JPH11106803A - Production of rare earth magnet powder having excellent magnetic property - Google Patents

Production of rare earth magnet powder having excellent magnetic property

Info

Publication number
JPH11106803A
JPH11106803A JP9269927A JP26992797A JPH11106803A JP H11106803 A JPH11106803 A JP H11106803A JP 9269927 A JP9269927 A JP 9269927A JP 26992797 A JP26992797 A JP 26992797A JP H11106803 A JPH11106803 A JP H11106803A
Authority
JP
Japan
Prior art keywords
hydrogen
atmosphere
temperature
range
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9269927A
Other languages
Japanese (ja)
Inventor
Nobuto Fukatsu
宣人 深津
Ryoji Nakayama
亮治 中山
Koichiro Morimoto
耕一郎 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP9269927A priority Critical patent/JPH11106803A/en
Publication of JPH11106803A publication Critical patent/JPH11106803A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To particularly increase residual magnetic flux density in powder and to reduce the temp. coefficient of coercive force thererin by successively subjecting an alloy raw material to hydrogen occluding preliminary treatment, hydrogen occluding treatment and dehydrogenating treatment, thereafter executing cooling and pulverizing it. SOLUTION: The temp. of an alloy raw material contg. rare earth elements including Y, Fe, B or the like is subjected to hydrogen occluding preliminary treatment in which its temp. is raised to a prescribed one in the range of >1000 to 1200 deg.C in an inert gas or in a vacuum atmosphere, it is held to this temp., thereafter, hydrogen is introduced therein to change the atmosphere to a hydrogen one, successively, it is held to the same temp., and, after that the temp. is dropped to a prescribed temp. in the range of 800 to 1000 deg.C. Then, the alloy raw material is subjected to hydrogen occluding treatment in which hydrogen is occluded therein to promote the phase transformation. Furthermore, it is subjected to dehydrogenerating treatment in which the atmosphere is changed to a vacuum one or an inert gas one of >=1 Torr hydrogen partial pressure, and it is held to a prescribed temp. in the range of 500 to 900 deg.C to forcedly release hydrogen from the alloy raw material, by which the phase transformation is promoted, and, thereafter, cooling and pulverizing are executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、優れた磁気特性
を有する希土類磁石粉末の製造方法に関するものであ
り、特に残留磁束密度(Br)が高く、保磁力の温度係
数の小さい希土類磁石粉末の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth magnet powder having excellent magnetic properties, and more particularly to a method for producing a rare earth magnet powder having a high residual magnetic flux density (Br) and a small temperature coefficient of coercive force. It is about the method.

【0002】[0002]

【従来の技術】従来、優れた磁気特性を有する希土類磁
石粉末の製造方法として、(イ)Yを含む希土類元素
(以下、Rで示す)と、FeあるいはFeの一部をCo
で置換した成分(以下、Tで示す)と、Bを主成分と
し、さらに、Si、Ga、Zr、Nb、Mo、Hf、T
a、W、Al、Ti、Vのうち1種または2種以上(以
下、Mで示す):0.001〜5.0原子%を含有する
合金原料(以下、この合金原料をR−T−B−M系合金
原料という)を、Arガス雰囲気中、温度:600〜1
200℃に保持して均質化処理し、または均質化処理せ
ずに、R−T−B−M系合金原料をH2 ガスまたはH2
ガスと不活性ガスの混合雰囲気中で、室温から温度:5
00〜1000℃に昇温し保持して水素吸蔵処理し、引
き続いて、真空雰囲気中、温度:500〜1000℃に
保持して脱水素処理し、ついで冷却し、粉砕して希土類
磁石粉末を製造する方法(特開平2−4901号公
報)、(ロ)R−T−B−M系合金原料を、Arガス雰
囲気中、温度:800〜1200℃に保持して均質化処
理し、または均質化処理せずに、R−T−B−M系合金
原料を1.2〜1.6kgf/cm2 の加圧したH2
ス雰囲気中で、室温から温度:750〜950℃に昇温
し保持して水素吸蔵処理し、引き続いて、真空雰囲気
中、温度:500〜800℃に保持して脱水素処理し、
ついで冷却し、粉砕して保磁力の温度係数の小さい希土
類磁石粉末を製造する方法(国際公開公報WO94/1
5345)、(ハ)R−T−B−M系合金原料を、不活
性ガス雰囲気中、温度:750℃以上の温度域に昇温し
た後、10〜1000PaのH2 ガスを導入し、このH
2 ガス雰囲気中、750〜950℃に30分から8時間
保持する水素吸蔵処理し、引き続いて、ArまたはHe
ガスによる絶対圧:50〜100Paの減圧気流中にて
温度:700〜900℃に5分〜8時間保持して脱水素
処理し、ついで冷却し、粉砕して保磁力の温度係数の小
さい希土類磁石粉末を製造する方法(特開平7−767
08号公報)などが知られている。これらの方法におい
て、脱水素処理後の冷却は、Arガスを流しながら行う
ことも知られている。
2. Description of the Related Art Conventionally, as a method for producing a rare earth magnet powder having excellent magnetic properties, (a) a rare earth element containing Y (hereinafter referred to as R) and Fe or a part of Fe
(Hereinafter referred to as T), B as a main component, and Si, Ga, Zr, Nb, Mo, Hf, T
One or more of a, W, Al, Ti, and V (hereinafter, referred to as M): An alloy material containing 0.001 to 5.0 atomic% (hereinafter, this alloy material is referred to as RT- BM-based alloy raw material) in an Ar gas atmosphere at a temperature of 600 to 1
The RTBM-based alloy raw material is treated with H 2 gas or H 2 gas by homogenizing at 200 ° C. or without homogenizing.
Room temperature to 5 in a mixed atmosphere of gas and inert gas
The temperature is raised to 100 to 1000 ° C. and held, and a hydrogen absorbing process is performed. Subsequently, in a vacuum atmosphere, the temperature is maintained at 500 to 1000 ° C. to perform dehydrogenation, then cooled and pulverized to produce a rare earth magnet powder. (Japanese Unexamined Patent Publication No. 2-4901), (ii) homogenizing or processing the RTBM-based alloy raw material while maintaining the temperature at 800 to 1200 ° C. in an Ar gas atmosphere. Without treatment, the RTBM-based alloy raw material was heated from room temperature to a temperature of 750 to 950 ° C. and kept in a pressurized H 2 gas atmosphere of 1.2 to 1.6 kgf / cm 2. And then dehydrogenation treatment in a vacuum atmosphere while maintaining the temperature at 500 to 800 ° C.
Then, it is cooled and pulverized to produce a rare earth magnet powder having a small temperature coefficient of coercive force (WO 94/1).
5345), (c) After heating the RTBM-based alloy raw material to a temperature range of 750 ° C. or higher in an inert gas atmosphere, H 2 gas of 10 to 1000 Pa was introduced. H
(2) A hydrogen absorption treatment is performed in a gas atmosphere at 750 to 950 ° C. for 30 minutes to 8 hours, followed by Ar or He
Absolute pressure by gas: Rare earth magnet having a small temperature coefficient of coercive force after dehydrogenating by holding at a temperature of 700 to 900 ° C. for 5 minutes to 8 hours in a reduced pressure gas stream of 50 to 100 Pa, then cooling and pulverizing. Method for producing powder (JP-A-7-767)
No. 08 publication) and the like. In these methods, it is also known that cooling after the dehydrogenation treatment is performed while flowing Ar gas.

【0003】図3に保磁力温度係数の小さい希土類磁石
粉末を製造することのできる前記(ロ)の方法の温度、
時間および雰囲気の関係を示すパターン図を示す。図3
のパターン図に示されるように、前記(ロ)の方法の水
素吸蔵処理は水素圧:1.2〜1.6kgf/cm2
加圧したH2 ガス雰囲気中で温度:750〜950℃に
昇温し保持して行われている。
FIG. 3 shows the temperature of the method (b) which can produce a rare earth magnet powder having a small coercive force temperature coefficient.
FIG. 4 shows a pattern diagram illustrating a relationship between time and atmosphere. FIG.
As shown in the pattern diagram of the above, the hydrogen occlusion treatment of the above method (b) is carried out in a pressurized H 2 gas atmosphere of hydrogen pressure: 1.2 to 1.6 kgf / cm 2 at a temperature of 750 to 950 ° C. It is carried out while heating and holding.

