JPS6317504A - Permanent magnet and its manufacture - Google Patents

Permanent magnet and its manufacture

Info

Publication number
JPS6317504A
JPS6317504A JP61162622A JP16262286A JPS6317504A JP S6317504 A JPS6317504 A JP S6317504A JP 61162622 A JP61162622 A JP 61162622A JP 16262286 A JP16262286 A JP 16262286A JP S6317504 A JPS6317504 A JP S6317504A
Authority
JP
Japan
Prior art keywords
permanent magnet
manufacturing
cast permanent
magnet according
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61162622A
Other languages
Japanese (ja)
Inventor
Noriyuki Inoue
宣幸 井上
Katsumi Takahashi
勝美 高橋
Nobuo Imaizumi
伸夫 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP61162622A priority Critical patent/JPS6317504A/en
Publication of JPS6317504A publication Critical patent/JPS6317504A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Abstract

PURPOSE:To improve magnetic characteristics by melting a composition alloy specified within a specific range, solidifying the alloy in the specific orientation and imparting magnetic anisotropy. CONSTITUTION:A composition alloy is shown by the formula R(T1-x-yAlxMy), where R represents the combination of one kind or two or more kinds of rare earth metals containing Y, T a transition metal mainly comprising Fe or Fe and Co, and M a metalloid centering around B, and x, y and z in formula are each prescribed within the ranges of 0.005<=x<=0.1, 0.01<=y<=0.1 and 4<=z<=9. The composition alloy is melted, a columnar crystal is formed through unidirectional solidification, casted, and heated and treated in a temperature region of 800-1200 deg.C and a crystal structure is stabilized, and the characteristics of a permanent magnet are given from a process in which coerciveness under the state of casting is promoted. When the stabilization of coerciveness is considered, aging treatment at 300-800 deg.C is executed after heat treatment. Accordingly, high performance is acquired.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は希土類とFeもしくはFe、 COを主体とす
る遷移金属類とBを主体とするメタロイドで構成された
鋳造永久磁石およびその製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cast permanent magnet composed of a rare earth element, a transition metal mainly composed of Fe or Fe, and CO, and a metalloid mainly composed of B, and a method for producing the same. It is something.

[従来の技術] 希土類遷移金属合金において希土類金属と遷移金属の比
が2:17である金属間化合物が理論的に極めて高い磁
気特性[(BH)++ax 〜50HGOelを有する
ことが発見されて以来、同系化合物を主体とする永久磁
石実用合金を得る試みが種々実験されてきた。−例とし
て5IIl−Co−Cu−Fe系金属間化合物で(Bt
l)max 〜30HGOeが達成され、さらにMd 
−Fe系金属間化合物で(BH)w+ax 〜40HG
Oeの高磁気特性が得られている。この組成合金は粉砕
、磁場中配向圧縮成形あるいは非磁場中圧縮成形、焼結
、溶体化9時効する焼結型永久磁石による製造方法が一
般的である。
[Prior Art] Since it was discovered that an intermetallic compound with a rare earth metal to transition metal ratio of 2:17 in a rare earth transition metal alloy has theoretically extremely high magnetic properties [(BH)++ax ~ 50 HGOel. Various experiments have been conducted in an attempt to obtain a practical alloy for permanent magnets mainly consisting of similar compounds. - As an example, in 5IIIl-Co-Cu-Fe based intermetallic compound (Bt
l) max ~30HGOe was achieved and further Md
-Fe-based intermetallic compound (BH)w+ax ~40HG
High magnetic properties of Oe have been obtained. This compositional alloy is generally manufactured using a sintered permanent magnet, which is pulverized, oriented compression molded in a magnetic field or compression molded in a non-magnetic field, sintered, and solution aged.

