を行った結果、(1) R2+k
17(ただし、0.01<k<1.0)で表される成分
組成の鋳塊を水素処理して自然崩壊せしめると、平均粒
径:10〜200μmの単結晶サイズの粉末が得られ、
この自然崩壊した単結晶サイズの粉末を窒化処理すると
磁気異方性に優れた希土類−Fe−N金属間化合物磁性
材料粉末を得ることができる、(2) 前記水素処理に
先立って、均質化処理した鋳塊を水素雰囲気中または水
素と窒素の混合ガス雰囲気中で室温から温度:150〜
500℃に昇温保持し、その後、室温に戻す操作(以
下、この操作を水素雰囲気中温度サイクル処理という)
を1回以上繰り返すと、得られたR−Fe−N金属間化
合物化合物磁性材料粉末の磁気特性は一層向上する、と
いう知見を得たのである。
Therefore, the present inventors have
As a result of conducting research to produce an R-Fe-N intermetallic compound magnetic material powder having excellent magnetic anisotropy, (1) R 2 + k F
e 17 (provided that 0.01 <k <1.0) is subjected to a hydrogen treatment to spontaneously disintegrate an ingot, and a single crystal size powder having an average particle size of 10 to 200 μm is obtained. ,
By nitriding the powder of single crystal size that spontaneously collapses, a rare earth-Fe-N intermetallic compound magnetic material powder having excellent magnetic anisotropy can be obtained. (2) Homogenization treatment prior to the hydrogen treatment The ingot is heated from room temperature to a temperature of 150 to 150 in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and nitrogen.
An operation in which the temperature is maintained at 500 ° C. and then returned to room temperature (hereinafter, this operation is referred to as a temperature cycle treatment in a hydrogen atmosphere)
It was found that the magnetic characteristics of the obtained R—Fe—N intermetallic compound compound magnetic material powder are further improved by repeating the above step 1 or more times.

【0008】この発明はかかる知見にもとづいてなされ
たものであって、(1) R2+k Fe17(ただし、0.
01<k<1.0)で表される成分組成の鋳塊を均質化
処理し、前記均質化処理した鋳塊を水素処理し、つい
で、冷却し、解砕することにより得られた解砕粉末を窒
素雰囲気中に保持するR−Fe−N金属間化合物磁性材
料粉末の製造法、(2) 前記均質化処理したR2+k
17(ただし、0.01<k<1.0)で表される成分
組成の鋳塊を、水素雰囲気中温度サイクル処理を1回以
上繰り返したのち、前記水素処理を施す希土類−Fe−
N金属間化合物磁性材料粉末の製造法、(3) 平均粒
径:10〜200μmのR2 Fe17x 金属間化合物の
単結晶粉末を主体とする磁気異方性に優れたR−Fe−
N金属間化合物磁性材料粉末、に特徴を有するものであ
る。
The present invention has been made on the basis of such findings. (1) R 2 + k Fe 17 (provided that 0.
01 <k <1.0) homogenization treatment of the ingot having the component composition represented by 01 <k <1.0), hydrogen treatment of the homogenized ingot, and then cooling and crushing. Method for producing R-Fe-N intermetallic compound magnetic material powder in which powder is held in nitrogen atmosphere, (2) The homogenized R 2+ k F
e 17 (provided that 0.01 <k <1.0) is subjected to the hydrogen treatment after repeating the temperature cycle treatment in a hydrogen atmosphere one or more times, and then performing the hydrogen treatment.
Method for producing N intermetallic compound magnetic material powder, (3) R-Fe-excellent in magnetic anisotropy mainly composed of single crystal powder of R 2 Fe 17 N x intermetallic compound having an average particle size of 10 to 200 μm
It is characterized by N intermetallic compound magnetic material powder.