【0004】[0004]

【発明が解決しようとする課題】しかし、いまだ十分な
残留磁束密度(Br)を有する希土類磁石粉末の製造方
法は得られておらず、特にR−T−B−M系合金の希土
類磁石粉末は温度により保磁力が著しく低下するところ
から、温度により保磁力が低下することの少ない希土類
磁石粉末の製造方法が求められている。前記(ロ)記載
の希土類磁石粉末の製造方法は、R−T−B−M系合金
原料を1.2〜1.6kgf/cm2 の加圧したH2
ス雰囲気中で水素吸蔵処理することにより保磁力の温度
係数の小さい希土類磁石粉末を得る方法であるが、この
方法であっても保磁力の温度係数が十分に小さい希土類
磁石粉末を得ることはできなかった。
However, a method for producing a rare earth magnet powder having a sufficient residual magnetic flux density (Br) has not yet been obtained. In particular, a rare earth magnet powder of an RTBM alloy has been used. Since the coercive force decreases significantly with temperature, there is a need for a method of producing rare earth magnet powder in which the coercive force does not decrease with temperature. In the method for producing a rare earth magnet powder according to the above (b), the RTBM-based alloy raw material is subjected to a hydrogen occlusion treatment in a pressurized H 2 gas atmosphere of 1.2 to 1.6 kgf / cm 2. Is a method of obtaining a rare earth magnet powder having a small temperature coefficient of coercive force, but even with this method, a rare earth magnet powder having a sufficiently small temperature coefficient of coercive force could not be obtained.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者らは、
従来よりも一層残留磁束密度(Br)を向上させ、さら
に保磁力の温度係数が一層小さくなる希土類磁石粉末の
製造方法を開発すべく研究を行った結果、(a)R−T
−B−M系合金原料を不活性ガス雰囲気中または1To
rr以下の真空雰囲気中で室温から1000℃を越え1
200℃以下の範囲内の所定の温度に昇温し、同温度に
保持した後、同温度にて水素を導入して水素雰囲気に変
換し、この水素雰囲気中で引き続いて同温度範囲内に保
持し、または保持することなく800〜1000℃の範
囲内の所定の温度まで降温する水素吸蔵予備処理を施
し、次いで、この水素雰囲気中で800〜1000℃の
範囲内の温度に保持することにより、前記R−T−B−
M系合金原料に水素を吸蔵させて相変態を促す水素吸蔵
処理を施し、さらに、雰囲気を1Torr以下の真空雰
囲気または水素分圧:1Torr以下の不活性ガス雰囲
気に変換し、この雰囲気で500〜900℃の範囲内の
所定の温度に保持することによりR−T−B−M系合金
原料から強制的に水素を放出させて相変態を促す脱水素
処理を施したのち、冷却し、ついで粉砕することにより
得られた希土類磁石粉末は、残留磁束密度(Br)が一
層向上し、さらに保磁力の温度係数が一層小さくなる、
(b)前記1000℃を越え1200℃以下の範囲内の
所定の温度にて水素を導入して水素雰囲気に変換し、こ
の水素雰囲気中で引き続いて同温度範囲内に保持し、ま
たは保持することなく800〜1000℃の範囲内の所
定の温度まで降温する水素吸蔵予備処理並びにこの水素
雰囲気中で800〜1000℃の範囲内の温度に保持す
ることにより前記R−T−B−M系合金原料に水素を吸
蔵させて相変態を促す水素吸蔵処理における水素雰囲気
は、0.5〜10気圧の水素圧力であることが好まし
い、(c)前記R−T−B−M系合金原料はあらかじめ
Arガス雰囲気中、温度:600〜1200℃に保持し
て均質化処理する方が好ましいが、均質化処理しなくて
も良い、という知見を得たのである。
Means for Solving the Problems Accordingly, the present inventors have:
As a result of conducting research to develop a method for producing a rare earth magnet powder in which the residual magnetic flux density (Br) is further improved and the temperature coefficient of the coercive force is further reduced as compared with the prior art, (a) R-T
-B-M based alloy raw material in inert gas atmosphere or 1To
room temperature to over 1000 ° C in a vacuum atmosphere of rr or less
After the temperature is raised to a predetermined temperature in the range of 200 ° C. or less and maintained at the same temperature, hydrogen is introduced at the same temperature to convert it into a hydrogen atmosphere, and subsequently maintained within the same temperature range in the hydrogen atmosphere. By performing a hydrogen storage pretreatment for lowering the temperature to a predetermined temperature in the range of 800 to 1000 ° C. without holding or maintaining, and then maintaining the temperature in the range of 800 to 1000 ° C. in the hydrogen atmosphere, The RTB-
The M-based alloy raw material is subjected to a hydrogen storage treatment for absorbing hydrogen to promote phase transformation, and further converted into a vacuum atmosphere of 1 Torr or less or an inert gas atmosphere of hydrogen partial pressure: 1 Torr or less. A dehydrogenation treatment for promoting phase transformation by forcibly releasing hydrogen from the RTBM-based alloy raw material by maintaining a predetermined temperature in a range of 900 ° C. is performed, then cooling, and then pulverizing. The resulting rare earth magnet powder has a further improved residual magnetic flux density (Br) and a further reduced temperature coefficient of coercive force.
(B) Hydrogen is introduced at a predetermined temperature in the range of higher than 1000 ° C. and lower than 1200 ° C. to convert it into a hydrogen atmosphere, and subsequently kept or kept in the same temperature range in the hydrogen atmosphere. Hydrogen storage pretreatment for lowering the temperature to a predetermined temperature in the range of 800 to 1000 ° C. and maintaining the temperature in the range of 800 to 1000 ° C. in the hydrogen atmosphere to prepare the RTBM alloy raw material. The hydrogen atmosphere in the hydrogen storage treatment for promoting the phase transformation by absorbing hydrogen is preferably a hydrogen pressure of 0.5 to 10 atm. (C) The RTBM-based alloy raw material is previously Ar It is preferable to perform the homogenization treatment while maintaining the temperature at 600 to 1200 ° C. in a gas atmosphere, but it has been found that the homogenization treatment is not required.