[発明が解決しようとする問題点] しかしながらNd−Fe−3系焼結型永久磁石は高磁気
特性が19られるにもかかわらず、合金自体に粘りおよ
び機械的に強度が高(、Sm−Co系焼結型永久磁石に
比較して、礪械的粉砕および機械的加工が困難であり、
さらに酸化により磁気特性の劣化を生じ、また樹脂結合
型永久磁石としてロール急冷したリボンを粉砕して樹脂
成形する製造方法があるが、結晶の成長方向性が不規則
なため、等方性の永久磁石にしかならないので、高磁気
特性が得られないという欠点があった。
[Problems to be solved by the invention] However, although Nd-Fe-3 based sintered permanent magnets have high magnetic properties, the alloy itself has high stickiness and mechanical strength (Sm-Co, Compared to sintered permanent magnets, mechanical crushing and mechanical processing are difficult;
Furthermore, oxidation causes deterioration of magnetic properties, and there is a production method for resin-bonded permanent magnets in which a roll-quenched ribbon is pulverized and resin-molded, but because the direction of crystal growth is irregular, it is an isotropic permanent magnet. Since it can only function as a magnet, it has the disadvantage of not being able to obtain high magnetic properties.

本発明はこの点を鑑みて、希土類鉄系永久磁石の製造方
法を改良し、新規な組織の永久磁石を得ることにより、
磁気的異方性を得、高磁気特性を達成することを目的と
する。
In view of this point, the present invention improves the manufacturing method of rare earth iron permanent magnets and obtains permanent magnets with a new structure.
The purpose is to obtain magnetic anisotropy and achieve high magnetic properties.

[問題点を解決するための手段] 本発明はR(T    ^IM)の一般式に1−x−y
  X  V おいて、RはYを含む希土類金属の一種もしくは二種以
上の組合せ、TはFeもしくはFe、 Coを主体とす
る遷移金属、MはBを中心とするメタロイドであり、式
中のx、y、zがそれぞれ、0、005≦X≦0.1 001≦y≦0.1 4≦7≦9 の範囲で規定される組成合金からなることを特徴とした
鋳造永久磁石であり、鋳造時のインゴットの金属組織が
主として柱状晶からなり、また柱状晶の成長方向に対し
て直角方向を磁極とする鋳造永久磁石である。またこの
鋳造永久磁石を製造する方法としては、組成合金を溶融
後、特定の方向に擬固させ、磁気的異方性を付与せしめ
ることであり、一方向性凝固により柱状晶を形成させる
。そして鋳造後、800〜1 、200℃の温度領域に
て加熱処理を施すことにより結晶組織を安定化させ、鋳
造状態の保磁性を促進させる工程から永久磁石特性を付
与せしめる。さらに必要な場合、すなわち保磁性の安定
化を考慮したとき、加熱処理後、300〜800℃の時
効処理を施すことにより高性能化を実現できる。
[Means for solving the problems] The present invention provides the general formula of R(T^IM) with 1-x-y
In the formula, , y, and z are respectively defined in the ranges of 0,005≦X≦0.1, 001≦y≦0.1, 4≦7≦9, and are cast permanent magnets. The metal structure of the ingot is mainly composed of columnar crystals, and it is a cast permanent magnet whose magnetic poles are perpendicular to the growth direction of the columnar crystals. The method for manufacturing this cast permanent magnet is to melt the compositional alloy and then pseudo-solidify it in a specific direction to impart magnetic anisotropy, and form columnar crystals by unidirectional solidification. After casting, a heat treatment is performed in a temperature range of 800 to 1,200°C to stabilize the crystal structure and promote coercivity in the cast state, thereby imparting permanent magnetic properties. Furthermore, when necessary, that is, when stabilization of coercivity is taken into consideration, high performance can be achieved by performing an aging treatment at 300 to 800° C. after the heat treatment.

