JPH09148163A - Manufacture of r-t-b antisotropic bonded magnet - Google Patents

Manufacture of r-t-b antisotropic bonded magnet

Info

Publication number
JPH09148163A
JPH09148163A JP7326620A JP32662095A JPH09148163A JP H09148163 A JPH09148163 A JP H09148163A JP 7326620 A JP7326620 A JP 7326620A JP 32662095 A JP32662095 A JP 32662095A JP H09148163 A JPH09148163 A JP H09148163A
Authority
JP
Japan
Prior art keywords
hydrogenation
treatment
recrystallization treatment
recrystallization
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7326620A
Other languages
Japanese (ja)
Other versions
JP3623571B2 (en
Inventor
Takashi Ikegami
尚 池上
Hiroyuki Tomizawa
浩之 冨澤
Satoru Hirozawa
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP32662095A priority Critical patent/JP3623571B2/en
Publication of JPH09148163A publication Critical patent/JPH09148163A/en
Application granted granted Critical
Publication of JP3623571B2 publication Critical patent/JP3623571B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable an R-T-B anisotropic bonded magnet which is lessened in change of characteristics with time and possessed of a demagnetizing curve of excellent angularity to be obtained through a hydrogenation.recrystallization treatment method. SOLUTION: When an R-T-B alloy ingot is subjected to a hydrogenation.recrystallization treatment, it rises in temperature in a hydrogen atmosphere and changes in alloy configuration through hydrogen storage disintegration or so-called hydrogen disintegration, alloy powder obtained through a hydrogen storage disintegration method is molded into a body, and the molded body is subjected to a hydrogenation.recrystallization treatment, whereby alloy powder more lessened than usual in change of characteristics with time can be obtained. When material powder of small coercive force before it is subjected to a hydrogenation.recrystallization treatment is molded in a magnetic field, the molded body which is far more excellent in degree of orientation than a molded body which is formed of allay powder that is subjected to a hydrogenation.recrystallization treatment and large in coercive force is obtained. The above molded body is subjected to a hydrogenation.recrystallization treatment, whereby an R-T-B anisotropic bonded magnet possessed of a demagnetization curve excellent in angularity can be manufactured because the molded body is kept high in degree of orientation as it is.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、各種モーター、
アクチュエーター等に用いることが可能な異方性R(希
土類元素)−T(鉄属元素)−B系ボンド磁石の製造方
法に係り、R−T−B系合金鋳塊を水素吸蔵崩壊法によ
り粗粉砕粉とし、該粗粉砕粉を成形後に水素化・再結晶
処理し、さらに結合用の樹脂でボンド化処理することに
より、良好な滅磁曲線の角型性と磁気特性の経時変化の
少ないR−T−B系異方性ボンド磁石を得る製造方法に
関する。
TECHNICAL FIELD The present invention relates to various motors,
The present invention relates to a method for producing an anisotropic R (rare earth element) -T (iron group element) -B based bonded magnet that can be used for an actuator or the like. Roughness of the demagnetization curve and little change with time in magnetic characteristics are obtained by crushing the coarsely crushed powder, subjecting the coarsely crushed powder to hydrogenation / recrystallization treatment after molding, and further bonding treatment with a resin for bonding. The present invention relates to a method for manufacturing a T-B anisotropic bond magnet.

【0002】[0002]

【従来の技術】R−T−(M)−B系異方性ボンド磁石
粉末の製造方法には、水素化・再結晶処理による製造方
法として、例えば特開平1−132106号公報に開示
されている。すなわち、かかる水素化・再結晶処理法と
は、R−T−(M)−B系原料合金鋳塊または粉末を、
2ガス雰囲気またはH2ガスと不活性ガスの混合雰囲気
中で温度500℃〜1000℃に保持して上記合金の鋳
塊または粉末にH2を吸蔵させた後、H2ガス圧力13P
a(1×10-1Torr)以下の真空雰囲気、又はH2
ガス分圧13Pa(1×10-1Torr)以下の不活性
ガス雰囲気になるまで温度500℃〜1000℃で脱H
2処理し、ついで冷却する工程を言い、該公報には水素
化・再結晶処理で得られた粉末を粉砕後に樹脂配合して
成形してR−T−B系ボンド磁石を得ることが開示され
ている。
2. Description of the Related Art A method for producing an RT- (M) -B anisotropic bonded magnet powder is disclosed in, for example, Japanese Patent Application Laid-Open No. 1-132106 as a production method by hydrogenation / recrystallization treatment. There is. That is, the hydrogenation / recrystallization treatment method means that the RT- (M) -B-based raw material alloy ingot or powder is
After maintaining the temperature of 500 ° C. to 1000 ° C. in a H 2 gas atmosphere or a mixed atmosphere of H 2 gas and an inert gas to occlude H 2 in the ingot or powder of the above alloy, H 2 gas pressure 13P
a (1 × 10 −1 Torr) or less vacuum atmosphere or H 2
H removal at a temperature of 500 ° C to 1000 ° C until an inert gas atmosphere having a gas partial pressure of 13 Pa (1 x 10 -1 Torr) or less is obtained.
2 treatment, and then cooling. The publication discloses that the powder obtained by the hydrogenation / recrystallization treatment is pulverized and then compounded with a resin to obtain an RTB-based bonded magnet. ing.

【0003】このような水素化・再結晶処理法で製造さ
れたR−T−B系合金磁石は、大きな保磁力と磁気異方
性を有する。これは上記処理によって、非常に微細な再
結晶粒径、実質的には0.1μm〜1μmの平均再結晶
粒径を持つ組織となり、磁気的には正方晶Nd2Fe14
B系化合物の単磁区臨界粒径に近い結晶粒径となってお
り、なおかつこれらの極微細結晶がある程度結晶方位を
揃えて再結晶しているためである。この結晶方位は原料
合金粉末と同じ方位を水素化・再結晶処理後も継承して
いることが考えられる。
The RTB-based alloy magnet produced by such a hydrogenation / recrystallization treatment method has a large coercive force and magnetic anisotropy. This treatment gives a structure having a very fine recrystallized grain size, substantially an average recrystallized grain size of 0.1 μm to 1 μm, and is magnetically tetragonal Nd 2 Fe 14
This is because the crystal grain size is close to the single domain critical grain size of the B-based compound, and these ultrafine crystals are recrystallized with the crystal orientations aligned to some extent. It is considered that this crystal orientation is the same as that of the raw material alloy powder even after the hydrogenation / recrystallization treatment.

【0004】[0004]

【発明が解決しようとする課題】ところが、水素化・再
結晶処理法で製造した粉末を原料とするR−T−B系ボ
ンド磁石は、処理に用いる合金鋳塊の組織と粉砕方法に
よって、水素化・再結晶処理法で製造した粉末の磁化が
低下してしまうという欠点があった。
However, the R-T-B type bonded magnet made of the powder produced by the hydrogenation / recrystallization treatment method as a raw material has a hydrogen content depending on the structure of the alloy ingot used for the treatment and the pulverization method. There is a drawback that the magnetization of the powder produced by the crystallization / recrystallization treatment method is lowered.

【0005】また、上記水素化・再結晶処理法で製造し
た粉末を原料として製造したボンド磁石の磁気特性は、
保磁力が大きいために着磁性が悪く、成形時の配向に2
0k0e程度の大きな磁界が必要となる。そしてその中
でもボンド磁石の中で大きな割合を占めるラジアル配向
では、成形時にこのような大きな配向磁界が得られない
ために磁気特性レベルが等方性のものと変わらないとい
う欠点があった。
Further, the magnetic characteristics of the bonded magnet produced from the powder produced by the above-mentioned hydrogenation / recrystallization treatment method are as follows:
The coercive force is large, so the magnetism is poor and the orientation during molding is 2
A large magnetic field of about 0k0e is required. Among them, the radial orientation, which occupies a large proportion in the bonded magnet, has a drawback that the magnetic characteristic level is not different from that of the isotropic one because such a large orientation magnetic field cannot be obtained during molding.

【0006】このようにボンド磁石の配向が不充分であ
ると、ボンド磁石の減磁曲線の角型性が悪く、不可逆熱
減磁率が大きくなり、実際にモーターなどに組み込んだ
時に必要な磁束が得られずにモーターとして機能しない
という欠点があった。そこで、発明者らは、水素化・再
結晶処理法の前に、いわゆる水素粉砕を行うことで磁化
の低下を防止する方法を提案(特願平6−95791
号)した。
When the orientation of the bond magnet is insufficient, the squareness of the demagnetization curve of the bond magnet is poor, the irreversible thermal demagnetization rate becomes large, and the magnetic flux required when actually incorporated in a motor or the like is generated. There was a drawback that it could not be obtained and could not function as a motor. Therefore, the inventors have proposed a method for preventing a decrease in magnetization by performing so-called hydrogen pulverization before the hydrogenation / recrystallization treatment method (Japanese Patent Application No. 6-95791).
No.)