【0006】この発明は、かかる知見に基づいて成され
たものであって、(1)R−T−B−M系合金原料を、
不活性ガス雰囲気中または1Torr以下の真空雰囲気
中で室温から1000℃を越え1200℃以下の範囲内
の所定の温度に昇温し、同温度に保持した後、同温度に
て水素を導入して水素雰囲気に変換し、この水素雰囲気
中で引き続いて同温度範囲内に保持した後、800〜1
000℃の範囲内の所定の温度まで降温する水素吸蔵予
備処理を施し、次いで、この水素雰囲気中で800〜1
000℃の範囲内の所定の温度に保持することにより、
前記R−T−B−M系合金原料に水素を吸蔵させて相変
態を促す水素吸蔵処理を施し、さらに、雰囲気を1To
rr以下の真空雰囲気または水素分圧:1Torr以下
の不活性ガス雰囲気に変換し、この雰囲気で500〜9
00℃の範囲内の所定の温度に保持することによりR−
T−B−M系合金原料から強制的に水素を放出させて相
変態を促す脱水素処理を施したのち、冷却し、ついで粉
砕する、優れた磁気特性を有する希土類磁石粉末の製造
方法、(2)R−T−B−M系合金原料を、不活性ガス
雰囲気中または1Torr以下の真空雰囲気中で室温か
ら1000℃を越え1200℃以下の範囲内の所定の温
度に昇温し、同温度に保持した後、同温度にて水素を導
入して水素雰囲気に変換し、ただちに水素雰囲気中で8
00〜1000℃の範囲内の所定の温度まで降温する水
素吸蔵予備処理を施し、次いで、この水素雰囲気中で8
00〜1000℃の範囲内の所定の温度に保持すること
により、前記R−T−B−M系合金原料に水素を吸蔵さ
せて相変態を促す水素吸蔵処理を施し、さらに、雰囲気
を1Torr以下の真空雰囲気または水素分圧:1To
rr以下の不活性ガス雰囲気に変換し、この雰囲気中で
500〜900℃の範囲内の所定の温度に保持すること
によりR−T−B−M系合金原料から強制的に水素を放
出させて相変態を促す脱水素処理を施したのち、冷却
し、ついで粉砕する、優れた磁気特性を有する希土類磁
石粉末の製造方法、(3)R−T−B−M系合金原料
を、不活性ガス雰囲気中または1Torr以下の真空雰
囲気中で室温から1000℃を越え1200℃以下の範
囲内の所定の温度に昇温し保持した後、同温度にて水素
を導入して0.5〜10気圧(一層好ましくは、1〜5
気圧)の水素雰囲気に変換し、この水素雰囲気中で引き
続いて同温度範囲内に保持した後、800〜1000℃
の範囲内の所定の温度まで降温する水素吸蔵予備処理を
施し、次いで、この0.5〜10気圧の水素雰囲気中で
800〜1000℃の範囲内の所定の温度に保持するこ
とにより、前記R−T−B−M系合金原料に水素を吸蔵
させて相変態を促す水素吸蔵処理を施し、さらに、雰囲
気を1Torr以下の真空雰囲気または水素分圧:1T
orr以下の不活性ガス雰囲気に変換し、この雰囲気で
500〜900℃の範囲内の所定の温度に保持すること
によりR−T−B−M系合金原料から強制的に水素を放
出させて相変態を促す脱水素処理を施したのち、冷却
し、ついで粉砕する、優れた磁気特性を有する希土類磁
石粉末の製造方法、(4)R−T−B−M系合金原料
を、不活性ガス雰囲気中または1Torr以下の真空雰
囲気中で室温から1000℃を越え1200℃以下の範
囲内の所定の温度に昇温し保持した後、同温度にて水素
を導入して0.5〜10気圧(一層好ましくは、1〜5
気圧)の水素雰囲気に変換し、ただちに水素雰囲気中で
800〜1000℃の範囲内の所定の温度まで降温する
水素吸蔵予備処理を施し、次いで、この0.5〜10気
圧の水素雰囲気中で800〜1000℃の範囲内の所定
の温度に保持することにより、前記R−T−B−M系合
金原料に水素を吸蔵させて相変態を促す水素吸蔵処理を
施し、さらに、雰囲気を1Torr以下の真空雰囲気ま
たは水素分圧:1Torr以下の不活性ガス雰囲気に変
換し、この雰囲気で500〜900℃の範囲内の所定の
温度に保持することによりR−T−B−M系合金原料か
ら強制的に水素を放出させて相変態を促す脱水素処理を
施したのち、冷却し、ついで粉砕する、優れた磁気特性
を有する希土類磁石粉末の製造方法、に特徴を有するも
のである。
[0006] The present invention has been made based on such knowledge, and (1) an RTBM-based alloy raw material
In an inert gas atmosphere or a vacuum atmosphere of 1 Torr or less, the temperature is raised from room temperature to a predetermined temperature in a range of more than 1000 ° C. and 1200 ° C. or less, and after maintaining the same temperature, hydrogen is introduced at the same temperature. After converting to a hydrogen atmosphere and subsequently maintaining the same temperature range in the hydrogen atmosphere, 800 to 1
A hydrogen storage pretreatment for lowering the temperature to a predetermined temperature in the range of 000 ° C.
By maintaining at a predetermined temperature in the range of 000 ° C.,
The R-TBM-based alloy raw material is subjected to a hydrogen-absorbing treatment for absorbing hydrogen to promote phase transformation, and the atmosphere is further reduced to 1 Ton.
rr or less, or hydrogen partial pressure: converted to an inert gas atmosphere of 1 Torr or less.
By maintaining at a predetermined temperature within the range of 00 ° C., R-
A method for producing a rare earth magnet powder having excellent magnetic properties, which is subjected to a dehydrogenation treatment for forcibly releasing hydrogen from a TBM-based alloy raw material to promote phase transformation, followed by cooling and then grinding; 2) The RTBM-based alloy raw material is heated from room temperature to a predetermined temperature in the range of more than 1000 ° C. and 1200 ° C. or less in an inert gas atmosphere or a vacuum atmosphere of 1 Torr or less. After that, hydrogen was introduced at the same temperature to convert it into a hydrogen atmosphere, and immediately
Preliminary hydrogen storage treatment for lowering the temperature to a predetermined temperature in the range of 00 to 1000 ° C. is performed.
By maintaining the temperature at a predetermined temperature in the range of 00 to 1000 ° C., the R-T-B-M-based alloy raw material is subjected to a hydrogen storage treatment for absorbing hydrogen to promote phase transformation, and further, the atmosphere is reduced to 1 Torr or less. Vacuum atmosphere or hydrogen partial pressure: 1To
The inert gas atmosphere is converted to an inert gas atmosphere of rr or less, and hydrogen is forcibly released from the RTBM alloy material by maintaining the atmosphere at a predetermined temperature in the range of 500 to 900 ° C. A method for producing a rare earth magnet powder having excellent magnetic properties, which is subjected to a dehydrogenation treatment for promoting phase transformation, then cooled and then pulverized; After raising the temperature from room temperature to a predetermined temperature in the range of more than 1000 ° C. and 1200 ° C. or less in an atmosphere or a vacuum atmosphere of 1 Torr or less, hydrogen is introduced at the same temperature, and 0.5 to 10 atm ( More preferably, 1 to 5
(Atmospheric pressure) and continuously maintained in the same temperature range in this hydrogen atmosphere,
By performing a hydrogen storage pretreatment for lowering the temperature to a predetermined temperature within the range of 0.5 to 10 atmospheres, and then maintaining the temperature at a predetermined temperature within the range of 800 to 1000 ° C. in the hydrogen atmosphere of 0.5 to 10 atm. A hydrogen storage treatment is performed to promote phase transformation by storing hydrogen in the TBM-based alloy raw material, and the atmosphere is further reduced to a vacuum atmosphere of 1 Torr or less or a hydrogen partial pressure of 1T.
orr or less, and by maintaining the atmosphere at a predetermined temperature in the range of 500 to 900 ° C., the hydrogen is forcibly released from the RTBM-based alloy raw material to reduce the phase. A method for producing a rare earth magnet powder having excellent magnetic properties, which is subjected to a dehydrogenation treatment for promoting transformation, followed by cooling and then pulverization. (4) The RTBM-based alloy raw material is placed in an inert gas atmosphere. After the temperature is raised from room temperature to a predetermined temperature in a range from more than 1000 ° C. to 1,200 ° C. or less in a vacuum atmosphere of medium or 1 Torr or less, hydrogen is introduced at the same temperature, and 0.5 to 10 atm. Preferably, 1 to 5
Atmospheric pressure), immediately perform a hydrogen storage pretreatment in which the temperature is lowered to a predetermined temperature in the range of 800 to 1000 ° C. in the hydrogen atmosphere, and then perform the hydrogen absorbing atmosphere in the 0.5 to 10 atm hydrogen atmosphere. By maintaining the temperature at a predetermined temperature within the range of ~ 1000 ° C, the R-T-B-M-based alloy raw material is subjected to a hydrogen storage treatment for absorbing hydrogen to promote phase transformation, and further, the atmosphere is set to 1 Torr or less. A vacuum atmosphere or a hydrogen partial pressure is converted into an inert gas atmosphere of 1 Torr or less, and is maintained at a predetermined temperature in the range of 500 to 900 ° C. in this atmosphere to forcibly remove the RTBM alloy material. After being subjected to a dehydrogenation treatment for releasing hydrogen to promote phase transformation, followed by cooling and then pulverization, and a method for producing a rare earth magnet powder having excellent magnetic properties.