【0009】前記Rは希土類元素であるが、希土類元素
の内でもSmが最も好ましく、Laは好ましくないので
除外する。かかるR2+k Fe17(ただし、0.01<k
<1.0)で表される成分組成の鋳塊を水素処理するこ
とにより自然崩壊せしめ解砕して得られた粉末は、平均
粒径が10〜200μmの単結晶粉末を主体となり、こ
の単結晶粉末を主体とする粉末を窒化処理して得られた
R−Fe−N金属間化合物磁性材料粉末は粉末粒径も小
さくなり、磁気異方性に優れたものとなる。
R is a rare earth element, but among the rare earth elements, Sm is most preferable and La is not preferable, so it is excluded. Such R 2 + k Fe 17 (provided that 0.01 <k
The powder obtained by spontaneously disintegrating and crushing an ingot having a component composition represented by <1.0) mainly comprises a single crystal powder having an average particle size of 10 to 200 μm. The R-Fe-N intermetallic compound magnetic material powder obtained by nitriding the powder mainly composed of the crystal powder has a small powder particle size and is excellent in magnetic anisotropy.

【0010】前記水素雰囲気中温度サイクル処理の雰囲
気は、水素雰囲気でもよく、また、水素と窒素の混合ガ
スでも良い。水素雰囲気中温度サイクル処理の昇温保持
温度は、150℃未満では所望の効果が得られず、一
方、500℃を越えるとR2 Fe17金属間化合物は分解
してRH2 とFeになるので好ましくない。さらに、水
素雰囲気中温度サイクル処理の昇温保持時間は、特に限
定されるものではないが、10〜60分間の範囲内にあ
ることが好ましい。
The atmosphere for the temperature cycle treatment in the hydrogen atmosphere may be a hydrogen atmosphere or a mixed gas of hydrogen and nitrogen. If the temperature holding temperature of the temperature cycle treatment in a hydrogen atmosphere is less than 150 ° C, the desired effect cannot be obtained, while if it exceeds 500 ° C, the R 2 Fe 17 intermetallic compound decomposes into RH 2 and Fe. Not preferable. Further, the temperature rising holding time of the temperature cycle treatment in a hydrogen atmosphere is not particularly limited, but it is preferably within a range of 10 to 60 minutes.

【0011】この発明の方法により得られた平均粒径:
10〜200μmの希土類−Fe−N金属間化合物磁性
材料粉末は、従来法により得られた希土類−Fe−N金
属間化合物磁性材料粉末に比べて磁気異方性に優れる理
由は、下記によるものと考えられる。すなわち、前記従
来のR2 Fe17x 金属間化合物磁性材料粉末製造法で
は、均質化処理したR2 Fe17金属間化合物鋳塊を機械
粉砕しているが、かかる機械粉砕して得られた粉末は結
晶粒を横切って粉砕されている粉末が多く存在し、この
機械粉砕粉末は異なった方向に配向した集合結晶粒から
なる粉末が多く含まれ、この機械的粉砕粉末を水素処理
したのち窒化処理して得られたR2 Fe17x 金属間化
合物磁性材料粉末も異なった方向に配向した集合結晶粒
からなる粉末が多く含まれるために等方性を示すと考え
られる。
Average particle size obtained by the method of the present invention:
The reason why the rare earth-Fe-N intermetallic compound magnetic material powder having a particle size of 10 to 200 μm is superior in magnetic anisotropy to the rare earth-Fe-N intermetallic compound magnetic material powder obtained by the conventional method is as follows. Conceivable. That is, in the above-mentioned conventional R 2 Fe 17 N x intermetallic compound magnetic material powder manufacturing method, the homogenized R 2 Fe 17 intermetallic compound ingot is mechanically pulverized. There are many powders that are crushed across the crystal grains, and this mechanically crushed powder contains many powders that are composed of aggregated crystal grains that are oriented in different directions.The mechanically crushed powder is hydrogenated and then nitrided. It is considered that the R 2 Fe 17 N x intermetallic compound magnetic material powder obtained by the treatment also shows isotropy because it contains many powders composed of aggregated crystal grains oriented in different directions.