また時効処理を少なくとも100Oeの磁界中で施すこ
とが磁気異方性の改善上好ましい。組成範囲において、
AI(アルミニウム)のXの値がo、oos未満である
と鋳造組織が形成されず、0.1を越えるとBr(残留
磁化)が低下し、メタロイドのyの値が0.01未満で
あると iHc (保磁力)が得られず、0.1を越え
るとBrが低下し、Z値が4未満ではBrが低下し、9
を越えると111cおよび鋳造時の柱状晶が得られない
ので、それぞれこの範囲に限定される。また製造方法に
おいて、鋳造後の加熱処理温度については、800℃未
満では結晶組織の安定化が得られず、1.200℃を越
えると柱状晶組織が崩壊し、加熱処理後の時効処理温度
については、300℃未満では保磁力が向上せず、80
0℃を越えると逆に保磁力が低下し、時効処理において
磁界強度が100Oe未満では十分な異方性を有する結
晶成長が得られず、それぞれこの範囲に限定される。
Further, it is preferable to perform the aging treatment in a magnetic field of at least 100 Oe in order to improve magnetic anisotropy. In the composition range,
If the value of X of AI (aluminum) is less than o or oos, a cast structure will not be formed, if it exceeds 0.1, Br (residual magnetization) will decrease, and if the value of y of metalloid is less than 0.01. and iHc (coercive force) cannot be obtained, and if it exceeds 0.1, Br decreases, and if the Z value is less than 4, Br decreases, and 9
If it exceeds 111c and columnar crystals during casting cannot be obtained, each is limited to this range. In addition, in the manufacturing method, when the heat treatment temperature after casting is less than 800℃, the crystal structure cannot be stabilized, and when it exceeds 1.200℃, the columnar crystal structure collapses. The coercive force does not improve below 300℃, and the
If the temperature exceeds 0° C., the coercive force decreases, and if the magnetic field strength is less than 100 Oe in the aging treatment, crystal growth with sufficient anisotropy cannot be obtained, and the magnetic field is limited to this range.

[実施例1] ”0.9DyOj (F2O,73C00,20”0.
035 Bo、015 )5.4組成合金をアーク溶解
し、底面をCu(銅)、側面を^1□03 (アルミナ
)で形成された鋳型内で鋳造した。この金属組織を第1
図に示し、明らかに温度勾配をなす方向に合金が凝固し
、柱状晶が成長していることがわかる。次にこのインゴ
ット、さらに1,000℃、2時間、Ar(アルゴン)
ガス雰囲気にて加熱処理したインゴット。
[Example 1] "0.9DyOj (F2O, 73C00, 20"0.
035 Bo, 015) 5.4 composition alloy was arc melted and cast in a mold with a bottom surface made of Cu (copper) and a side surface made of ^1□03 (alumina). This metal structure is the first
As shown in the figure, it can be seen that the alloy solidifies in a direction that clearly forms a temperature gradient, and columnar crystals grow. Next, this ingot was further heated at 1,000°C for 2 hours using Ar (argon).
Ingot heat-treated in a gas atmosphere.

そしてざらに600℃で時効処理したインゴットそれぞ
れを、VSM (試料振動型磁力計)にて測定した減磁
曲線を第2図に示す。
FIG. 2 shows demagnetization curves measured using a VSM (vibrating sample magnetometer) for each ingot that was roughly aged at 600°C.

[実施例2コ NdO,95Dy0.05”eO,85C00,05”
0.05 日0.05 ’5.4の組成合金を実施例1
と同様に作製し、インゴットから8m+角のブロック体
を切り出し、柱状晶の軸方向(L)およびそれと直角方
向(S)の磁気特性を、それぞれVSMにて測定した減
磁曲線を第3図に示す。鋳造後の磁気異方性は、明らか
に柱状晶の成長方向と直角な方向に存在し、磁気異方性
を有するインゴットが得られた。
[Example 2 NdO, 95Dy0.05"eO, 85C00,05"
Example 1 An alloy with a composition of 0.05'5.4
Figure 3 shows the demagnetization curves obtained by cutting out an 8m+square block from the ingot and measuring the magnetic properties in the axial direction (L) and perpendicular direction (S) of the columnar crystals using a VSM. show. The magnetic anisotropy after casting clearly existed in a direction perpendicular to the growth direction of the columnar crystals, and an ingot with magnetic anisotropy was obtained.