【0007】この発明の希土類磁石粉末の製造方法を実
施するに当たって、R−T−B−M系合金原料を真空ま
たはArガス雰囲気中、温度:600〜1200℃に保
持することにより均質化処理することが好ましい。従っ
て、この発明は、(5)真空またはArガス雰囲気中、
温度:600〜1200℃に保持することにより均質化
処理したR−T−B−M系合金原料を、不活性ガス雰囲
気中または1Torr以下の真空雰囲気中で室温から1
000℃を越え1200℃以下の範囲内の所定の温度に
昇温し、同温度に保持した後、同温度にて水素を導入し
て水素雰囲気に変換し、この水素雰囲気中で引き続いて
同温度範囲内に保持した後、800〜1000℃の範囲
内の所定の温度まで降温する水素吸蔵予備処理を施し、
次いで、この水素雰囲気中で800〜1000℃の範囲
内の所定の温度に保持することにより、前記R−T−B
−M系合金原料に水素を吸蔵させて相変態を促す水素吸
蔵処理を施し、さらに、雰囲気を1Torr以下の真空
雰囲気または水素分圧:1Torr以下の不活性ガス雰
囲気に変換し、この雰囲気で500〜900℃の範囲内
の所定の温度に保持することによりR−T−B−M系合
金原料から強制的に水素を放出させて相変態を促す脱水
素処理を施したのち、冷却し、ついで粉砕する、優れた
磁気特性を有する希土類磁石粉末の製造方法、(6)真
空またはArガス雰囲気中、温度:600〜1200℃
に保持することにより均質化処理したR−T−B−M系
合金原料を、不活性ガス雰囲気中または1Torr以下
の真空雰囲気中で室温から1000℃を越え1200℃
以下の範囲内の所定の温度に昇温し、同温度に保持した
後、同温度にて水素を導入して水素雰囲気に変換し、た
だちに水素雰囲気中で800〜1000℃の範囲内の所
定の温度まで降温する水素吸蔵予備処理を施し、次い
で、この水素雰囲気中で800〜1000℃の範囲内の
所定の温度に保持することにより、前記R−T−B−M
系合金原料に水素を吸蔵させて相変態を促す水素吸蔵処
理を施し、さらに、雰囲気を1Torr以下の真空雰囲
気または水素分圧:1Torr以下の不活性ガス雰囲気
に変換し、この雰囲気中で500〜900℃の範囲内の
所定の温度に保持することによりR−T−B−M系合金
原料から強制的に水素を放出させて相変態を促す脱水素
処理を施したのち、冷却し、ついで粉砕する、優れた磁
気特性を有する希土類磁石粉末の製造方法、(7)真空
またはArガス雰囲気中、温度:600〜1200℃に
保持することにより均質化処理したR−T−B−M系合
金原料を、不活性ガス雰囲気中または1Torr以下の
真空雰囲気中で室温から1000℃を越え1200℃以
下の範囲内の所定の温度に昇温し保持した後、同温度に
て水素を導入して0.5〜10気圧(一層好ましくは、
1〜5気圧)の水素雰囲気に変換し、この水素雰囲気中
で引き続いて同温度範囲内に保持した後、800〜10
00℃の範囲内の所定の温度まで降温する水素吸蔵予備
処理を施し、次いで、この0.5〜10気圧の水素雰囲
気中で800〜1000℃の範囲内の所定の温度に保持
することにより、前記R−T−B−M系合金原料に水素
を吸蔵させて相変態を促す水素吸蔵処理を施し、さら
に、雰囲気を1Torr以下の真空雰囲気または水素分
圧:1Torr以下の不活性ガス雰囲気に変換し、この
雰囲気で500〜900℃の範囲内の所定の温度に保持
することによりR−T−B−M系合金原料から強制的に
水素を放出させて相変態を促す脱水素処理を施したの
ち、冷却し、ついで粉砕する、優れた磁気特性を有する
希土類磁石粉末の製造方法、(8)真空またはArガス
雰囲気中、温度:600〜1200℃に保持することに
より均質化処理したR−T−B−M系合金原料を、不活
性ガス雰囲気中または1Torr以下の真空雰囲気中で
室温から1000℃を越え1200℃以下の範囲内の所
定の温度に昇温し保持した後、同温度にて水素を導入し
て0.5〜10気圧(一層好ましくは、1〜5気圧)の
水素雰囲気に変換し、ただちに水素雰囲気中で800〜
1000℃の範囲内の所定の温度まで降温する水素吸蔵
予備処理を施し、次いで、この0.5〜10気圧の水素
雰囲気中で800〜1000℃の範囲内の所定の温度に
保持することにより、前記R−T−B−M系合金原料に
水素を吸蔵させて相変態を促す水素吸蔵処理を施し、さ
らに、雰囲気を1Torr以下の真空雰囲気または水素
分圧:1Torr以下の不活性ガス雰囲気に変換し、こ
の雰囲気で500〜900℃の範囲内の所定の温度に保
持することによりR−T−B−M系合金原料から強制的
に水素を放出させて相変態を促す脱水素処理を施したの
ち、冷却し、ついで粉砕する、優れた磁気特性を有する
希土類磁石粉末の製造方法、に特徴を有するものであ
る。
In carrying out the method for producing a rare-earth magnet powder of the present invention, the RTBM-based alloy raw material is homogenized by maintaining the material at a temperature of 600 to 1200 ° C. in a vacuum or Ar gas atmosphere. Is preferred. Therefore, the present invention provides (5)
Temperature: The RTBM alloy material homogenized by maintaining the temperature at 600 to 1200 ° C. is heated from room temperature to 1 in an inert gas atmosphere or a vacuum atmosphere of 1 Torr or less.
The temperature is raised to a predetermined temperature in the range of more than 2,000 ° C. and 1,200 ° C. or less, and after maintaining the same temperature, hydrogen is introduced at the same temperature to be converted into a hydrogen atmosphere. After being held in the range, a hydrogen storage pretreatment is performed to lower the temperature to a predetermined temperature in the range of 800 to 1000 ° C.
Then, by maintaining the RTB at a predetermined temperature in the range of 800 to 1000 ° C. in this hydrogen atmosphere,
-M-alloy material is subjected to a hydrogen storage treatment for absorbing hydrogen to promote phase transformation, and further converted to a vacuum atmosphere of 1 Torr or less or an inert gas atmosphere of hydrogen partial pressure: 1 Torr or less. By maintaining a predetermined temperature in the range of up to 900 ° C., forcibly releasing hydrogen from the RTBM-based alloy raw material to perform a dehydrogenation treatment for promoting phase transformation, cooling, and then cooling. Method for producing a rare earth magnet powder having excellent magnetic properties to be pulverized, (6) in vacuum or Ar gas atmosphere, temperature: 600 to 1200 ° C
The RTBM alloy raw material homogenized by holding at a temperature from room temperature to 1000 ° C. to 1200 ° C. in an inert gas atmosphere or a vacuum atmosphere of 1 Torr or less.
After the temperature was raised to a predetermined temperature in the following range and maintained at the same temperature, hydrogen was introduced at the same temperature to convert it into a hydrogen atmosphere, and immediately in the hydrogen atmosphere, a predetermined temperature in a range of 800 to 1000 ° C. By performing a hydrogen storage pretreatment for lowering the temperature to a predetermined temperature, and then maintaining the predetermined temperature within a range of 800 to 1000 ° C. in the hydrogen atmosphere, the RTBM is maintained.
The system alloy material is subjected to a hydrogen storage treatment for absorbing hydrogen to promote phase transformation, and further converted to an atmosphere of a vacuum of 1 Torr or less or an inert gas atmosphere of hydrogen partial pressure of 1 Torr or less. A dehydrogenation treatment for promoting phase transformation by forcibly releasing hydrogen from the RTBM-based alloy raw material by maintaining a predetermined temperature in a range of 900 ° C. is performed, then cooling, and then pulverizing. (7) R-T-B-M-based alloy raw material homogenized by holding at a temperature of 600 to 1200 ° C in a vacuum or Ar gas atmosphere In an inert gas atmosphere or a vacuum atmosphere of 1 Torr or less from room temperature to a predetermined temperature in the range of more than 1000 ° C. and 1200 ° C. or less, and then hydrogen is introduced at the same temperature. .5~10 atm (more preferably,
(1 to 5 atm.), Continuously maintained in the same temperature range in this hydrogen atmosphere,
By performing a hydrogen storage pretreatment for lowering the temperature to a predetermined temperature in the range of 00 ° C., and then maintaining the temperature in the hydrogen atmosphere of 0.5 to 10 atm at a predetermined temperature in the range of 800 to 1000 ° C., The R-T-B-M alloy raw material is subjected to a hydrogen storage treatment for absorbing hydrogen to promote phase transformation, and further converted into an atmosphere of a vacuum of 1 Torr or less or an inert gas atmosphere of a partial pressure of hydrogen of 1 Torr or less. By maintaining a predetermined temperature in the range of 500 to 900 ° C. in this atmosphere, hydrogen was forcibly released from the RTBM-based alloy raw material to perform a dehydrogenation treatment for promoting phase transformation. Thereafter, the mixture is cooled and then pulverized to produce a rare earth magnet powder having excellent magnetic properties. (8) R homogenized by maintaining the temperature at 600 to 1200 ° C. in a vacuum or Ar gas atmosphere. The temperature of the TBM-based alloy raw material is raised from room temperature to a predetermined temperature in a range from more than 1000 ° C. to 1,200 ° C. or less in an inert gas atmosphere or a vacuum atmosphere of 1 Torr or less, and then maintained at the same temperature. To convert it to a hydrogen atmosphere of 0.5 to 10 atm (more preferably 1 to 5 atm), and immediately
By performing a hydrogen storage pretreatment for lowering the temperature to a predetermined temperature in a range of 1000 ° C., and then maintaining the temperature in a hydrogen atmosphere of 0.5 to 10 atm at a predetermined temperature in a range of 800 to 1000 ° C., The R-T-B-M alloy raw material is subjected to a hydrogen storage treatment for absorbing hydrogen to promote phase transformation, and further converted into an atmosphere of a vacuum of 1 Torr or less or an inert gas atmosphere of a partial pressure of hydrogen of 1 Torr or less. By maintaining a predetermined temperature in the range of 500 to 900 ° C. in this atmosphere, hydrogen was forcibly released from the RTBM-based alloy raw material to perform a dehydrogenation treatment for promoting phase transformation. Thereafter, the method is characterized by a method for producing a rare earth magnet powder having excellent magnetic properties, followed by cooling and then grinding.