【0007】しかしながら、この水素粉砕と水素化・再
結晶処理法を組み合わせた製造方法において、得られた
粉末の磁化の低下は防止できても、粉末を原料として製
造したボンド磁石の着磁が困難なために配向度が低下
し、それによって磁気特性レベルが向上しないという欠
点は改善できなかった。
However, in the manufacturing method in which the hydrogen pulverization and the hydrogenation / recrystallization treatment method are combined, it is possible to prevent the decrease of the magnetization of the obtained powder, but it is difficult to magnetize the bond magnet manufactured from the powder as a raw material. Therefore, the drawback that the degree of orientation is lowered and thereby the magnetic property level is not improved cannot be improved.

【0008】さらに、前記公報に開示されている水素化
・再結晶処理法で得た粉末から製造したボンド磁石は、
磁気特性の経時変化が大きく、使用環境によっては磁石
としての耐用期間が著しく短くなってしまうという欠点
があった。これは、成形時の樹脂との混練やプレスによ
って粉末が破壊されるために、該水素化・再結晶処理法
で製造したときに生じる粉末表面の強固な酸化層が破壊
されるためであると考えられる。
Furthermore, the bonded magnet produced from the powder obtained by the hydrogenation / recrystallization treatment method disclosed in the above publication is:
There is a drawback that the magnetic characteristics change greatly with time, and the useful life of the magnet becomes extremely short depending on the use environment. This is because the powder is destroyed by kneading or pressing with the resin at the time of molding, so that the strong oxide layer on the surface of the powder generated when the powder is produced by the hydrogenation / recrystallization treatment method is destroyed. Conceivable.

【0009】この対策として、特開平6−342707
号公報には、水素化・再結晶処理法で得られた粉末を2
00℃〜500℃の真空もしくは不活性雰囲気中で熱処
理することで耐熱性を向上させる方法が開示されてい
る。しかしながらこの方法も、粉末を熱処理後に成形体
とするために成形体中の粉末が破壊してしまい、磁気特
性の経時変化が大きくなることを避けることができな
い。
As a countermeasure against this, Japanese Patent Laid-Open No. 6-342707
Japanese Patent Laid-Open Publication No. 2-212058 describes a powder obtained by a hydrogenation / recrystallization treatment method.
A method of improving heat resistance by heat treatment in a vacuum or an inert atmosphere at 00 ° C to 500 ° C is disclosed. However, this method also cannot avoid the fact that the powder in the molded body is destroyed because the powder is formed into a molded body after heat treatment, resulting in a large change in magnetic characteristics over time.

【0010】この発明は、R−T−B系異方性ボンド磁
石を水素化・再結晶処理法により製造する方法におい
て、磁気特性の経時変化を改善し、良好な滅磁曲線の角
型性を有するR−T−B系異方性ボンド磁石を得る製造
方法の提供を目的としている。
The present invention is a method for producing an R-T-B type anisotropic bonded magnet by a hydrogenation / recrystallization treatment method, which improves the temporal change of the magnetic characteristics and has a good squareness of the demagnetization curve. It is an object of the present invention to provide a manufacturing method for obtaining an R-T-B type anisotropic bonded magnet having a.

【0011】[0011]

【課題を解決するための手段】発明者らは、R−T−B
系合金鋳塊片でそのまま水素化・再結晶処理を行うと、
水素雰囲気で昇温するために、昇温中に水素吸蔵崩壊
法、いわゆる水素粉砕によって処理前後で合金形状が変
わってしまうが、これを水素粉砕法で粉砕した合金粉末
の成形体とすることで形状の変化を回避できることを知
見した。
The inventors of the present invention have made R-T-B
When hydrogenation and recrystallization treatment is performed as it is on the ingots of system alloy,
Since the temperature is raised in a hydrogen atmosphere, the shape of the alloy changes before and after the treatment due to the hydrogen absorption / disintegration method, so-called hydrogen crushing, during heating, but by using this as a molded body of alloy powder crushed by the hydrogen crushing method. It was found that the change in shape can be avoided.

【0012】また、R−T−B系合金粉末を成形体とな
した後、該水素化・再結晶処理を施すことによって、従
来よりもより一層磁気特性の経時変化が改善されること
を見い出した。さらに、配向度、より具体的には減磁曲
線の角型性を改善する方法として、R−T−B系合金粉
末を水素化・再結晶処理前の保磁力がごく小さい原料粉
末を磁界中で成形すると、水素化・再結晶処理後の大き
な保磁力を持つ粉末を磁界中成形した場合に較べてはる
かに配向度の良い成形体が得られ、これに水素化・再結
晶処理を施すことで処理前に成形体に付加された良好な
配向度は処理後も変わらないため、従来よりも一層減磁
曲線の角型性が良好なR−T−B系異方性ボンド磁石が
製造できることを知見し、この発明を完成した。
Further, it has been found that the change over time in magnetic characteristics is further improved by forming the compacted body of the R-T-B type alloy powder and then subjecting it to the hydrogenation / recrystallization treatment. It was Furthermore, as a method of improving the degree of orientation, more specifically, the squareness of the demagnetization curve, a raw material powder having a very small coercive force before hydrogenation / recrystallization treatment of an R-T-B alloy powder is subjected to a magnetic field. When molded with, a compact with a much higher degree of orientation can be obtained compared to when a powder with a large coercive force after hydrogenation / recrystallization treatment is molded in a magnetic field, and this should be subjected to hydrogenation / recrystallization treatment. Since the good orientation degree added to the molded body before the treatment does not change after the treatment, it is possible to manufacture an R-T-B type anisotropic bonded magnet having a better squareness of the demagnetization curve than before. That is, the present invention has been completed.

【0013】すなわち、この発明は、R−T−B系合金
鋳塊を水素吸蔵崩壊法により平均粒度50μm〜500
μmに粗粉砕し、この粗粉砕粉を所定形状に成形した
後、水素化・再結晶処理を施し、その後冷却して得られ
る成形体に結合用樹脂を含浸又は該樹脂に浸漬し、これ
をボンド化処理するR−T−B系異方性ボンド磁石の製
造方法である。また、上記の製造方法において、成形を
磁界中で行うR−T−B系異方性ボンド磁石の製造方法
を併せて提案する。
That is, according to the present invention, an RTB-based alloy ingot is subjected to a hydrogen absorption / disintegration method so as to have an average particle size of 50 μm to 500 μm.
After roughly crushing to μm, shaping the coarsely crushed powder into a predetermined shape, subjecting to hydrogenation / recrystallization treatment, and then cooling, the molded body obtained is impregnated with the binding resin or immersed in the resin, This is a method for producing an R-T-B type anisotropic bonded magnet that is subjected to a bonding treatment. In addition, in the above manufacturing method, a method for manufacturing an R-T-B type anisotropic bonded magnet in which molding is performed in a magnetic field is also proposed.

【0014】また、この発明は、上記の製造方法におい
て、R−T−B系合金鋳塊が、R:10〜20at%
(R:Yを含む希土類元素の少なくとも1種で、かつP
rまたはNdの1種または2種をRのうち50%以上含
有)、T:67〜85at%(T:FeまたはFeの一
部を50%以下のCoで置換)、B:4〜10at%、
あるいはさらにM:10at%以下(M:Al、Ti、
V、Cr、Ni、Ga、Zr、Nb、Mo、ln、S
n、Hf、Ta、Wのうち1種または2種以上)からな
るR−T−B系異方性ボンド磁石の製造方法を併せて提
案する。
Further, the present invention is the above manufacturing method, wherein the R-T-B type alloy ingot has an R content of 10 to 20 at%.
(R: at least one of rare earth elements including Y, and P
1 or 2 kinds of r or Nd is contained in 50% or more of R), T: 67 to 85 at% (T: Fe or a part of Fe is replaced by 50% or less of Co), B: 4 to 10 at% ,
Alternatively, M: 10 at% or less (M: Al, Ti,
V, Cr, Ni, Ga, Zr, Nb, Mo, In, S
A method for producing an R-T-B anisotropic bonded magnet composed of one or more of n, Hf, Ta and W) is also proposed.