【0012】ところが、この発明ではR2+k Fe17(た
だし、0.01<k<1.0)の成分組成を有し、R2
Fe17を主相とし、その他RFe3 、α−Feなどから
なる組織を有する鋳塊を水素吸蔵処理すると、R2 Fe
17はR2 Fe175 となり、RFe3 はRFe3 4
なるが、RFe3 4 の膨張率はR2 Fe175 の膨張
率よりも格段に大きく(例えば、Sm2 Fe175 の膨
張率は3.5%であるに対し、SmFe3 4 の膨張率
は19%である。)、この膨張率の差により鋳塊の結晶
粒界に亀裂が入って自然崩壊し、これを脱水素処理する
ことにより簡単にR2 Fe17単結晶粉末を主体とした粉
末を作製することができ、このR2 Fe17単結晶粉末を
主体とした粉末を窒化処理することにより磁気異方性に
優れたR2 Fe17x 金属間化合物磁性材料粉末を製造
することができるものと考えられる。
[0012] However, R 2 + k Fe 17 (although, 0.01 <k <1.0) in this invention has a component composition of, R 2
R 2 Fe is obtained by hydrogen-absorbing an ingot having Fe 17 as a main phase and a structure composed of RFe 3 and α-Fe.
17 becomes R 2 Fe 17 H 5 and RFe 3 becomes RFe 3 H 4 , but the expansion coefficient of RFe 3 H 4 is significantly higher than that of R 2 Fe 17 H 5 (for example, Sm 2 Fe 17 The expansion coefficient of H 5 is 3.5%, whereas the expansion coefficient of SmFe 3 H 4 is 19%.) Due to this difference in expansion coefficient, the crystal grain boundary of the ingot is cracked and spontaneously collapses. By subjecting this to a dehydrogenation treatment, a powder mainly composed of R 2 Fe 17 single crystal powder can be easily produced. By nitriding the powder mainly composed of this R 2 Fe 17 single crystal powder, magnetic properties can be obtained. It is considered that the R 2 Fe 17 N x intermetallic compound magnetic material powder having excellent anisotropy can be produced.

【0013】[0013]

【実施例】つぎに、この発明のR−Fe−N金属間化合
物磁性材料粉末およびその製造法を、実施例により具体
的に説明する。高純度のSm金属およびFe金属を用意
し、まずFe金属をAr雰囲気中の高周波溶解炉にて溶
解し、ついでSmを添加して溶解し、この合金溶湯を水
冷鋳型に鋳込み、表1に示される成分組成の鋳塊A〜I
を作製した。これら鋳塊A〜IをAr雰囲気中、表1に
示される温度および時間保持の均質化処理を行い、均質
化処理を行った鋳塊A〜Iの平均結晶粒径を表1に示し
た。
EXAMPLES Next, the R—Fe—N intermetallic compound magnetic material powder of the present invention and the method for producing the same will be specifically described by way of examples. High-purity Sm metal and Fe metal were prepared. First, Fe metal was melted in a high-frequency melting furnace in an Ar atmosphere, then Sm was added and melted, and this alloy melt was cast into a water-cooled mold, as shown in Table 1. Ingots A to I having component compositions
Was produced. These ingots A to I were subjected to a homogenizing treatment at the temperature and time retention shown in Table 1 in an Ar atmosphere, and Table 1 shows the average grain size of the ingots A to I subjected to the homogenizing treatment.

【0014】[0014]

【表1】 [Table 1]