【0008】この発明の希土類磁石粉末の製造方法を一
層理解しやすくするために、雰囲気と温度と時間との関
係を示すパターン図を用いて説明する。図1および図2
は、いずれもこの発明の希土類磁石粉末の製造方法のパ
ターン図である。図1は前記(3)のR−T−B−M系
合金原料を、不活性ガス雰囲気中または1Torr以下
の真空雰囲気中で室温から1000℃を越え1200℃
以下の範囲内の所定の温度に昇温し保持した後、同温度
にて水素を導入して0.5〜10気圧の水素雰囲気に変
換し、この水素雰囲気中で引き続いて同温度範囲内に保
持した後、800〜1000℃の範囲内の所定の温度ま
で降温する水素吸蔵予備処理を施し、次いで、この0.
5〜10気圧の水素雰囲気中で800〜1000℃の範
囲内の所定の温度に保持することにより、前記R−T−
B−M系合金原料に水素を吸蔵させて相変態を促す水素
吸蔵処理を施し、さらに、雰囲気を1Torr以下の真
空雰囲気または水素分圧:1Torr以下の不活性ガス
雰囲気に変換し、この雰囲気で500〜900℃の範囲
内の所定の温度に保持することによりR−T−B−M系
合金原料から強制的に水素を放出させて相変態を促す脱
水素処理を施したのち、冷却し、ついで粉砕する、優れ
た磁気特性を有する希土類磁石粉末の製造方法のパター
ン図である。
In order to make the method for producing a rare earth magnet powder of the present invention easier to understand, a description will be given with reference to a pattern diagram showing the relationship between atmosphere, temperature and time. 1 and 2
1 is a pattern diagram of a method for producing a rare earth magnet powder according to the present invention. FIG. 1 shows that the RTBM-based alloy raw material of (3) is heated from room temperature to over 1000 ° C. and 1200 ° C. in an inert gas atmosphere or a vacuum atmosphere of 1 Torr or less.
After the temperature is raised to and maintained at a predetermined temperature in the following range, hydrogen is introduced at the same temperature to convert the atmosphere to a hydrogen atmosphere of 0.5 to 10 atm. After the holding, a hydrogen storage pretreatment is performed to lower the temperature to a predetermined temperature in the range of 800 to 1000 ° C.
By maintaining a predetermined temperature within a range of 800 to 1000 ° C. in a hydrogen atmosphere of 5 to 10 atm, the RT-
The BM-based alloy raw material is subjected to a hydrogen storage treatment for absorbing hydrogen to promote phase transformation, and is further converted to a vacuum atmosphere of 1 Torr or less or an inert gas atmosphere of hydrogen partial pressure: 1 Torr or less. A dehydrogenation treatment for promoting the phase transformation by forcibly releasing hydrogen from the RTBM-based alloy raw material by maintaining the temperature at a predetermined temperature in the range of 500 to 900 ° C. is performed, followed by cooling. FIG. 4 is a pattern diagram of a method for producing a rare earth magnet powder having excellent magnetic properties, which is then ground.

【0009】また、図2は前記(4)のR−T−B−M
系合金原料を、不活性ガス雰囲気中または1Torr以
下の真空雰囲気中で室温から1000℃を越え1200
℃以下の範囲内の所定の温度に昇温し保持した後、同温
度にて水素を導入して0.5〜10気圧の水素雰囲気に
変換し、ただちに水素雰囲気中で800〜1000℃の
範囲内の所定の温度まで降温する水素吸蔵予備処理を施
し、次いで、この0.5〜10気圧の水素雰囲気中で8
00〜1000℃の範囲内の所定の温度に保持すること
により、前記R−T−B−M系合金原料に水素を吸蔵さ
せて相変態を促す水素吸蔵処理を施し、さらに、雰囲気
を1Torr以下の真空雰囲気または水素分圧:1To
rr以下の不活性ガス雰囲気に変換し、この雰囲気で5
00〜900℃の範囲内の所定の温度に保持することに
よりR−T−B−M系合金原料から強制的に水素を放出
させて相変態を促す脱水素処理を施したのち、冷却し、
ついで粉砕する、希土類磁石粉末の製造方法のパターン
図である。
FIG. 2 shows the RTBM of (4).
The system alloy raw material is heated from room temperature to 1000 ° C. to 1200 ° C. in an inert gas atmosphere or a vacuum atmosphere of 1 Torr or less.
After the temperature is raised to and maintained at a predetermined temperature within a range of not more than 0 ° C., hydrogen is introduced at the same temperature to convert the atmosphere into a hydrogen atmosphere of 0.5 to 10 atm. Pretreatment for lowering the temperature to a predetermined temperature in the hydrogen atmosphere, and then, in a hydrogen atmosphere of 0.5 to 10 atm.
By maintaining the temperature at a predetermined temperature in the range of 00 to 1000 ° C., the R-T-B-M-based alloy raw material is subjected to a hydrogen storage treatment for absorbing hydrogen to promote phase transformation, and further, the atmosphere is reduced to 1 Torr or less. Vacuum atmosphere or hydrogen partial pressure: 1To
rr or less and converted to an inert gas atmosphere
A dehydrogenation treatment for promoting phase transformation by forcibly releasing hydrogen from the RTBM-based alloy raw material by maintaining the temperature at a predetermined temperature in the range of 00 to 900 ° C., followed by cooling,
It is a pattern diagram of the manufacturing method of rare earth magnet powder which is then ground.

【0010】この発明の希土類磁石粉末の製造方法のパ
ターン図である図1および図2と、従来の希土類磁石粉
末の製造方法のパターン図である図3を比較すると分か
るように、この発明の希土類磁石粉末の製造方法が従来
の希土類磁石粉末の製造方法と比べて大きく異なるとこ
ろは、R−T−B−M系合金原料を、不活性ガス雰囲気
中または1Torr以下の真空雰囲気中で室温から10
00℃を越え1200℃以下の範囲内の所定の温度に昇
温し、同温度に保持した後、1000℃を越え1200
℃以下の範囲内の所定の温度にて水素を導入して水素雰
囲気に変換し、この温度:1000℃を越え1200℃
以下の水素雰囲気においてR−T−B−M系合金原料を
保持するか、または保持することなく水素雰囲気中、温
度:800〜1000℃の範囲内の所定の温度まで降温
する水素吸蔵予備処理を施すことである。この発明の希
土類磁石粉末の製造方法が従来よりも一層残留磁束密度
(Br)を向上させ、さらに保磁力の温度係数が一層小
さくすることができるのは、従来公知の水素吸蔵処理お
よび脱水素処理を施す希土類磁石粉末の製造方法におい
て、さらに水素吸蔵予備処理が付加されたことによるも
のと考えられる。
As can be seen from a comparison between FIGS. 1 and 2 which are pattern diagrams of the method for producing a rare earth magnet powder of the present invention and FIG. 3 which is a pattern diagram of a conventional method for producing a rare earth magnet powder, the rare earth of the present invention is understood. The major difference between the method for producing the magnet powder and the conventional method for producing the rare earth magnet powder is that the RTBM-based alloy raw material is cooled from room temperature to 10% in an inert gas atmosphere or a vacuum atmosphere of 1 Torr or less.
After the temperature is raised to a predetermined temperature in the range of more than 00 ° C. and 1200 ° C. or less and kept at the same temperature,
Hydrogen is introduced at a predetermined temperature within the range of not more than 1000 ° C. and converted into a hydrogen atmosphere.
A hydrogen storage pretreatment is performed in which the RTBM-based alloy raw material is held in the following hydrogen atmosphere or the temperature is reduced to a predetermined temperature within a range of 800 to 1000 ° C. in the hydrogen atmosphere without holding. It is to apply. The method for producing a rare earth magnet powder of the present invention can further improve the residual magnetic flux density (Br) and further reduce the temperature coefficient of coercive force as compared with the conventional hydrogen storage treatment and dehydrogenation treatment. It is considered that in the method for producing a rare earth magnet powder to be subjected to the above, a hydrogen storage pretreatment is further added.