【0015】この発明による製造方法を詳述すると、上
記組成の合金鋳塊を10k〜1000kPaの水素ガス
中で、600℃以下、15分〜100時間保持する水素
吸蔵崩壊法にて平均粒度50μm〜500μmに粗粉砕
し、成形圧力1〜10t/cm2の圧力にて成形体と
し、前記成形体を10k〜1000kPaのH2ガス中
で、600℃〜750℃の温度域を昇温速度10℃/m
in〜200℃/minで昇温し、さらに750℃〜9
00℃に15分〜8時間加熱保持し、組織をR水素化
物、T−B化合物、T相、R214B化合物の少なくと
も4相の混合組織とした後、さらに、ArガスまたはH
eガスによる絶対圧10Pa〜50kPaの減圧気流中
にて、700℃〜900℃に5分〜8時間の保持をする
再結晶処理を行い、ついで冷却して得られる成形体に、
結合用樹脂を含浸もしくはこれに浸漬してボンド化処理
することにより、良好な磁気特性の経時変化を持つR−
T−B系異方性ボンド磁石を得ることができる。
The production method according to the present invention will be described in detail. An alloy ingot having the above composition is stored in hydrogen gas at 10 k to 1000 kPa at 600 ° C. or lower for 15 minutes to 100 hours by a hydrogen storage / disintegration method to obtain an average particle size of 50 μm. Coarsely pulverized to 500 μm and formed into a compact at a compacting pressure of 1 to 10 t / cm 2 , and the compact is heated in a temperature range of 600 ° C. to 750 ° C. in H 2 gas of 10 k to 1000 kPa at a heating rate of 10 ° C. / M
Temperature is raised at in to 200 ° C / min, and further at 750 ° C to 9
After heating and holding at 00 ° C. for 15 minutes to 8 hours to make the structure a mixed structure of at least four phases of R hydride, TB compound, T phase, and R 2 T 14 B compound, Ar gas or H
In a depressurized air flow with an absolute pressure of 10 Pa to 50 kPa by e gas, a recrystallization treatment of holding at 700 ° C to 900 ° C for 5 minutes to 8 hours is performed, and then cooling is performed to obtain a molded body,
By impregnating with a binding resin or immersing it in a bonding resin to perform a bonding treatment, R- which has a good change in magnetic characteristics over time
A TB type anisotropic bonded magnet can be obtained.

【0016】また、この発明は、上記の成形を0.1〜
1.0MA/mの磁界中で行うことにより、良好な磁気
特性の経時変化と配向度の良好なR−T−B系異方性ボ
ンド磁石を得ることができる。
Further, the present invention is characterized in that the above-mentioned molding is carried out by 0.1 to 10.
By carrying out in a magnetic field of 1.0 MA / m, it is possible to obtain an R-T-B type anisotropic bonded magnet having good magnetic properties over time and a good degree of orientation.

【0017】[0017]

【発明の実施の形態】この発明に使用する原料合金に用
いるRすなわち希土類元素は、Y、La、Ce、Pr、
Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、L
uが包括され、このうち少なくとも2種以上で、Pr、
Ndのうち少なくとも1種または2種をRのうち50a
t%以上含有する必要がある。Rの50at%以上をP
r、Ndの1種または2種以上とするのは50at%未
満では充分な磁化が得られないためである。
BEST MODE FOR CARRYING OUT THE INVENTION R, that is, a rare earth element used in a raw material alloy used in the present invention is Y, La, Ce, Pr,
Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, L
u is included, and at least two or more of these are Pr,
At least 1 or 2 of Nd is 50a of R
It is necessary to contain t% or more. 50 at% or more of R is P
The reason for using one or more of r and Nd is that sufficient magnetization cannot be obtained at less than 50 at%.

【0018】Rは、10at%未満ではα−Fe相の析
出により保磁力が低下し、また20at%を超えると、
目的とする正方晶Nd2Fe14B型化合物以外に、Rリ
ッチの第2相が多く析出し、この第2相が多すぎると合
金の磁化が低下する。従ってRの範囲は10〜20at
%とする
When R is less than 10 at%, the coercive force decreases due to precipitation of α-Fe phase, and when it exceeds 20 at%,
In addition to the intended tetragonal Nd 2 Fe 14 B type compound, a large amount of R-rich second phase precipitates, and if the amount of this second phase is too large, the alloy magnetization decreases. Therefore, the range of R is 10 to 20 at
%

【0019】Tは鉄族元素であって、Fe、Coを包含
する。Tは、67at%未満では低保磁力、低磁化の第
2相が析出して磁気的特性が低下し、85at%を超え
るとα−Fe相の析出により保磁力、角型性が低下する
ため、67〜85at%とする。また、Feのみでも必
要な磁気的性質は得られるが、Coの添加は、キュリー
温度の向上、すなわち耐熱性の向上に有用であり、必要
に応じて添加できる。FeとCoの原子比において、F
eが50%以下となるとNd2Fe14B型化合物の飽和
磁化そのものの減少量が大きくなってしまうため、Tの
うち原子比でFeを50%以上とした。
T is an iron group element and includes Fe and Co. If T is less than 67 at%, the second coercive force and low magnetization precipitates and the magnetic properties are deteriorated. If it exceeds 85 at%, the coercive force and squareness are deteriorated due to the precipitation of the α-Fe phase. , 67 to 85 at%. Further, although necessary magnetic properties can be obtained with Fe alone, addition of Co is useful for improving the Curie temperature, that is, improving heat resistance, and can be added as necessary. In the atomic ratio of Fe and Co, F
When e is 50% or less, the amount of decrease in the saturation magnetization of the Nd 2 Fe 14 B type compound itself becomes large, so that Fe in the atomic ratio of T is set to 50% or more.

【0020】Bは、正方晶Nd2Fe14B型結晶構造を
安定して析出させるためには必須である。添加量は、4
at%以下ではR217相が析出して保磁力を低下さ
せ、また滅磁曲線の角型性が著しく損なわれる。また、
10at%を超えて添加した場合は、磁化の小さい第2
相が析出して粉末の磁化を低下させる。従って、Bは、
4〜10at%とした。
B is essential for stably depositing a tetragonal Nd 2 Fe 14 B type crystal structure. Addition amount is 4
When the content is at% or less, the R 2 T 17 phase precipitates to lower the coercive force, and the squareness of the demagnetization curve is significantly impaired. Also,
When added in excess of 10 at%, the second magnetization is small.
The phase precipitates and reduces the magnetization of the powder. Therefore, B is
It was set to 4 to 10 at%.

【0021】また、このほかの添加元素としては、水素
化・再結晶処理後も磁気特性を向上させる目的で異方性
とするには水素化時に母相の分解反応を完全に終了させ
ずに、母相、すなわちR214B相を安定化して故意に
残存させるのに有効な元素が望まれる。特に顕著な効果
を持つものとして、Al、Ti、V、Cr、Ni、G
a、Zr、Nb、Mo、ln、Sn、Hf、Ta、Wが
ある。前記添加元素は、全く添加しなくてもよいが、添
加する場合は10at%を超えると強磁性でない第2相
が析出して磁化を低下させるため、添加量は10at%
以下とする。
Further, as the additional element, in order to make it anisotropic for the purpose of improving the magnetic properties even after the hydrogenation / recrystallization treatment, the decomposition reaction of the mother phase is not completely completed during the hydrogenation. However, an element effective for stabilizing the parent phase, that is, the R 2 T 14 B phase and intentionally remaining is desired. Al, Ti, V, Cr, Ni, and G have particularly remarkable effects.
a, Zr, Nb, Mo, In, Sn, Hf, Ta, W. The additive element may not be added at all, but if it exceeds 10 at%, the second phase that is not ferromagnetic precipitates to lower the magnetization, so the additive amount is 10 at%.
The following is assumed.

【0022】水素吸蔵崩壊法とは、合金中のR2Fe14
B相や粒界相であるR−Co相などに水素を吸蔵もしく
は化合させることでR2Fe14BHx相やRH2■3相等を
生成する際の体積膨張に伴って自然に崩壊する現象を利
用したものである。よって、この発明における水素化・
再結晶処理とは全く異なる工程である。
The hydrogen storage / disintegration method means R 2 Fe 14 in the alloy.
Phenomenon that spontaneously collapses with volume expansion when R 2 Fe 14 BH x phase, RH 2 3 phase, etc. are generated by storing or combining hydrogen in B phase or R-Co phase which is a grain boundary phase Is used. Therefore, hydrogenation in this invention
It is a completely different process from the recrystallization treatment.