[実施例31 Nd   Dy  (Fe   Co   AI   
B   )0.95 0,05 0,85 0,05 
0.05 0.05 5.4の組成合金を実施例1と同
様に作製してインゴットを得、1 、000℃、2時間
加熱処理した後、水冷し、次に600℃の時効処理を無
磁界中および5にOeの磁界中で施した。得られたイン
ゴットから8m角のブロック体を切り出し、柱状晶の方
向と直角方向の磁気特性を、それぞれVSMにて測fし
た減磁曲線を第4図に示す。角型性および保磁力とも増
加していることがわかる。
[Example 31 Nd Dy (Fe Co AI
B) 0.95 0.05 0.85 0.05
An alloy with a composition of 0.05 0.05 5.4 was prepared in the same manner as in Example 1 to obtain an ingot, heat treated at 1,000°C for 2 hours, water cooled, and then aged at 600°C. in a magnetic field and in a magnetic field of 5 Oe. An 8 m square block was cut from the obtained ingot, and the magnetic properties in the direction perpendicular to the direction of the columnar crystals were measured using a VSM, and the demagnetization curves are shown in FIG. 4. It can be seen that both squareness and coercive force increase.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の鋳造合金における金属組織の光学顕微
鏡写真である(倍率X 400)。 第2図は本発明の各工程における磁気特性をVSM(試
料振動型磁力計)にて測定した減磁曲線で示す。 A:鋳造後の状態 B:I造+ 1 、000℃、2時間の加熱処理後の状
態C:!g造+ 1,000℃、2時間の加熱処理+6
00℃時効処理後の状態 第3図は本発明の鋳造永久磁石の磁気特性を、VSMに
て測定した減磁曲線で示す。 L:柱状晶の軸方向  S二軸と直角方向第4図は本発
明の鋳造永久磁石の製造方法による磁気特性を、VSM
にて測定した減磁曲線で示す。 E:無磁界      F:5にOeの磁界中特許出願
人 並木精密宝石株式会社 図       面 第  IE 第2図 第  3e!m
FIG. 1 is an optical micrograph of the metal structure of the cast alloy of the present invention (magnification: X 400). FIG. 2 shows magnetic properties in each step of the present invention using demagnetization curves measured using a vibrating sample magnetometer (VSM). A: Condition after casting B: Condition after heat treatment at 1,000°C for 2 hours C:! G construction + 1,000℃, 2 hours heat treatment +6
Condition after aging treatment at 00° C. FIG. 3 shows the magnetic properties of the cast permanent magnet of the present invention using a demagnetization curve measured by VSM. L: axial direction of columnar crystal S direction perpendicular to the two axes FIG.
This is shown as a demagnetization curve measured at E: No magnetic field F: 5 to Oe in magnetic field Patent applicant Namiki Precision Jewel Co., Ltd. Drawing No. IE Fig. 2 No. 3e! m

Claims (1)