【0011】この発明の希土類磁石粉末の製造方法にお
いて、R−T−B−M系合金原料を不活性ガス雰囲気中
または1Torr以下の真空雰囲気中で室温から100
0℃を越え1200℃以下の範囲内の所定の温度に昇温
し、同温度に保持する理由は、1000℃以下では残留
磁束密度の向上が不十分で、さらに保磁力の温度係数を
十分に小さくすることができないので好ましくなく、一
方、1200℃を越えた温度に保持するとR−T−B−
M系合金原料が溶解するので好ましくないことによるも
のである。この工程におけ一層好ましい温度範囲は、1
030〜1100℃の範囲内の所定の温度である。
In the method for producing a rare earth magnet powder according to the present invention, the RTBM-based alloy raw material is heated from room temperature to 100 ° C. in an inert gas atmosphere or a vacuum atmosphere of 1 Torr or less.
The reason for raising the temperature to a predetermined temperature in the range of more than 0 ° C and 1200 ° C or less and maintaining the same temperature is that at 1000 ° C or less, the improvement of the residual magnetic flux density is insufficient, and the temperature coefficient of the coercive force is sufficiently increased. On the other hand, when the temperature is kept at more than 1200 ° C., the RTB-
This is because the M-based alloy raw material dissolves, which is not preferable. A more preferred temperature range for this step is 1
It is a predetermined temperature in the range of 030 to 1100 ° C.

【0012】さらに、1000℃を越え1200℃以下
の範囲内の所定の温度にて水素を導入して水素雰囲気に
変換し、この温度:1000℃を越え1200℃以下の
水素雰囲気においてR−T−B−M系合金原料を保持す
るか、または保持することなく水素雰囲気中で降温する
理由は、1000℃以下では水素吸蔵予備処理を行うこ
とによる磁気特性の向上が十分でないので好ましくな
く、一方、1200℃を越えた温度に保持するとR−T
−B−M系合金原料が溶解するので好ましくないことに
よるものである。この工程におけ一層好ましい温度範囲
は、1030〜1100℃の範囲内の所定の温度であ
る。
Further, hydrogen is introduced at a predetermined temperature in the range of more than 1000 ° C. and 1,200 ° C. or less to convert it into a hydrogen atmosphere. The reason why the temperature is lowered in a hydrogen atmosphere without holding or holding the BM-based alloy raw material is that it is not preferable that the magnetic properties are not sufficiently improved by performing the hydrogen storage pretreatment at 1000 ° C. or lower. If the temperature is kept over 1200 ° C, RT
This is because the -BM-based alloy raw material is not preferable because it is melted. A more preferable temperature range in this step is a predetermined temperature in the range of 1030 to 1100 ° C.

【0013】[0013]

【発明の実施の形態】高周波真空溶解炉を用いてアルミ
ナるつぼ中で溶解し、鋳造して、表1に示される成分組
成の鋳塊A〜Kを製造し、さらにこの鋳塊A〜Kに、必
要に応じて、Arガス雰囲気中、温度:1120℃、2
0時間保持の条件の均質化処理を行った。鋳塊A〜Kの
内で均質化処理を行った鋳塊に※印を付けて示した。
BEST MODE FOR CARRYING OUT THE INVENTION A high-frequency vacuum melting furnace is used to melt and cast in an alumina crucible to produce ingots A to K having the component compositions shown in Table 1, and further to the ingots A to K If necessary, in an Ar gas atmosphere, temperature: 1120 ° C., 2
A homogenization treatment under the condition of holding for 0 hour was performed. The ingots subjected to the homogenization treatment among the ingots A to K are marked with *.

【0014】[0014]

【表1】 (※印を付けた鋳塊は、均質化処理を行った鋳塊であることを示す) [Table 1] (The ingots marked with * indicate that they have been homogenized.)

【0015】表1に示されるR−T−B−M系合金原料
の鋳塊A〜Kを20mm角以下のブロックに破砕し、表
2に示される条件の水素吸蔵予備処理、水素吸蔵処理お
よび脱水素処理を施し、ついで、Arガスで強制的に室
温まで冷却し、400μm以下に粉砕して希土類磁石粉
末を製造することにより本発明法1〜16および従来法
1〜16を実施した。本発明法1〜16および従来法1
〜16により得られた希土類磁石粉末にそれぞれ3重量
%のエポキシ樹脂を加えて混練し、20kOeの磁場中
で圧縮成形して圧粉体を作製し、この圧粉体をオーブン
で120℃、3時間熱硬化して、ボンド磁石を作製し、
得られたボンド磁石の残留磁束密度(Br)および20
〜100℃での保磁力の温度係数βを測定し、その結果
を表2〜表4に示した。
The ingots A to K of the RTBM-based alloy raw materials shown in Table 1 are crushed into blocks having a size of 20 mm square or less, and hydrogen storage pretreatment, hydrogen storage The dehydrogenation treatment was performed, then the mixture was forcibly cooled to room temperature with Ar gas, and pulverized to 400 μm or less to produce rare earth magnet powders, whereby the present invention methods 1 to 16 and conventional methods 1 to 16 were carried out. Inventive Methods 1-16 and Conventional Method 1
3% by weight of an epoxy resin is added to each of the rare earth magnet powders obtained in Steps 16 to 16, and the mixture is kneaded, and compression molded in a magnetic field of 20 kOe to produce a green compact. Heat cured for a time to make a bonded magnet,
The residual magnetic flux density (Br) of the obtained bonded magnet and 20
The temperature coefficient β of the coercive force at 100 ° C. was measured, and the results are shown in Tables 2 to 4.

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【表4】 [Table 4]

【0019】表1〜表2に示される結果から、表1の鋳
塊Aを水素吸蔵予備処理、水素吸蔵処理および脱水素処
理した本発明法1により得られた希土類磁石粉末で作製
したボンド磁石の残留磁束密度(Br)および20〜1
00℃での保磁力の温度係数βは、鋳塊Aを水素吸蔵予
備処理することなく水素吸蔵処理および脱水素処理した
従来法1により得られた希土類磁石粉末で作製したボン
ド磁石のBrよりも向上し、さらに保磁力の温度係数β
の絶対値が小さいところから、従来よりも一層優れた希
土類磁石粉末を提供できることが分かる。
From the results shown in Tables 1 and 2, a bonded magnet produced from the rare earth magnet powder obtained by the method 1 of the present invention obtained by subjecting the ingot A of Table 1 to a pretreatment for hydrogen storage, a hydrogen storage treatment and a dehydrogenation treatment. Flux density (Br) and 20-1
The temperature coefficient β of the coercive force at 00 ° C. is larger than that of Br of the bonded magnet made of the rare earth magnet powder obtained by the conventional method 1 in which the ingot A is subjected to the hydrogen absorbing treatment and the dehydrogenating treatment without the hydrogen absorbing pretreatment. Temperature coefficient of coercive force β
It can be seen from the fact that the absolute value of R.sub.2 is small, so that it is possible to provide a rare earth magnet powder which is more excellent than the conventional one.