【0023】この発明の粉砕方法を、水素吸蔵による自
然崩壊法と限定したのは、R−T−B系の合金鋳塊及び
合金粉末を水素化・再結晶処理すると、水素中で加熱さ
れるために昇温中に自然崩壊も同時進行し、水素化・再
結晶処理後の成形体が崩壊してしまう恐れがある。その
ため、この発明で提案しているような成形体を水素化・
再結晶処理後も存続させようとすると、処理中に体積膨
張がほとんど起こらないこと、つまり事前に水素吸蔵で
合金の体積が膨張していることが必要である。よって合
金鋳塊の粉砕方法は水素吸蔵による自然崩壊法とする。
The crushing method of the present invention is limited to the natural disintegration method by hydrogen storage because the R-T-B type alloy ingot and the alloy powder are heated in hydrogen when hydrogenated and recrystallized. For this reason, spontaneous collapse may proceed at the same time during the temperature rise, and the molded product after the hydrogenation / recrystallization treatment may collapse. Therefore, hydrogenation of the molded body as proposed in this invention
If it is attempted to continue after the recrystallization treatment, it is necessary that the volume expansion hardly occurs during the treatment, that is, the volume of the alloy is expanded in advance by hydrogen absorption. Therefore, the method of crushing the alloy ingot is the natural disintegration method by absorbing hydrogen.

【0024】水素吸蔵自然崩壊法に用いる水素の圧力を
10k〜1000kPaとしたのは、10kPa未満で
は崩壊が充分に進行せず、また、1000kPaを越え
ると処理設備が大きくなりすぎ、工業的にコスト面また
安全面で好ましくない。よって圧力範囲を10k〜10
00kPaとした。
The pressure of hydrogen used in the hydrogen storage natural disintegration method is set to 10 k to 1000 kPa. When the pressure is less than 10 kPa, the disintegration does not proceed sufficiently. Aspect and safety are not preferable. Therefore, the pressure range is 10k-10
00 kPa.

【0025】この発明において、水素吸蔵させる温度を
600℃以下としたのは、600℃を超えるとR2Fe
14B相がRH2■3、α−Fe、Fe2B等に分解する反
応が進行してしまい、自然崩壊が充分起こらず、粉砕工
程としての意味を失ってしまう。従って、600℃以下
とする。しかし、0℃未満では自然崩壊させるための反
応、すなわち、R2Fe14BHx相やRH2■3相等への反
応が進行し難いので0℃以上とする。
In the present invention, the temperature at which hydrogen is occluded is set to 600 ° C. or lower because R 2 Fe exceeds 600 ° C.
14 The reaction in which the B phase is decomposed into RH 2 3 , α-Fe, Fe 2 B, etc. proceeds, and spontaneous disintegration does not occur sufficiently, so that the meaning of the pulverizing step is lost. Therefore, the temperature is set to 600 ° C. or less. However, if the temperature is lower than 0 ° C, the reaction for spontaneously disintegrating, that is, the reaction to the R 2 Fe 14 BH x phase, the RH 2 3 phase, etc. is difficult to proceed, so the temperature is set to 0 ° C or higher.

【0026】水素ガス中で保持する時間については、水
素吸蔵に伴う自然崩壊には数分〜15分程度の反応潜伏
時間があるため、反応(自然崩壊)を十分に行わせるた
めには15分以上必要である。また、このような水素吸
蔵による自然崩壊工程を100時間以上行っても実質的
な効果がなくコスト高になるため、15分〜100時間
の保持とする。
With respect to the time of holding in hydrogen gas, there is a reaction latency of several minutes to 15 minutes for spontaneous decay due to hydrogen occlusion, so 15 minutes is required for sufficient reaction (natural decay). The above is necessary. Further, even if the natural disintegration step by hydrogen storage is carried out for 100 hours or more, there is no substantial effect and the cost becomes high. Therefore, the holding time is 15 minutes to 100 hours.

【0027】この発明の粗粉砕粉の平均粒度を50μm
〜500μmに限定したのは、平均粒度が50μm未満
では粉末の酸化による磁気特性の劣化の恐れや、成形体
の密度が向上し難くなり、ボンド磁石とした後の磁化が
低下するためである。また、平均粒度が500μmを越
えると、粒度が大きすぎて成形時の取り扱いが困難にな
る。よって粗粉砕粉の平均粒度を50μm〜500μm
とする。さらに好ましい平均粒度は70μm〜300μ
mである。
The average particle size of the coarsely crushed powder of the present invention is 50 μm.
The reason for limiting the particle size to ˜500 μm is that if the average particle size is less than 50 μm, the magnetic properties may be deteriorated due to the oxidation of the powder, the density of the molded body may be difficult to improve, and the magnetization after forming the bond magnet may be reduced. On the other hand, if the average particle size exceeds 500 μm, the particle size becomes too large and handling during molding becomes difficult. Therefore, the average particle size of the coarsely pulverized powder is 50 μm to 500 μm.
And More preferable average particle size is 70 μm to 300 μm.
m.

【0028】この発明における成形は、通常の圧縮成形
でよく、その成形圧力は1〜10ton/cm2が望ま
しい。1ton/cm2未満では成形体の強度が低く取
り扱いが困難な上に成形体の密度が低いため、水素化・
再結晶処理後の磁化が低くなってしまう。また、成形圧
力が高いと高いほど成形体の密度が向上するが、10t
on/cm2を越えると密度の向上はほとんどない上に
設備が大がかりになり、製造コストの増大を招き好まし
くない。従って、成形圧力は1〜10ton/cm2
する。
The molding in the present invention may be ordinary compression molding, and the molding pressure is preferably 1 to 10 ton / cm 2 . If it is less than 1 ton / cm 2 , the strength of the molded product is low and it is difficult to handle, and the density of the molded product is low.
The magnetization becomes low after the recrystallization treatment. Further, the higher the molding pressure is, the higher the density of the molded body is.
When it exceeds on / cm 2 , the density is hardly improved and the equipment becomes large in scale, which causes an increase in manufacturing cost and is not preferable. Therefore, the molding pressure is set to 1 to 10 ton / cm 2 .

【0029】また、成形を磁界中で行うことで、ボンド
磁石の磁気特性は著しく向上するが、成形を磁界中で行
う場合の磁界強度は、0.1〜1.0MA/mが望まし
い。0.1MA/m未満では配向が不充分で磁界中成形
する意味がなく、また、1.0MA/mを越えると成形
体の配向度が飽和し、さらに設備が大がかりになるた
め、製造コストの増大を招き好ましくない。よって、
0.1〜1.0MA/mとする。
Although the magnetic properties of the bonded magnet are remarkably improved by performing the molding in the magnetic field, the magnetic field strength when the molding is performed in the magnetic field is preferably 0.1 to 1.0 MA / m. If it is less than 0.1 MA / m, the orientation is insufficient and there is no point in molding in a magnetic field, and if it exceeds 1.0 MA / m, the degree of orientation of the molded product is saturated, and the equipment becomes large, resulting in a manufacturing cost increase. It causes an increase and is not preferable. Therefore,
0.1 to 1.0 MA / m.

【0030】この発明の水素化・再結晶処理とは、正方
晶Nd2Fe14B型化合物に対し、高温、実際上は60
0〜900℃の温度範囲でH2ガスと反応させると、R
2■3、α−Fe、Fe2B等に相分離し、さらに同温
度域でH2ガスを再結晶処理により除去すると、再度正
方晶Nd2Fe14B型化合物の再結晶組織が得られると
いうものである。
The hydrogenation / recrystallization treatment of the present invention refers to a tetragonal Nd 2 Fe 14 B type compound at a high temperature, actually 60.
When reacted with H 2 gas in the temperature range of 0 to 900 ° C., R
Phase separation into H 2 ■ 3 , α-Fe, Fe 2 B, etc., and removal of H 2 gas by recrystallization treatment at the same temperature range gave a recrystallized structure of tetragonal Nd 2 Fe 14 B type compound again. Is to be done.

【0031】しかしながら、現実には、水素化処理条件
によって分解生成物の結晶粒径、反応の度合いが異な
り、水素化状態の金属組織は、水素化温度750℃未満
と750℃以上で明らかに異なる。この金属組織上の違
いが、再結晶処理を行った後の磁石粉末の磁気的性質、
特に磁気異方性に大きく影響する。
However, in reality, the crystal grain size of the decomposition product and the degree of reaction differ depending on the hydrotreating conditions, and the metallographic structure in the hydrogenated state is clearly different at hydrogenation temperatures of less than 750 ° C. and above 750 ° C. . This difference in metal structure is due to the magnetic properties of the magnet powder after recrystallization treatment,
In particular, it greatly affects the magnetic anisotropy.