【0015】実施例1 前記均質化処理した鋳塊B〜Iを熱処理炉に入れ、ま
ず、真空引きを行った後、炉内を1気圧の水素雰囲気と
し、その圧力を保持しながら昇温し、250℃で45分
保持して前記鋳塊に水素を吸蔵させ、引き続き、250
℃で1×10-1torrの真空雰囲気になるまで真空引
きを行って脱水素することにより水素処理し、その後、
Ar雰囲気中で急冷し、この鋳塊を熱処理炉から取り出
したところ大部分は自然崩壊していた。自然崩壊しない
部分を解砕し、得られた解砕粉末を450℃、1気圧の
窒素ガス雰囲気中に4時間保持することにより窒化処理
し、室温にもどしたのち解砕により粒径を小さくし、本
発明法および比較法により表2に示される本発明Sm−
Fe−N金属間化合物磁性材料粉末(以下、本発明磁性
材料粉末という)1〜6および比較Sm−Fe−N金属
間化合物磁性材料粉末(以下、比較磁性材料粉末とい
う)1〜2を製造した。
Example 1 The homogenized ingots B to I were placed in a heat treatment furnace, and after evacuation was performed, the inside of the furnace was brought to a hydrogen atmosphere of 1 atm, and the temperature was raised while maintaining the pressure. And hold it at 250 ° C. for 45 minutes so that the ingot absorbs hydrogen.
At a temperature of 1 ° C. to 1 × 10 −1 torr, vacuum treatment is performed until a vacuum atmosphere is reached, and dehydrogenation is performed to perform hydrogen treatment.
When it was rapidly cooled in an Ar atmosphere and the ingot was taken out of the heat treatment furnace, most of it naturally collapsed. The part that does not naturally disintegrate is crushed, and the obtained crushed powder is nitrided by holding it in a nitrogen gas atmosphere at 450 ° C. and 1 atm for 4 hours, then returned to room temperature and then crushed to reduce the particle size. The present invention Sm-shown in Table 2 by the present invention method and the comparative method.
Fe—N intermetallic compound magnetic material powders (hereinafter referred to as the magnetic material powders of the present invention) 1 to 6 and comparative Sm—Fe—N intermetallic compound magnetic material powders (hereinafter referred to as the comparative magnetic material powders) 1 to 2 were produced. .

【0016】さらに比較のために前記均質化処理した鋳
塊Aを機械粉砕し、得られた粉末をプレス成形して圧粉
体を作製し、この圧粉体を同様に水素処理および解砕
し、得られた解砕粉末を同様に窒化処理し、従来法によ
り従来Sm−Fe−N金属間化合物磁性材料粉末(以
下、従来磁性材料粉末という)を製造した。
For comparison, the homogenized ingot A was mechanically pulverized, the obtained powder was press-molded to prepare a green compact, and the green compact was similarly hydrogenated and crushed. The obtained crushed powder was similarly subjected to nitriding treatment to produce a conventional Sm-Fe-N intermetallic compound magnetic material powder (hereinafter referred to as conventional magnetic material powder).

【0017】得られた本発明磁性材料粉末1〜6、比較
磁性材料粉末1〜2および従来磁性材料粉末について、
Sm2 Fe17x 単結晶粉末の含有率およびSm2 Fe
17x 単結晶粉末の平均粒径を測定し、さらに解砕によ
り粒径を小さくした粉末の磁気特性を測定し、その測定
結果を表2に示した。
Regarding the obtained magnetic material powders 1 to 6 of the present invention, comparative magnetic material powders 1 to 2 and conventional magnetic material powders,
Content of Sm 2 Fe 17 N x Single Crystal Powder and Sm 2 Fe
The average particle size of the 17 N x single crystal powder was measured, and the magnetic properties of the powder whose particle size was reduced by crushing were measured, and the measurement results are shown in Table 2.

【0018】[0018]

【表2】 [Table 2]

【0019】表2に示される結果から、Sm2+k Fe17
(ただし、0.01<k<1.0)で表される成分組成
の鋳塊を均質化処理して水素処理したのち解砕し窒化処
理する本発明法により製造された本発明磁性材料粉末1
〜6は、Sm2 Fe17鋳塊を均質化処理したのち機械粉
砕し、水素処理し、窒化処理する従来法により製造され
た従来磁性材料粉末に比べて、Sm2 Fe17x 単結晶
粉末の含有率が多く、さらにSm2 Fe17x 単結晶粉
末の平均粒径も大きく、したがって、優れた磁気異方性
を示すことが分かる。しかし、比較磁性材料粉末1〜2
に見られるように、Sm2+k Fe17のkの値がこの発明
の条件から外れた成分組成の鋳塊を使用すると、得られ
た磁性材料粉末のSm2 Fe17x 単結晶粉末の平均粒
径がこの発明の条件から外れて十分な磁気異方性を示さ
ないことが分かる。
From the results shown in Table 2, Sm 2 + k Fe 17
The magnetic material powder of the present invention produced by the method of the present invention, in which an ingot having a component composition represented by (0.01 <k <1.0) is homogenized, hydrogenated, and then crushed and nitrided. 1
Nos. 6 to 6 are Sm 2 Fe 17 N x single crystal powders as compared with conventional magnetic material powders produced by a conventional method of homogenizing Sm 2 Fe 17 ingot, mechanically crushing, hydrogenating, and nitriding. It is understood that the Sm 2 Fe 17 N x single crystal powder has a large average particle size, and therefore exhibits excellent magnetic anisotropy. However, comparative magnetic material powders 1-2
As can be seen from the above, when an ingot having a component composition in which the value of k of Sm 2 + k Fe 17 deviates from the conditions of the present invention, the obtained magnetic material powder of Sm 2 Fe 17 N x single crystal powder is It can be seen that the average particle size deviates from the conditions of the present invention and does not show sufficient magnetic anisotropy.