【0020】同様にして、表1〜表4に示される結果か
ら、表1の鋳塊B〜Kをそれぞれ水素吸蔵予備処理、水
素吸蔵処理および脱水素処理した本発明法2〜16によ
り得られた希土類磁石粉末で作製したボンド磁石のBr
および20〜100℃での保磁力の温度係数βは、鋳塊
B〜Kを水素吸蔵予備処理することなく水素吸蔵処理お
よび脱水素処理した従来法2〜16により得られた希土
類磁石粉末で作製したボンド磁石のBrに比べて優れて
おり、さらに保磁力の温度係数βの絶対値が小さいとこ
ろから、従来よりも一層優れた希土類磁石粉末を提供で
きることが分かる。
Similarly, from the results shown in Tables 1 to 4, the ingots B to K in Table 1 were obtained by the present invention methods 2 to 16 in which the hydrogen storage pretreatment, the hydrogen storage processing, and the dehydrogenation processing were performed, respectively. Of bonded magnet made of rare earth magnet powder
And the temperature coefficient β of the coercive force at 20 to 100 ° C. was obtained from rare earth magnet powders obtained by conventional methods 2 to 16 in which ingots B to K were subjected to hydrogen storage treatment and dehydrogenation treatment without hydrogen storage pretreatment. It is superior to Br of the bonded magnet obtained, and the absolute value of the temperature coefficient β of the coercive force is small, so that it can be seen that a rare earth magnet powder which is more excellent than the conventional one can be provided.

【0021】[0021]

【発明の効果】上述のように、この発明は、従来よりも
優れた希土類磁石粉末を製造することができ、産業上優
れた効果を奏するものである。
As described above, according to the present invention, a rare earth magnet powder which is superior to the conventional one can be produced, and an industrially superior effect can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の希土類磁石粉末の製造方法の雰囲気
と温度と時間との関係を示すパターン図である。
FIG. 1 is a pattern diagram showing the relationship between atmosphere, temperature and time in the method for producing a rare earth magnet powder of the present invention.

【図2】この発明の希土類磁石粉末の製造方法の雰囲気
と温度と時間との関係を示すパターン図である。
FIG. 2 is a pattern diagram showing the relationship between atmosphere, temperature and time in the method for producing a rare earth magnet powder of the present invention.

【図3】従来の希土類磁石粉末の製造方法の雰囲気と温
度と時間との関係を示すパターン図である。
FIG. 3 is a pattern diagram showing the relationship between atmosphere, temperature, and time in a conventional method for producing a rare earth magnet powder.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Yを含む希土類元素(以下、Rで示す)
と、FeあるいはFeの一部をCoで置換した成分(以
下、Tで示す)と、Bを主成分とし、さらに、Si、G
a、Zr、Nb、Mo、Hf、Ta、W、Al、Ti、
Vのうち1種または2種以上(以下、Mで示す):0.
001〜5.0原子%を含有する合金原料(以下、この
合金原料をR−T−B−M系合金原料という)を、 不活性ガス雰囲気中または1Torr以下の真空雰囲気
中で室温から1000℃を越え1200℃以下の範囲内
の所定の温度に昇温し、同温度に保持した後、同温度に
て水素を導入して水素雰囲気に変換し、この水素雰囲気
中で引き続いて同温度範囲内に保持した後、800〜1
000℃の範囲内の所定の温度まで降温する水素吸蔵予
備処理を施し、 次いで、この水素雰囲気中で800〜1000℃の範囲
内の所定の温度に保持することにより、前記R−T−B
−M系合金原料に水素を吸蔵させて相変態を促す水素吸
蔵処理を施し、 さらに、雰囲気を1Torr以下の真空雰囲気または水
素分圧:1Torr以下の不活性ガス雰囲気に変換し、
この雰囲気で500〜900℃の範囲内の所定の温度に
保持することによりR−T−B−M系合金原料から強制
的に水素を放出させて相変態を促す脱水素処理を施した
のち、冷却し、ついで粉砕することを特徴とする、優れ
た磁気特性を有する希土類磁石粉末の製造方法。
1. A rare earth element containing Y (hereinafter referred to as R)
And Fe or a component in which a part of Fe is replaced with Co (hereinafter, referred to as T), B as a main component, and Si, G
a, Zr, Nb, Mo, Hf, Ta, W, Al, Ti,
One or more of V (hereinafter, referred to as M):
An alloy material containing 001 to 5.0 atomic% (hereinafter, this alloy material is referred to as an RTBM-based alloy material) is heated from room temperature to 1000 ° C. in an inert gas atmosphere or a vacuum atmosphere of 1 Torr or less. Temperature and rise to a predetermined temperature in a range of 1200 ° C. or less, and after maintaining the same temperature, hydrogen is introduced at the same temperature to be converted into a hydrogen atmosphere, and subsequently in the hydrogen atmosphere, the temperature is kept within the same temperature range. After holding at 800-1
By performing a hydrogen storage pretreatment for lowering the temperature to a predetermined temperature in the range of 000 ° C., and then maintaining the temperature in the hydrogen atmosphere at a predetermined temperature in the range of 800 to 1000 ° C., the R-T-B
Performing a hydrogen storage process of absorbing hydrogen in the M-based alloy material to promote phase transformation, and further converting the atmosphere into a vacuum atmosphere of 1 Torr or less or an inert gas atmosphere of hydrogen partial pressure: 1 Torr or less;
After maintaining a predetermined temperature in the range of 500 to 900 ° C. in this atmosphere to forcibly release hydrogen from the RTBM-based alloy raw material and perform a dehydrogenation treatment for promoting phase transformation, A method for producing a rare earth magnet powder having excellent magnetic properties, comprising cooling and then pulverizing.
【請求項2】 R−T−B−M系合金原料を、不活性ガ
ス雰囲気中または1Torr以下の真空雰囲気中で室温
から1000℃を越え1200℃以下の範囲内の所定の
温度に昇温し、同温度に保持した後、同温度にて水素を
導入して水素雰囲気に変換し、ただちに水素雰囲気中で
800〜1000℃の範囲内の所定の温度まで降温する
水素吸蔵予備処理を施し、 次いで、この水素雰囲気中で800〜1000℃の範囲
内の所定の温度に保持することにより、前記R−T−B
−M系合金原料に水素を吸蔵させて相変態を促す水素吸
蔵処理を施し、 さらに、雰囲気を1Torr以下の真空雰囲気または水
素分圧:1Torr以下の不活性ガス雰囲気に変換し、
この雰囲気中で500〜900℃の範囲内の所定の温度
に保持することによりR−T−B−M系合金原料から強
制的に水素を放出させて相変態を促す脱水素処理を施し
たのち、冷却し、ついで粉砕することを特徴とする、優
れた磁気特性を有する希土類磁石粉末の製造方法。
2. An RTBM-based alloy raw material is heated from room temperature to a predetermined temperature in a range from more than 1000 ° C. to 1200 ° C. in an inert gas atmosphere or a vacuum atmosphere of 1 Torr or less. After maintaining at the same temperature, hydrogen is introduced at the same temperature to convert it into a hydrogen atmosphere, and immediately subjected to a hydrogen storage pretreatment in which the temperature is lowered to a predetermined temperature in the range of 800 to 1000 ° C. in the hydrogen atmosphere; By maintaining a predetermined temperature in the range of 800 to 1000 ° C. in this hydrogen atmosphere, the RTB is maintained.
Performing a hydrogen storage process of absorbing hydrogen in the M-based alloy material to promote phase transformation, and further converting the atmosphere into a vacuum atmosphere of 1 Torr or less or an inert gas atmosphere of hydrogen partial pressure: 1 Torr or less;
After maintaining a predetermined temperature in the range of 500 to 900 ° C. in this atmosphere, hydrogen is forcibly released from the RTBM-based alloy raw material to perform a dehydrogenation treatment for promoting phase transformation. A method of producing rare earth magnet powder having excellent magnetic properties, comprising cooling, and then pulverizing.
【請求項3】 R−T−B−M系合金原料を、不活性ガ
ス雰囲気中または1Torr以下の真空雰囲気中で室温
から1000℃を越え1200℃以下の範囲内の所定の
温度に昇温し保持した後、同温度にて水素を導入して
0.5〜10気圧の水素雰囲気に変換し、この水素雰囲
気中で引き続いて同温度範囲内に保持した後、800〜
1000℃の範囲内の所定の温度まで降温する水素吸蔵
予備処理を施し、 次いで、この0.5〜10気圧の水素雰囲気中で800
〜1000℃の範囲内の所定の温度に保持することによ
り、前記R−T−B−M系合金原料に水素を吸蔵させて
相変態を促す水素吸蔵処理を施し、 さらに、雰囲気を1Torr以下の真空雰囲気または水
素分圧:1Torr以下の不活性ガス雰囲気に変換し、
この雰囲気で500〜900℃の範囲内の所定の温度に
保持することによりR−T−B−M系合金原料から強制
的に水素を放出させて相変態を促す脱水素処理を施した
のち、冷却し、ついで粉砕することを特徴とする、優れ
た磁気特性を有する希土類磁石粉末の製造方法。
3. An RTBM-based alloy raw material is heated from room temperature to a predetermined temperature in a range from more than 1000 ° C. to 1200 ° C. in an inert gas atmosphere or a vacuum atmosphere of 1 Torr or less. After holding, hydrogen was introduced at the same temperature to convert the atmosphere to a hydrogen atmosphere of 0.5 to 10 atm.
Preliminary hydrogen storage treatment for lowering the temperature to a predetermined temperature within the range of 1000 ° C. is performed.
By holding at a predetermined temperature in the range of ~ 1000 ° C, the R-TBM-based alloy raw material is subjected to a hydrogen storage treatment for absorbing hydrogen to promote phase transformation, and further, the atmosphere is set to 1 Torr or less. Convert to a vacuum atmosphere or an inert gas atmosphere of hydrogen partial pressure: 1 Torr or less,
After maintaining a predetermined temperature in the range of 500 to 900 ° C. in this atmosphere to forcibly release hydrogen from the RTBM-based alloy raw material and perform a dehydrogenation treatment for promoting phase transformation, A method for producing a rare earth magnet powder having excellent magnetic properties, comprising cooling and then pulverizing.
【請求項4】 R−T−B−M系合金原料を、不活性ガ
ス雰囲気中または1Torr以下の真空雰囲気中で室温
から1000℃を越え1200℃以下の範囲内の所定の
温度に昇温し保持した後、同温度にて水素を導入して
0.5〜10気圧の水素雰囲気に変換し、ただちに水素
雰囲気中で800〜1000℃の範囲内の所定の温度ま
で降温する水素吸蔵予備処理を施し、 次いで、この0.5〜10気圧の水素雰囲気中で800
〜1000℃の範囲内の所定の温度に保持することによ
り、前記R−T−B−M系合金原料に水素を吸蔵させて
相変態を促す水素吸蔵処理を施し、 さらに、雰囲気を1Torr以下の真空雰囲気または水
素分圧:1Torr以下の不活性ガス雰囲気に変換し、
この雰囲気中で500〜900℃の範囲内の所定の温度
に保持することによりR−T−B−M系合金原料から強
制的に水素を放出させて相変態を促す脱水素処理を施し
たのち、冷却し、ついで粉砕することを特徴とする、優
れた磁気特性を有する希土類磁石粉末の製造方法。
4. An RTBM-based alloy raw material is heated from room temperature to a predetermined temperature in a range from more than 1000 ° C. to 1200 ° C. in an inert gas atmosphere or a vacuum atmosphere of 1 Torr or less. After the holding, hydrogen is introduced at the same temperature to convert the atmosphere into a hydrogen atmosphere of 0.5 to 10 atm. Immediately in the hydrogen atmosphere, a hydrogen storage pretreatment for lowering the temperature to a predetermined temperature within a range of 800 to 1000 ° C. Then, in this hydrogen atmosphere of 0.5 to 10 atm.
By holding at a predetermined temperature in the range of ~ 1000 ° C, the R-TBM-based alloy raw material is subjected to a hydrogen storage treatment for absorbing hydrogen to promote phase transformation, and further, the atmosphere is set to 1 Torr or less. Convert to a vacuum atmosphere or an inert gas atmosphere of hydrogen partial pressure: 1 Torr or less,
After maintaining a predetermined temperature in the range of 500 to 900 ° C. in this atmosphere, hydrogen is forcibly released from the RTBM-based alloy raw material to perform a dehydrogenation treatment for promoting phase transformation. A method of producing rare earth magnet powder having excellent magnetic properties, comprising cooling, and then pulverizing.
【請求項5】 前記R−T−B−M系合金原料は、Ar
ガス雰囲気中、温度:600〜1200℃に保持の条件
で均質化処理したR−T−B−M系合金原料であること
を特徴とする請求項1、2、3または4記載の優れた磁
気特性を有する希土類磁石粉末の製造方法。
5. The raw material of the RTBM-based alloy is Ar
5. The excellent magnetic material according to claim 1, wherein the raw material is an RTBM-based alloy material that has been homogenized in a gas atmosphere at a temperature of 600 to 1200 [deg.] C. A method for producing a rare earth magnet powder having characteristics.
JP9269927A 1997-10-02 1997-10-02 Production of rare earth magnet powder having excellent magnetic property Withdrawn JPH11106803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9269927A JPH11106803A (en) 1997-10-02 1997-10-02 Production of rare earth magnet powder having excellent magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9269927A JPH11106803A (en) 1997-10-02 1997-10-02 Production of rare earth magnet powder having excellent magnetic property