【0032】さらに、再結晶処理条件によって、正方晶
Nd2Fe14B型化合物の再結晶状態が大きく影響を受
け、水素化・再結晶処理法によって作製した磁石粉末の
磁気的性質、特に保磁力に大きく影響する。さらに、水
素化・再結晶処理の、正方晶Nd2Fe14B型化合物を
2ガス中で加熱する工程において、希土類元素によっ
てRH2■3、α−Fe、Fe2Bなどに相分離する反応
が、水素分圧によっては反応が進行しない領域が存在
し、Rは元素によって水素圧力が磁気特性、特に角型性
と保磁力に大きく影響する。
Further, the recrystallization condition has a great influence on the recrystallized state of the tetragonal Nd 2 Fe 14 B type compound, and the magnetic properties, especially the coercive force, of the magnet powder produced by the hydrogenation / recrystallization treatment method. Greatly affect the. Furthermore, in the step of heating the tetragonal Nd 2 Fe 14 B type compound in the H 2 gas in the hydrogenation / recrystallization treatment, phase separation into RH 2 ■ 3 , α-Fe, Fe 2 B, etc. is carried out by the rare earth element. In the reaction, there is a region where the reaction does not proceed depending on the hydrogen partial pressure, and for R, the hydrogen pressure greatly affects the magnetic properties, particularly the squareness and the coercive force, depending on the element.

【0033】この発明において、H2ガス中での加熱に
際し、H2ガス圧力を10k〜1000kPaとする理
由は、10kPa未満では前述の分解反応が充分に進行
せず、また、1000kPaを超えると処理設備が大き
くなりすぎ、工業的にコスト面、また、安全面で好まし
くないため、圧力範囲を10k〜1000kPaとし
た。さらに好ましい圧力範囲は100k〜350kPa
である。
[0033] In this invention, when heating with H 2 gas, reasons for 10k~1000kPa H 2 gas pressure is not above the decomposition reaction proceed sufficiently at lower than 10 kPa, also exceeds 1000kPa process Since the equipment becomes too large, which is not preferable in terms of industrial cost and safety, the pressure range was set to 10 k to 1000 kPa. More preferable pressure range is 100 k to 350 kPa
It is.

【0034】H2ガス中での加熱処理温度は、750〜
900℃が望ましい。600℃未満ではRH2■3、α−
Fe、Fe2Bなどへの分解反応が起こらず、また、6
00℃〜750℃の温度範囲では分解反応がほぼ完全に
進行してしまい、分解生成物中に適量のR2Fe14B相
が残存せず、再結晶処理後に磁気的、また、結晶方位的
に充分な異方性が得られないため、750℃以上の加熱
が必要である。また、900℃を超えるとRH2■3が不
安定となり、かつ生成物が粒成長して正方晶Nd2Fe
14B型化合物極微細結晶組織を得ることが困難になる。
The heat treatment temperature in H 2 gas is 750 to 750.
900 ° C is desirable. If it is less than 600 ° C, RH 2 ■ 3 , α-
The decomposition reaction into Fe, Fe 2 B, etc. does not occur, and 6
In the temperature range of 00 ° C. to 750 ° C., the decomposition reaction proceeds almost completely, an appropriate amount of R 2 Fe 14 B phase does not remain in the decomposition product, and it is magnetic and crystallographically oriented after the recrystallization treatment. Since sufficient anisotropy cannot be obtained, heating at 750 ° C. or higher is necessary. Further, when the temperature exceeds 900 ° C., RH 2 3 becomes unstable, and the product grains grow to form tetragonal Nd 2 Fe.
14 It becomes difficult to obtain an ultrafine crystal structure of B-type compound.

【0035】水素化の温度範囲が750℃〜900℃の
領域であれば、脱水素時の再結晶反応の核となるR2
14B相が分散して適量残存するため、再結晶後のR2
14B相の結晶方位が残存R2Fe14B相によって決定
され、結果的に再結晶組織の結晶方位が原料鋳塊の結晶
方位と一致し、大きな異方性を示すことになる。そのた
め水素化処理の温度範囲を750℃〜900℃とする。
When the hydrogenation temperature range is 750 ° C. to 900 ° C., R 2 F which becomes the nucleus of the recrystallization reaction during dehydrogenation.
e 14 Since the B phase is dispersed and remains in an appropriate amount, R 2 after recrystallization is
The crystal orientation of the T 14 B phase is determined by the residual R 2 Fe 14 B phase, and as a result, the crystal orientation of the recrystallized structure coincides with the crystal orientation of the raw material ingot and exhibits a large anisotropy. Therefore, the temperature range of the hydrogenation treatment is set to 750 ° C to 900 ° C.

【0036】また、加熱処理保持時間については、上記
の分解反応を充分に行わせるためには15分以上必要で
あり、また8時間を越えると残存R2Fe14B相が減少
して再結晶処理後の磁気異方性が低下するため好ましく
ない。従って15分〜8時間の加熱保持とする。
Regarding the heat treatment holding time, 15 minutes or more is required to sufficiently carry out the above decomposition reaction, and if it exceeds 8 hours, the residual R 2 Fe 14 B phase decreases and recrystallization occurs. It is not preferable because the magnetic anisotropy after the treatment is lowered. Therefore, the heating and holding is performed for 15 minutes to 8 hours.

【0037】H2ガス中での昇温速度は、10〜200
℃/minが望ましい。10℃/min未満であると、
昇温過程で600〜750℃の温度域を、分解反応が進
行しながら通過するために、完全に分解して母相、すな
わちR2Fe14B相が残存せず、脱水素処理後の磁気的
及び結晶方位的異方性がほとんど失われてしまう。昇温
速度を10℃/min以上にすれば、600〜750℃
の領域で反応が充分に進行せず、母相を残存したまま7
50〜900℃の水素化温度域に達するため、再結晶処
理後に磁気的および結晶方位的に大きな異方性を持った
粉末を得ることができる。従って、昇温速度は、750
℃以下の温度域において、10℃/min以上とする必
要がある。また、200℃/minを超える昇温速度は
赤外炉等を用いても実質的に実現困難であり、また可能
であっても設備費が増大し好ましくない。よって昇温速
度を10〜200℃/minとする。
The temperature rising rate in H 2 gas is 10 to 200.
C / min is desirable. When it is less than 10 ° C / min,
In the temperature rising process, the decomposition reaction proceeds through the temperature range of 600 to 750 ° C., so that the decomposition is completed and the mother phase, that is, the R 2 Fe 14 B phase does not remain, and the magnetic field after dehydrogenation treatment Most of the crystalline and crystallographic anisotropy is lost. If the temperature rising rate is 10 ° C / min or more, 600 to 750 ° C
Reaction did not proceed sufficiently in the region of 7 and the mother phase remained
Since the hydrogenation temperature range of 50 to 900 ° C. is reached, it is possible to obtain a powder having a large magnetic and crystal orientation anisotropy after the recrystallization treatment. Therefore, the heating rate is 750
It is necessary to be 10 ° C./min or more in a temperature range of not more than 10 ° C. In addition, a temperature rising rate of more than 200 ° C./min is practically difficult to achieve even if an infrared furnace or the like is used, and even if it is possible, equipment costs increase, which is not preferable. Therefore, the rate of temperature rise is set to 10 to 200 ° C./min.

【0038】この発明の再結晶処理は、不活性ガス、具
体的にはArガスまたはHeガス雰囲気の減圧下で行う
が、これによって原料の周囲の実質的なH2分圧はほぼ
平衡水素圧、例えば850℃にて1kPa程度となり、
再結晶反応は徐々に進行する。不活性ガスとしてArま
たはHeに限定したのは、コスト面ではArが使い良
く、また、H2ガスの置換性や温度制御性の点からはH
eガスが優れているためである。その他の希ガスは、性
能面でのメリットがない上、コスト的に問題がある。ま
た、一般に不活性ガスとして取り扱われるN2ガスは、
希土類系化合物と反応して窒化物を形成するため不適当
である。
The recrystallization treatment of the present invention is carried out under a reduced pressure in an atmosphere of an inert gas, specifically Ar gas or He gas, whereby the substantial H 2 partial pressure around the raw material is almost equal to the equilibrium hydrogen pressure. , For example, it becomes about 1 kPa at 850 ° C,
The recrystallization reaction proceeds gradually. The reason why the inert gas is limited to Ar or He is that Ar is easy to use in terms of cost, and H is preferable in terms of H 2 gas replacement and temperature controllability.
This is because e gas is excellent. Other rare gases have no merit in performance and have a problem in cost. N 2 gas, which is generally treated as an inert gas,
It is not suitable because it reacts with rare earth compounds to form nitrides.

【0039】雰囲気の絶対圧力が10Pa未満では、再
結晶反応が急激に起こり、化学反応による温度低下が大
きい。さらに、再結晶反応が急激すぎるために、冷却後
の磁石粉末の組織に粗大な結晶粒が混在してしまい、そ
のために保磁力が大きく低下する。一方、雰囲気の絶対
圧力が50kPaを越えると、再結晶反応に時間がかか
りすぎて製造コストなどの実用的には問題となる。そこ
で、雰囲気の絶対圧力は、10Pa〜50kPaとし
た。
If the absolute pressure of the atmosphere is less than 10 Pa, the recrystallization reaction rapidly occurs and the temperature drop due to the chemical reaction is large. Furthermore, since the recrystallization reaction is too rapid, coarse crystal grains are mixed in the structure of the magnet powder after cooling, and the coercive force is greatly reduced. On the other hand, when the absolute pressure of the atmosphere exceeds 50 kPa, the recrystallization reaction takes too long, which poses a practical problem such as manufacturing cost. Therefore, the absolute pressure of the atmosphere is set to 10 Pa to 50 kPa.