【0020】実施例2 表1に示される温度および時間保持の均質化処理を行っ
た鋳塊Eを、1気圧の水素雰囲気中で室温から表3に示
される温度に昇温し、この温度に表3に示される時間保
持し、その後、室温に戻す操作を表3に示される回数繰
り返す水素雰囲気中温度サイクル処理を施し、ついで1
気圧の水素雰囲気中に保持しながら昇温し、250℃で
60分保持して前記鋳塊に水素を吸蔵させ、引き続き、
250〜350℃の範囲内の所定の温度で1×10-1
orrの真空雰囲気になるまで真空引きを行って脱水素
することにより水素処理し、その後、Ar雰囲気中で急
冷し、この鋳塊を熱処理炉から取り出したところ大部分
は自然崩壊していた。自然崩壊しない部分を解砕し、得
られた解砕粉末を475℃、1気圧の窒素ガス雰囲気中
に10時間保持することにより窒化処理し、室温にもど
したのち解砕により粒径を小さくし、本発明法により表
3に示される本発明磁性材料粉末7〜15を製造した。
Example 2 The ingot E, which has been subjected to the homogenization treatment of the temperature and the time shown in Table 1, is heated from room temperature to the temperature shown in Table 3 in a hydrogen atmosphere at 1 atm, and is brought to this temperature. A temperature cycle treatment in a hydrogen atmosphere in which the operation of holding for the time shown in Table 3 and then returning to room temperature is repeated the number of times shown in Table 3 is performed, and then 1
The temperature was raised while maintaining it in a hydrogen atmosphere at atmospheric pressure, and the temperature was maintained at 250 ° C. for 60 minutes to allow the ingot to occlude hydrogen.
1 × 10 -1 t at a predetermined temperature within the range of 250 to 350 ° C.
When the ingot was taken out from the heat treatment furnace, most of it was spontaneously collapsed when the ingot was taken out of the heat treatment furnace by vacuuming until it became an orr vacuum atmosphere and dehydrogenating for hydrogen treatment. The part that does not naturally disintegrate is crushed, and the crushed powder obtained is subjected to a nitriding treatment by holding it in a nitrogen gas atmosphere at 475 ° C. and 1 atm for 10 hours. After returning to room temperature, the particle size is reduced by crushing. The magnetic material powders 7 to 15 of the present invention shown in Table 3 were produced by the method of the present invention.

【0021】得られた本発明磁性材料粉末7〜15につ
いて、Sm2 Fe17x 単結晶粉末の含有率およびSm
2 Fe17x 単結晶粉末の平均粒径を測定し、さらに解
砕により粒径を小さくした粉末の磁気特性を測定し、そ
の測定結果を表3に示した。
With respect to the obtained magnetic material powders 7 to 15 of the present invention, the content of Sm 2 Fe 17 N x single crystal powder and Sm 2
The average particle size of 2 Fe 17 N x single crystal powder was measured, and the magnetic properties of the powder whose particle size was reduced by crushing were measured. The measurement results are shown in Table 3.