Publications (1)

Publication Number Publication Date
JPH11106803A true JPH11106803A (en) 1999-04-20

Family

ID=17479145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9269927A Withdrawn JPH11106803A (en) 1997-10-02 1997-10-02 Production of rare earth magnet powder having excellent magnetic property

Country Status (1)

Country Link
JP (1) JPH11106803A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075305A1 (en) * 2001-03-16 2002-09-26 Showa Denko K.K. Quality testing method and production method of rare earth magnet alloy ingot, the rare earth magnet alloy ingot, and rare earth magnet alloy
CN104112556A (en) * 2013-04-22 2014-10-22 Tdk株式会社 R-t-b based sintered magnet
CN106782973A (en) * 2016-12-14 2017-05-31 安徽大地熊新材料股份有限公司 A kind of preparation method of anti-corrosion Sintered NdFeB magnet high

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075305A1 (en) * 2001-03-16 2002-09-26 Showa Denko K.K. Quality testing method and production method of rare earth magnet alloy ingot, the rare earth magnet alloy ingot, and rare earth magnet alloy
CN104112556A (en) * 2013-04-22 2014-10-22 Tdk株式会社 R-t-b based sintered magnet
CN106782973A (en) * 2016-12-14 2017-05-31 安徽大地熊新材料股份有限公司 A kind of preparation method of anti-corrosion Sintered NdFeB magnet high

Similar Documents

Publication Publication Date Title
JPH0216368B2 (en)
US5417773A (en) Method for producing rare earth alloy magnet powder
US5486239A (en) Method of manufacturing magnetically anisotropic R-T-B-M powder material and method of manufacturing anisotropic magnets using said powder material
JP3368295B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPH0768561B2 (en) Method for producing rare earth-Fe-B alloy magnet powder
JPH1131610A (en) Manufacture of rare-earth magnet powder with superior magnetic anisotropy
JP3368294B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
EP2645381B1 (en) Process for producing R-T-B-based rare earth magnet particles
JPH11106803A (en) Production of rare earth magnet powder having excellent magnetic property
JPH09148163A (en) Manufacture of r-t-b antisotropic bonded magnet
JPH10256014A (en) Manufacture of rare-earth magnet powder of excellent magnetic anisotropy
JP3423965B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3097387B2 (en) Manufacturing method of rare earth magnet material powder
JPH09162054A (en) Manufacture of r-t-b anisotropic bond magnet
JPS5911641B2 (en) Bonded permanent magnet powder and its manufacturing method
JPH06151137A (en) Powder of rare earth magnet material with excellent anisotropy
JP3481653B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPH06224015A (en) Manufacture of rare earth-fe-n intermetallic compound magnetic material particle and magnetic material powder of rare earth-fe-n intermetallic compound produced by same
JPH08288113A (en) Manufacture of rare-earth magnetic material powder and rare-earth magnet
JPH10189319A (en) Manufacture of material powder for anisotropic permanent magnet
JP2827643B2 (en) Method for producing rare earth-Fe-B based magnet alloy powder
JPH0796694B2 (en) Method of manufacturing permanent magnet material
JPH06310316A (en) Rare earth-fe-c-n intermetallic compound magnetic material powder and its manufacture
JPS59154004A (en) Manufacture of permanent magnet
JP2000021614A (en) Manufacture of rare earth magnet powder superior in magnetic anisotropy

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207