【0040】また、再結晶処理時に減圧気流中で行うの
は、再結晶反応によって原料から放出されるH2ガスに
よって、炉内圧力が上昇するのを防止するためである。
実用上は、一方から不活性ガスを導入しつつ、他方から
真空ポンプで排気し、圧力の制御は供給口、排気口それ
ぞれに取り付けられた流量調整弁を用いて行う。
The reason why the recrystallization process is carried out in a reduced pressure air flow is to prevent the furnace pressure from rising due to the H 2 gas released from the raw material by the recrystallization reaction.
Practically, the inert gas is introduced from one side, the other side is evacuated by the vacuum pump, and the pressure is controlled by using the flow rate adjusting valve attached to each of the supply port and the exhaust port.

【0041】この発明において、再結晶処理の温度が7
00℃未満では、RH2■3相からのH2の離脱が起こら
ないか、あるいは正方晶Nd2Fe14B型化合物の再結
晶が充分進行せず、また、900℃を超えると正方晶N
2Fe14B型化合物は生成するが、再結晶粒が粗大に
成長し、高い保磁力が得られないため、再結晶処理の温
度範囲は700℃〜900℃とする。
In the present invention, the recrystallization temperature is 7
If the temperature is less than 00 ° C, H 2 is not separated from the RH 2 3 phase, or the recrystallization of the tetragonal Nd 2 Fe 14 B type compound does not proceed sufficiently, and if it exceeds 900 ° C, the tetragonal N 2
Although the d 2 Fe 14 B-type compound is produced, the recrystallized grains grow coarsely and a high coercive force cannot be obtained. Therefore, the temperature range of the recrystallization treatment is 700 ° C. to 900 ° C.

【0042】また、加熱処理保持時間は、処理設備の排
気能力にもよるが、上記の再結晶反応を充分に行わせる
ためには少なくとも5分以上保持する必要がある。しか
し、一方では、2次的な再結晶反応によって結晶が粗大
化すれば保磁力の低下を招くので、できる限り短時間の
方が好ましい。そのため、5分〜8時間の加熱保持で充
分である。
The heat treatment holding time depends on the exhaust capacity of the treatment equipment, but it is necessary to hold it for at least 5 minutes or more in order to sufficiently carry out the recrystallization reaction. However, on the other hand, if the crystals are coarsened by the secondary recrystallization reaction, the coercive force is lowered. Therefore, it is preferable that the time is as short as possible. Therefore, heating and holding for 5 minutes to 8 hours is sufficient.

【0043】なお、再結晶処理は、原料の酸化防止の観
点から、また処理設備の熱効率の観点で、水素化処理に
引き続いて行うのがよいが、水素化処理後、一旦原料を
冷却して、再び改めて再結晶の為の熱処理を行っても良
い。
The recrystallization treatment is preferably carried out after the hydrogenation treatment from the viewpoint of preventing the oxidation of the raw material and the thermal efficiency of the treatment equipment. After the hydrogenation treatment, the raw material is once cooled. The heat treatment for recrystallization may be performed again.

【0044】この発明におけるボンド化処理は、結合用
樹脂の合浸もしくは該樹脂に浸漬後に樹脂を硬化するこ
とを示す。樹脂の含浸は真空雰囲気における真空合浸、
もしくは樹脂中に成形体を浸漬する方法など成形体の形
状目的や樹脂の種類などに応じて選択すればよい。
The bonding treatment in the present invention indicates that the resin for bonding is infiltrated or cured after the resin is immersed in the resin. Resin impregnation is vacuum infiltration in a vacuum atmosphere,
Alternatively, it may be selected depending on the shape purpose of the molded product, the type of resin, etc., such as the method of immersing the molded product in the resin.

【0045】また、ボンド化処理に用いる結合用樹脂は
浸漬及び含浸できるエポキシ樹脂やフェノール樹脂、ア
クリル樹脂等が望ましい。また、磁気特性を向上させる
ためや成形性を良くするために成形時にポリビニルアル
コール、ポリピニルブチラール、カルボキシメチルセル
ロース、ポリエチレングリコール、パラフィン、リノー
ル酸、オレイン酸などの成形助剤を用いても良い。
The bonding resin used for the bonding treatment is preferably an epoxy resin, a phenol resin, an acrylic resin or the like which can be immersed and impregnated. Further, in order to improve magnetic properties and improve moldability, a molding aid such as polyvinyl alcohol, polypinyl butyral, carboxymethyl cellulose, polyethylene glycol, paraffin, linoleic acid and oleic acid may be used at the time of molding.

【0046】樹脂の硬化は用いた樹脂の硬化温度で1時
間程度の熱処理を行うことを示す。これは用いた樹脂の
硬化条件に従って選択すれば良い。また、硬化を行う雰
囲気は、硬化中の酸化を防ぐために真空もしくはAr、
窒素などの不活性雰囲気中が望ましい。
Curing of the resin means performing heat treatment for about one hour at the curing temperature of the resin used. This may be selected according to the curing conditions of the resin used. The atmosphere for curing is vacuum or Ar to prevent oxidation during curing.
It is desirable to use an inert atmosphere such as nitrogen.

【0047】[0047]

【実施例】【Example】

実施例1 高周波誘導溶解法によって溶製して得られた表1の組成
の鋳塊を、1100℃、24時間、Ar雰囲気中で焼鈍
した。この鋳塊を圧力容器中に入れ、1Pa以下にまで
真空排気した。その後、純度99.999%以上の水素
ガスを導入して容器内の圧力を200kPaとし、10
時間、100℃で保持した。さらに、Arガス雰囲気中
(O2濃度0.1%以下)で平均粒度100μmに整粒
した後、この粗粉砕粉を10mm角に7ton/cm2
の圧力で、表2の配向条件に従って、配向磁界をかけな
いか、もしくは1.2MA/mの直角磁化中で成形し
た。
Example 1 An ingot having a composition shown in Table 1 obtained by melting by a high frequency induction melting method was annealed at 1100 ° C. for 24 hours in an Ar atmosphere. This ingot was put in a pressure vessel and evacuated to 1 Pa or less. After that, hydrogen gas having a purity of 99.999% or more was introduced to adjust the pressure in the container to 200 kPa and 10
Hold at 100 ° C. for hours. Further, after sizing to an average particle size of 100 μm in an Ar gas atmosphere (O 2 concentration of 0.1% or less), this coarsely pulverized powder was measured at 7 ton / cm 2 in a 10 mm square.
According to the alignment conditions in Table 2, the alignment magnetic field was not applied or the molding was performed in the perpendicular magnetization of 1.2 MA / m under the pressure of 1.

【0048】得られた成形体は管状炉に入れ、1Pa以
下にまで真空排気した。その後、純度99.999%以
上のH2ガスを導入しつつ、表2に示す水素化処理条件
で水素化処理を行った。こうして得た水素化原料を、引
き続き表2に示す再結晶処理条件に従って再結晶処理を
行った。排気には、ロータリーポンプを用いた。冷却
後、原料温度が50℃以下となったところで試料を取り
出した。このときの成形体の存続結果を表2に示す。処
理した成形体にエポキシ樹脂を真空舎浸させ、150
℃、1時間、Ar雰囲気中(O2濃度0.1%以下)で
硬化させた。このときのボンド磁石の磁気特性を表2
に、表2中のNo.14の試料の100℃大気中での磁
気特性の経時変化を図1に示す。
The obtained molded body was put in a tubular furnace and evacuated to 1 Pa or less. Then, while introducing H 2 gas having a purity of 99.999% or more, the hydrotreatment was performed under the hydrotreatment conditions shown in Table 2. The hydrogenated raw material thus obtained was subsequently recrystallized according to the recrystallization conditions shown in Table 2. A rotary pump was used for exhaust. After cooling, the sample was taken out when the raw material temperature became 50 ° C. or lower. Table 2 shows the survival results of the molded body at this time. Epoxy resin is vacuum dipped into the treated molded body,
It was cured at 1 ° C. for 1 hour in an Ar atmosphere (O 2 concentration of 0.1% or less). Table 2 shows the magnetic characteristics of the bond magnet at this time.
No. in Table 2 FIG. 1 shows the changes over time in the magnetic properties of the 14 samples in the atmosphere at 100 ° C.