【0022】[0022]

【表3】 [Table 3]

【0023】実施例3 表1に示される温度および時間保持の均質化処理を行っ
た鋳塊Eを、水素:窒素=1:1の混合組成の混合ガス
雰囲気中で室温から表4に示される加熱温度に昇温し、
この温度に表4に示される時間保持し、その後、室温に
戻す操作を表4に示される回数繰り返す水素雰囲気中温
度サイクル処理を施し、ついで1気圧の水素雰囲気中に
保持しながら昇温し、250℃で60分保持して前記鋳
塊に水素を吸蔵させ、引き続き、250〜350℃の範
囲内の所定の温度で1×10-1torrの真空雰囲気に
なるまで真空引きを行って脱水素することにより水素処
理し、その後、Ar雰囲気中で急冷し、この鋳塊を熱処
理炉から取り出したところ大部分は自然崩壊していた。
自然崩壊しない部分を解砕し、得られた解砕粉末を47
5℃、1気圧の窒素ガス雰囲気中に10時間保持するこ
とにより窒化処理し、室温にもどしたのち解砕により粒
径を小さくし、本発明法により表4に示される本発明磁
性材料粉末16〜24を製造した。
Example 3 The ingot E, which has been subjected to the homogenizing treatment of temperature and time shown in Table 1, is shown in Table 4 from room temperature in a mixed gas atmosphere having a mixed composition of hydrogen: nitrogen = 1: 1. Raise to heating temperature,
The temperature is maintained at this temperature for the time shown in Table 4, and thereafter, the operation of returning to room temperature is repeated in a hydrogen atmosphere temperature cycle treatment repeated the number of times shown in Table 4, and then the temperature is raised while being held in a hydrogen atmosphere of 1 atm. Dehydration is performed by holding at 250 ° C. for 60 minutes to occlude hydrogen in the ingot, and then vacuuming at a predetermined temperature within a range of 250 to 350 ° C. until a vacuum atmosphere of 1 × 10 −1 torr is obtained. The resulting ingot was taken out of the heat treatment furnace, and most of it was spontaneously collapsed.
Crush the part that does not naturally disintegrate and
Nitrogen treatment was carried out by holding in a nitrogen gas atmosphere at 5 ° C. and 1 atm for 10 hours, and after returning to room temperature, the particle size was reduced by crushing, and the magnetic material powder 16 of the present invention shown in Table 4 shown in Table 4 was obtained. ~ 24 were produced.

【0024】得られた本発明磁性材料粉末16〜24に
ついて、Sm2 Fe17x 単結晶粉末の含有率およびS
2 Fe17x 単結晶粉末の平均粒径を測定し、さらに
解砕により粒径を小さくした粉末の磁気特性を測定し、
その測定結果を表4に示した。
Regarding the obtained magnetic material powders 16 to 24 of the present invention, the content of Sm 2 Fe 17 N x single crystal powder and S
The average particle size of the m 2 Fe 17 N x single crystal powder was measured, and the magnetic properties of the powder whose particle size was reduced by crushing were measured.
The measurement results are shown in Table 4.

【0025】[0025]

【表4】 [Table 4]

【0026】表3〜表4に示される結果から、水素雰囲
気中温度サイクル処理を施すことにより、得られた本発
明磁性材料粉末7〜24は、同じ鋳塊Eを用いた水素雰
囲気中温度サイクル処理を施さない本発明磁性材料粉末
3に比べて、一層すぐれた磁気特性を示すことが分か
る。
From the results shown in Tables 3 to 4, the magnetic material powders 7 to 24 of the present invention obtained by performing the temperature cycle treatment in the hydrogen atmosphere were subjected to the temperature cycle in the hydrogen atmosphere using the same ingot E. It is understood that the magnetic material powder 3 of the present invention shows more excellent magnetic characteristics than the magnetic material powder 3 of the present invention which is not treated.