【0049】比較例1 高周波誘導溶解法によって溶製して得られた表1の組成
の鋳塊を、1100℃、24時間、Ar雰囲気中で焼鈍
した。この鋳塊をArガス雰囲気中(O2濃度0.1%
以下)でスタンプミルを用いて平均粒度100μmに粗
粉砕した後、この粗粉砕粉を10mm角に7ton/c
2の圧力で表3の配向条件に従って、配向磁界をかけ
ないか、もしくは1.2MA/mの直角磁化中で成形し
た。
Comparative Example 1 An ingot having the composition shown in Table 1 obtained by melting by a high frequency induction melting method was annealed at 1100 ° C. for 24 hours in an Ar atmosphere. This ingot was placed in an Ar gas atmosphere (O 2 concentration of 0.1%
In the following), a stamp mill was used to roughly pulverize to an average particle size of 100 μm, and the coarsely pulverized powder was then cut into a square of 10 mm and 7 ton / c.
According to the orientation conditions in Table 3 at a pressure of m 2 , the orientation magnetic field was not applied, or molding was performed in the perpendicular magnetization of 1.2 MA / m.

【0050】得られた成形体は管状炉に入れ、IPa以
下にまで真空排気した。その後、純度99.999%以
上のH2ガスを導入しつつ、表3に示す水素化処理条件
で水素化処理を行った。こうして得た水素化原料を、引
き続き表3に示す再結晶処理条件に従って再結晶処理を
行った。排気には、ロータリーポンプを用いた。冷却
後、原料温度が50℃以下となったところで試料を取り
出した。このときの成形体の存続の可否を表3に示し
た。
The obtained molded body was put in a tubular furnace and evacuated to a pressure below IPa. Then, while introducing H 2 gas having a purity of 99.999% or more, the hydrogenation treatment was performed under the hydrogenation treatment conditions shown in Table 3. The hydrogenated raw material thus obtained was subsequently subjected to recrystallization treatment under the recrystallization treatment conditions shown in Table 3. A rotary pump was used for exhaust. After cooling, the sample was taken out when the raw material temperature became 50 ° C. or lower. Table 3 shows whether or not the molded body can survive at this time.

【0051】比較例2 高周波誘導溶解法によって溶製して得られた表1の組成
の鋳塊を、1100℃、24時間、Ar雰囲気中で焼鈍
した。この鋳塊を圧力容器中に入れ1Pa以下にまで真
空排気した。その後、純度99.999%以上の水素ガ
スを導入し容器内の圧力を200kPaとし10時間1
00℃で保持した。さらに、Arガス雰囲気中(O2
度0.1%以下)で平均粒度100μmに整粒した後、
管状炉に入れ、1Pa以下にまで真空排気した。その
後、純度99.9999%以上のH2ガスを導入しつ
つ、表4に示す水素化処理条件で水素化処理を行った。
こうして得た水素化原料を、引き続き表4に示す再結晶
処理条件に従って再結晶処理を行った。
Comparative Example 2 An ingot having the composition shown in Table 1 obtained by melting by a high frequency induction melting method was annealed at 1100 ° C. for 24 hours in an Ar atmosphere. This ingot was put in a pressure vessel and evacuated to 1 Pa or less. After that, hydrogen gas having a purity of 99.999% or more is introduced, and the pressure in the container is set to 200 kPa.
Hold at 00 ° C. Furthermore, after sizing to an average particle size of 100 μm in an Ar gas atmosphere (O 2 concentration of 0.1% or less),
It was put in a tubular furnace and evacuated to 1 Pa or less. Then, while introducing H 2 gas having a purity of 99.9999% or more, hydrogenation treatment was performed under the hydrogenation treatment conditions shown in Table 4.
The hydrogenated raw material thus obtained was subsequently subjected to recrystallization treatment under the recrystallization treatment conditions shown in Table 4.

【0052】排気には、ロータリーポンプを用いた。冷
却後、原料温度が50℃以下となったところで試料を取
り出した。得られた粉末は、10mm角に7ton/c
2の圧力で表4の配向条件に従って、配向磁界をかけ
ないか、もしくは1.2MA/mの直角磁化中で成形し
た。成形後、エポキシ樹脂を真空舎浸させ、150℃、
1時間、Ar雰囲気中(O2濃度0.1%以下)で硬化
させた。このときのボンド磁石の磁気特性を表4に示
す。また、表4中のNo.14の試料の100℃大気中
での磁気特性の経時変化を図1に示す。図1は、時間経
過とともに変化する(BH)maxの低下率を示したも
ので、水素化・再結晶処理前に成形したこの発明の場合
を○印実線で示し、水素化・再結晶処理後に成形した比
較例の場合を●印一点鎖線で示す。
A rotary pump was used for evacuation. After cooling, the sample was taken out when the raw material temperature became 50 ° C. or lower. The obtained powder is 7 ton / c in 10 mm square.
According to the alignment condition of Table 4 at a pressure of m 2 , the alignment magnetic field was not applied, or the molding was performed in the perpendicular magnetization of 1.2 MA / m. After molding, soak the epoxy resin in a vacuum house, 150 ℃,
It was cured in an Ar atmosphere (O 2 concentration of 0.1% or less) for 1 hour. Table 4 shows the magnetic characteristics of the bonded magnet at this time. Moreover, No. FIG. 1 shows the changes over time in the magnetic properties of the 14 samples in the atmosphere at 100 ° C. FIG. 1 shows the rate of decrease in (BH) max that changes with the passage of time. The case of the present invention formed before hydrogenation / recrystallization treatment is shown by a solid line with a circle, and after hydrogenation / recrystallization treatment is shown. The case of the molded comparative example is indicated by a dot-dash line.

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【表2】 [Table 2]

【0055】[0055]

【表3】 [Table 3]

【0056】[0056]

【表4】 [Table 4]

【0057】[0057]

【発明の効果】この発明は、R−T−B系ボンド磁石を
水素化・再結晶処理法により製造する方法において、水
素粉砕で得られた粉末を成形もしくは磁界中で成形後
に、水素化・再結晶処理し、該処理後も成形体を存続さ
せ、結合用樹脂を含浸もしくは浸漬させることでボンド
化することを特徴とし、水素化・再結晶処理後も成形体
を存続させることができ、磁気特性の経時変化が少な
く、配向性にすぐれ、良好な滅磁曲線の角型性を有する
R−T−B系異方性ボンド磁石を得ることができる。
INDUSTRIAL APPLICABILITY The present invention is a method for producing an RTB-based bonded magnet by a hydrogenation / recrystallization treatment method. Recrystallization treatment, the molded body is allowed to survive after the treatment, and is characterized by forming a bond by impregnating or immersing a bonding resin, and the molded body can be maintained even after hydrogenation / recrystallization treatment, It is possible to obtain an R-T-B type anisotropic bonded magnet having little change in magnetic properties over time, excellent orientation, and good squareness of demagnetization curve.

【図面の簡単な説明】[Brief description of the drawings]