【0027】[0027]

【発明の効果】この発明によると、従来よりも安定して
優れた磁気異方性に優れたR−Fe−N金属間化合物磁
性材料粉末を提供することができ、産業上すぐれた効果
を奏するものである。
According to the present invention, it is possible to provide an R-Fe-N intermetallic compound magnetic material powder which is more stable and superior in magnetic anisotropy than conventional ones, and has an excellent industrial effect. It is a thing.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 R(ただし、RはLaを除く希土類元素
を示す)とFeを主成分とする鋳塊を均質化処理し、 前記均質化処理した鋳塊を水素雰囲気中で昇温保持して
鋳塊に水素を吸蔵させる水素吸蔵処理を施し、さらに引
き続いて、同じ温度の真空雰囲気中に保持することによ
り前記水素吸蔵鋳塊から強制的に水素を放出させる脱水
素処理を施し(以下、水素吸蔵処理を施したのち脱水素
処理処理する操作を水素処理と総称する)、ついで、冷
却し、解砕することにより得られた解砕粉末を窒素雰囲
気中に保持するR−Fe−N金属間化合物磁性材料粉末
の製造法において、 前記RとFeを主成分とする鋳塊は、R2+k Fe17(た
だし、0.01<k<1.0)で表される成分組成の鋳
塊であることを特徴とする希土類−Fe−N金属間化合
物磁性材料粉末の製造法。
1. An ingot containing R (where R represents a rare earth element other than La) and Fe as main components is homogenized, and the ingot subjected to the homogenization is heated and held in a hydrogen atmosphere. The hydrogen ingot is subjected to a hydrogen storage treatment for storing hydrogen in the ingot, and subsequently, a dehydrogenation treatment for forcibly releasing hydrogen from the hydrogen storage ingot by holding in a vacuum atmosphere at the same temperature is performed (hereinafter, The operation of performing dehydrogenation treatment after performing hydrogen storage treatment is generally referred to as hydrogen treatment), and then cooling and crushing to obtain a crushed powder obtained by holding the crushed powder in a nitrogen atmosphere R-Fe-N metal In the method for producing an intermetallic compound magnetic material powder, the ingot containing R and Fe as main components is a cast alloy having a composition represented by R 2 + k Fe 17 (where 0.01 <k <1.0). Rare earth-Fe-N intermetallic compound characterized by being a lump Preparation of magnetic material powder.
【請求項2】 前記均質化処理したRとFeを主成分と
する鋳塊を、水素雰囲気中で室温から温度:150〜5
00℃に昇温保持し、その後、室温に戻す操作を1回以
上繰り返したのち、前記水素処理を施すことを特徴とす
る請求項1記載の希土類−Fe−N金属間化合物磁性材
料粉末の製造法。
2. The homogenized ingot containing R and Fe as main components is heated from room temperature to a temperature of 150 to 5 in a hydrogen atmosphere.
The production of a rare earth-Fe-N intermetallic compound magnetic material powder according to claim 1, wherein an operation of raising the temperature to 00 ° C and then returning to room temperature is repeated once or more and then performing the hydrogen treatment. Law.
【請求項3】 前記均質化処理したRとFeを主成分と
する鋳塊を、水素と窒素の混合ガス雰囲気中で室温から
温度:150〜500℃に昇温保持し、その後、室温に
戻す操作を1回以上繰り返したのち、前記水素処理を施
すことを特徴とする請求項1記載の希土類−Fe−N金
属間化合物磁性材料粉末の製造法。
3. The homogenized ingot containing R and Fe as main components is kept at a temperature of 150 to 500 ° C. from room temperature in a mixed gas atmosphere of hydrogen and nitrogen, and then returned to room temperature. The method for producing a rare earth-Fe-N intermetallic compound magnetic material powder according to claim 1, wherein the hydrogen treatment is performed after repeating the operation once or more.
【請求項4】 前記Rは、Smであることを特徴とする
請求項1、2または3記載の希土類−Fe−N金属間化
合物磁性材料粉末の製造法。
4. The method for producing a rare earth-Fe—N intermetallic compound magnetic material powder according to claim 1, wherein R is Sm.
【請求項5】 平均粒径:10〜200μmを有し、R
2 Fe17x 金属間化合物の単結晶粉末を主体とするこ
とを特徴とする磁気異方性に優れた希土類−Fe−N金
属間化合物磁性材料粉末。
5. An average particle size: 10 to 200 μm, R
2 Fe 17 N x intermetallic superior rare earth -Fe-N intermetallic compound magnetic material powder in the magnetic anisotropy, characterized in that mainly a single-crystal powder of the compound.
JP5027365A 1993-01-22 1993-01-22 Manufacture of rare earth-fe-n intermetallic compound magnetic material particle and magnetic material powder of rare earth-fe-n intermetallic compound produced by same Withdrawn JPH06224015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5027365A JPH06224015A (en) 1993-01-22 1993-01-22 Manufacture of rare earth-fe-n intermetallic compound magnetic material particle and magnetic material powder of rare earth-fe-n intermetallic compound produced by same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5027365A JPH06224015A (en) 1993-01-22 1993-01-22 Manufacture of rare earth-fe-n intermetallic compound magnetic material particle and magnetic material powder of rare earth-fe-n intermetallic compound produced by same