【図1】時間経過と(BH)maxの低下率との関係を
示すグラフである。
FIG. 1 is a graph showing a relationship between a lapse of time and a decrease rate of (BH) max.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 R−T−B系合金鋳塊を水素吸蔵崩壊法
により平均粒度50μm〜500μmに粗粉砕し、この
粗粉砕粉を所定形状に成形した後、水素化・再結晶処理
を施し、その後冷却して得られる成形体に結合用樹脂を
含浸又は該樹脂に浸漬し、これをボンド化処理するR−
T−B系異方性ボンド磁石の製造方法。
1. An RTB-based alloy ingot is roughly crushed by a hydrogen storage / disintegration method to an average particle size of 50 μm to 500 μm, and the coarsely crushed powder is molded into a predetermined shape, and then subjected to hydrogenation / recrystallization treatment. Then, the molded product obtained by cooling is impregnated with the resin for binding or immersed in the resin, and the resulting resin is subjected to a bonding treatment R-
A manufacturing method of a TB type anisotropic bond magnet.
【請求項2】 請求項1において、成形を磁界中で行う
R−T−B系異方性ボンド磁石の製造方法。
2. The method for manufacturing an R-T-B anisotropic bonded magnet according to claim 1, wherein the molding is performed in a magnetic field.
【請求項3】 請求項1または請求項2において、R−
T−B系合金鋳塊が、R:10〜20at%(R:Yを
含む希土類元素の少なくとも1種で、かつPrまたはN
dの1種または2種をRのうち50%以上含有)、T:
67〜85at%(T:FeまたはFeの一部を50%
以下のCoで置換)、B:4〜10at%からなるR−
T−B系異方性ボンド磁石の製造方法。
3. The method according to claim 1 or 2, wherein R-
The T-B alloy ingot is R: 10 to 20 at% (at least one of rare earth elements including R: Y, and Pr or N).
1 or 2 of d is contained in 50% or more of R), T:
67 to 85 at% (T: Fe or a part of Fe is 50%
(Substituted with Co below), B: 4-10 at% R-
A manufacturing method of a TB type anisotropic bond magnet.
【請求項4】 請求項1または請求項2において、R−
T−B系合金鋳塊が、R:10〜20at%(R:Yを
含む希土類元素の少なくとも1種で、かつPrまたはN
dの1種または2種をRのうち50%以上含有)、T:
67〜85at%(T:FeまたはFeの一部を50%
以下のCoで置換)、B:4〜10at%、M:10a
t%以下(M:Al、Ti、V、Cr、Ni、Ga、Z
r、Nb、Wo、ln、Sn、Hf、Ta、Vのうち1
種または2種以上)からなるR−T−B系異方性ボンド
磁石の製造方法。
4. The R- according to claim 1 or claim 2.
The T-B alloy ingot is R: 10 to 20 at% (at least one of rare earth elements including R: Y, and Pr or N).
1 or 2 of d is contained in 50% or more of R), T:
67 to 85 at% (T: Fe or a part of Fe is 50%
Substituted with Co below), B: 4 to 10 at%, M: 10 a
t% or less (M: Al, Ti, V, Cr, Ni, Ga, Z
1 of r, Nb, Wo, In, Sn, Hf, Ta, V
Or a mixture of two or more types) of the RTB-based anisotropic bonded magnet.
JP32662095A 1995-11-20 1995-11-20 Method for producing RTB-based anisotropic bonded magnet Expired - Lifetime JP3623571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32662095A JP3623571B2 (en) 1995-11-20 1995-11-20 Method for producing RTB-based anisotropic bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32662095A JP3623571B2 (en) 1995-11-20 1995-11-20 Method for producing RTB-based anisotropic bonded magnet

Publications (2)

Publication Number Publication Date
JPH09148163A true JPH09148163A (en) 1997-06-06
JP3623571B2 JP3623571B2 (en) 2005-02-23

Family

ID=18189843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32662095A Expired - Lifetime JP3623571B2 (en) 1995-11-20 1995-11-20 Method for producing RTB-based anisotropic bonded magnet

Country Status (1)

Country Link
JP (1) JP3623571B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135981A1 (en) * 2006-05-18 2007-11-29 Hitachi Metals, Ltd. R-Fe-B POROUS MAGNET AND METHOD FOR PRODUCING THE SAME
WO2008065903A1 (en) * 2006-11-30 2008-06-05 Hitachi Metals, Ltd. R-Fe-B MICROCRYSTALLINE HIGH-DENSITY MAGNET AND PROCESS FOR PRODUCTION THEREOF
JP2009123968A (en) * 2007-11-15 2009-06-04 Hitachi Metals Ltd POROUS MATERIAL FOR R-Fe-B BASED PERMANENT MAGNET, AND MANUFACTURING METHOD THEREOF
US20100247367A1 (en) * 2009-03-30 2010-09-30 Tdk Corporation Method of producing rare-earth magnet
JP2012216807A (en) * 2011-03-29 2012-11-08 Hitachi Metals Ltd Method for manufacturing r-t-b-based permanent magnet
JP2012216804A (en) * 2011-03-28 2012-11-08 Hitachi Metals Ltd Method for manufacturing r-t-b-based permanent magnet
CN102982936A (en) * 2012-11-09 2013-03-20 厦门钨业股份有限公司 Manufacture method for dispense process of sintering Nd-Fe-B serial magnet
JP2014199887A (en) * 2013-03-29 2014-10-23 愛知製鋼株式会社 Method of recovering magnet powder from rare earth bond magnet

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1970916A4 (en) * 2006-05-18 2011-11-09 Hitachi Metals Ltd R-Fe-B POROUS MAGNET AND METHOD FOR PRODUCING THE SAME
US8268093B2 (en) 2006-05-18 2012-09-18 Hitachi Metals, Ltd. R-Fe-B porous magnet and method for producing the same
EP1970916A1 (en) * 2006-05-18 2008-09-17 Hitachi Metals, Ltd. R-Fe-B POROUS MAGNET AND METHOD FOR PRODUCING THE SAME
WO2007135981A1 (en) * 2006-05-18 2007-11-29 Hitachi Metals, Ltd. R-Fe-B POROUS MAGNET AND METHOD FOR PRODUCING THE SAME
JP4873008B2 (en) * 2006-05-18 2012-02-08 日立金属株式会社 R-Fe-B porous magnet and method for producing the same
JP4924615B2 (en) * 2006-11-30 2012-04-25 日立金属株式会社 R-Fe-B fine crystal high-density magnet and method for producing the same
EP2043114A1 (en) * 2006-11-30 2009-04-01 Hitachi Metals, Ltd. R-Fe-B MICROCRYSTALLINE HIGH-DENSITY MAGNET AND PROCESS FOR PRODUCTION THEREOF
WO2008065903A1 (en) * 2006-11-30 2008-06-05 Hitachi Metals, Ltd. R-Fe-B MICROCRYSTALLINE HIGH-DENSITY MAGNET AND PROCESS FOR PRODUCTION THEREOF
EP2043114A4 (en) * 2006-11-30 2011-11-09 Hitachi Metals Ltd R-Fe-B MICROCRYSTALLINE HIGH-DENSITY MAGNET AND PROCESS FOR PRODUCTION THEREOF
JPWO2008065903A1 (en) * 2006-11-30 2010-03-04 日立金属株式会社 R-Fe-B fine crystal high-density magnet and method for producing the same
US8128758B2 (en) 2006-11-30 2012-03-06 Hitachi Metals, Ltd. R-Fe-B microcrystalline high-density magnet and process for production thereof
JP2009123968A (en) * 2007-11-15 2009-06-04 Hitachi Metals Ltd POROUS MATERIAL FOR R-Fe-B BASED PERMANENT MAGNET, AND MANUFACTURING METHOD THEREOF
US20100247367A1 (en) * 2009-03-30 2010-09-30 Tdk Corporation Method of producing rare-earth magnet
JP2010258412A (en) * 2009-03-30 2010-11-11 Tdk Corp Method of producing rare-earth magnet
JP2012216804A (en) * 2011-03-28 2012-11-08 Hitachi Metals Ltd Method for manufacturing r-t-b-based permanent magnet
JP2012216807A (en) * 2011-03-29 2012-11-08 Hitachi Metals Ltd Method for manufacturing r-t-b-based permanent magnet
CN102982936A (en) * 2012-11-09 2013-03-20 厦门钨业股份有限公司 Manufacture method for dispense process of sintering Nd-Fe-B serial magnet
CN102982936B (en) * 2012-11-09 2015-09-23 厦门钨业股份有限公司 The manufacture method saving operation of sintered Nd-Fe-B based magnet
JP2014199887A (en) * 2013-03-29 2014-10-23 愛知製鋼株式会社 Method of recovering magnet powder from rare earth bond magnet

Also Published As

Publication number Publication date
JP3623571B2 (en) 2005-02-23

Similar Documents

Publication Publication Date Title
EP0411571B1 (en) Rare earth permanent magnet powder, method for producing same and bonded magnet
US5597425A (en) Rare earth cast alloy permanent magnets and methods of preparation
JP3250551B2 (en) Method for producing anisotropic rare earth magnet powder
JPH09165601A (en) Anisotropic rare earth alloy powder for permanent magnet and production of anisotropic bonded magnet
JP3540438B2 (en) Magnet and manufacturing method thereof
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JPH09148163A (en) Manufacture of r-t-b antisotropic bonded magnet
WO2004030000A1 (en) Method for producing r-t-b based rare earth element permanent magnet
JP3368295B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3368294B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3597615B2 (en) Method for producing RTB based anisotropic bonded magnet
JP4702522B2 (en) R-T-B system sintered magnet and manufacturing method thereof
US5186761A (en) Magnetic alloy and method of production
US5076861A (en) Permanent magnet and method of production
JP3634565B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPH10172850A (en) Production of anisotropic permanent magnet
JP3423965B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP2002025813A (en) Anisotropic rare earth magnet powder
JP2927987B2 (en) Manufacturing method of permanent magnet powder
JP3481653B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3086334B2 (en) Anisotropic rare earth alloy powder for permanent magnet
JPH07278615A (en) Production of anisotropic rare-earth alloy powder for permanent magnet
JPS6230846A (en) Production of permanent magnet material
JPH10189319A (en) Manufacture of material powder for anisotropic permanent magnet
JP2978004B2 (en) Method for producing rare earth composite magnet having magnetic anisotropy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

EXPY Cancellation because of completion of term