Publications (1)

Publication Number Publication Date
JPH06224015A true JPH06224015A (en) 1994-08-12

Family

ID=12219028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5027365A Withdrawn JPH06224015A (en) 1993-01-22 1993-01-22 Manufacture of rare earth-fe-n intermetallic compound magnetic material particle and magnetic material powder of rare earth-fe-n intermetallic compound produced by same

Country Status (1)

Country Link
JP (1) JPH06224015A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161189A1 (en) * 2011-05-24 2012-11-29 住友電気工業株式会社 Rare earth-iron-nitrogen system alloy material, method for producing rare earth-iron-nitrogen system alloy material, rare earth-iron system alloy material, and method for producing rare earth-iron system alloy material
CN109014220A (en) * 2018-08-21 2018-12-18 刘洋 A kind of the circulation hydrogenation and dehydrogenization Preparation equipment and method of hypoxemia metal powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161189A1 (en) * 2011-05-24 2012-11-29 住友電気工業株式会社 Rare earth-iron-nitrogen system alloy material, method for producing rare earth-iron-nitrogen system alloy material, rare earth-iron system alloy material, and method for producing rare earth-iron system alloy material
CN109014220A (en) * 2018-08-21 2018-12-18 刘洋 A kind of the circulation hydrogenation and dehydrogenization Preparation equipment and method of hypoxemia metal powder

Similar Documents

Publication Publication Date Title
JPH0216368B2 (en)
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JPH03129702A (en) Rare-earth-fe-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JP3368295B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPH024901A (en) Manufacture of rare earth element-fe-b series alloy magnet powder
JP3303044B2 (en) Permanent magnet and its manufacturing method
JP3368294B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPH06224015A (en) Manufacture of rare earth-fe-n intermetallic compound magnetic material particle and magnetic material powder of rare earth-fe-n intermetallic compound produced by same
JPH0837122A (en) Production of r-t-m-n anisotropic bonded magnet
JP3097387B2 (en) Manufacturing method of rare earth magnet material powder
JP2564492B2 (en) Manufacturing method of rare earth-Fe-B cast permanent magnet
JPH10256014A (en) Manufacture of rare-earth magnet powder of excellent magnetic anisotropy
JPH06151137A (en) Powder of rare earth magnet material with excellent anisotropy
JPH06310316A (en) Rare earth-fe-c-n intermetallic compound magnetic material powder and its manufacture
JP2623731B2 (en) Manufacturing method of rare earth-Fe-B based anisotropic permanent magnet
JPH08288113A (en) Manufacture of rare-earth magnetic material powder and rare-earth magnet
JP3562138B2 (en) Raw material alloy for manufacturing rare earth magnet powder
JPH0579723B2 (en)
JP3481653B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP2827643B2 (en) Method for producing rare earth-Fe-B based magnet alloy powder
JPH0418441B2 (en)
JPH11106803A (en) Production of rare earth magnet powder having excellent magnetic property
JPS6119084B2 (en)
JPH07245206A (en) Powder for rare-earth permanent magnet and its manufacturing method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000404