【特許請求の範囲】 (1)R(T_1_−_x_−_yAl_xM_y)の
一般式において、RはYを含む希土類金属の一種もしく
は二種以上の組合せ、TはFeもしくはFe、Coを主
体とする遷移金属、MはBを中心とするメタロイドであ
り、式中のx、y、zがそれぞれ、0.005≦x≦0
.1 0.01≦y≦0.1 4≦z≦9 の範囲で規定される組成合金からなることを特徴とした
鋳造永久磁石。 (2)鋳造時のインゴットの金属組織が主として柱状晶
からなる特許請求の範囲第(1)項記載の鋳造永久磁石
。 (3)柱状晶の成長方向に対して直角方向を磁極とする
特許請求の範囲第(2)項記載の鋳造永久磁石。 (4)R(T_1_−_x_−_yAl_xM_y)の
一般式において、RはYを含む希土類金属の一種もしく
は二種以上の組合せ、TはFeもしくはFe、Coを主
体とする遷移金属、MはBを中心とするメタロイドであ
り、式中のx、y、zがそれぞれ、0.005≦x≦0
.1 0.01≦y≦0.1 4≦z≦9 の範囲で規定される組成合金を溶融後、特定の方向に凝
固させ、磁気的異方性を付与せしめることを特徴とした
鋳造永久磁石の製造方法。 (5)一方向性凝固により柱状晶を形成させる特許請求
の範囲第(4)項記載の鋳造永久磁石の製造方法。 (6)鋳造後、800〜1、200℃の温度領域にて加
熱処理を施す特許請求の範囲第(4)項記載の鋳造永久
磁石の製造方法。 (7)加熱処理後、300〜800℃の時効処理を施す
特許請求の範囲第(4)項記載の鋳造永久磁石の製造方
法。 (8)時効処理を少なくとも100Oeの磁界中で施す
特許請求の範囲第(7)項記載の鋳造永久磁石の製造方
法。
[Claims] (1) In the general formula of R(T_1_-_x_-_yAl_xM_y), R is one or a combination of two or more rare earth metals including Y, and T is Fe or a transition mainly composed of Fe or Co. The metal M is a metalloid centered on B, and x, y, and z in the formula are each 0.005≦x≦0.
.. 1. A cast permanent magnet comprising an alloy whose composition is defined in the following ranges: 1 0.01≦y≦0.1 4≦z≦9. (2) The cast permanent magnet according to claim (1), wherein the metal structure of the ingot at the time of casting is mainly composed of columnar crystals. (3) The cast permanent magnet according to claim (2), wherein the magnetic pole is in a direction perpendicular to the growth direction of the columnar crystals. (4) In the general formula of R(T_1_-_x_-_yAl_xM_y), R is one or a combination of two or more rare earth metals including Y, T is Fe or a transition metal mainly composed of Fe or Co, and M is B. It is a metalloid at the center, and x, y, and z in the formula are each 0.005≦x≦0.
.. 1 A cast permanent magnet characterized in that an alloy whose composition is defined in the range of 0.01≦y≦0.1 4≦z≦9 is melted and then solidified in a specific direction to impart magnetic anisotropy. manufacturing method. (5) A method for manufacturing a cast permanent magnet according to claim (4), in which columnar crystals are formed by unidirectional solidification. (6) The method for manufacturing a cast permanent magnet according to claim (4), wherein after casting, a heat treatment is performed in a temperature range of 800 to 1,200°C. (7) The method for manufacturing a cast permanent magnet according to claim (4), wherein after the heat treatment, an aging treatment is performed at 300 to 800°C. (8) A method for manufacturing a cast permanent magnet according to claim (7), wherein the aging treatment is performed in a magnetic field of at least 100 Oe.
JP61162622A 1986-07-10 1986-07-10 Permanent magnet and its manufacture Pending JPS6317504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61162622A JPS6317504A (en) 1986-07-10 1986-07-10 Permanent magnet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61162622A JPS6317504A (en) 1986-07-10 1986-07-10 Permanent magnet and its manufacture

Publications (1)

Publication Number Publication Date
JPS6317504A true JPS6317504A (en) 1988-01-25

Family

ID=15758106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61162622A Pending JPS6317504A (en) 1986-07-10 1986-07-10 Permanent magnet and its manufacture

Country Status (1)

Country Link
JP (1) JPS6317504A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11291926B2 (en) 2017-05-29 2022-04-05 Hanayama International Trading Ltd Polyhedral toy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203303A (en) * 1986-03-03 1987-09-08 Seiko Epson Corp Cast rare earth element-iron system permanent magnet
JPS62203302A (en) * 1986-03-03 1987-09-08 Seiko Epson Corp Cast rare earth element-iron system permanent magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203303A (en) * 1986-03-03 1987-09-08 Seiko Epson Corp Cast rare earth element-iron system permanent magnet
JPS62203302A (en) * 1986-03-03 1987-09-08 Seiko Epson Corp Cast rare earth element-iron system permanent magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11291926B2 (en) 2017-05-29 2022-04-05 Hanayama International Trading Ltd Polyhedral toy

Similar Documents

Publication Publication Date Title
US4131495A (en) Permanent-magnet alloy
EP0242187A1 (en) Permanent magnet and method of producing same
JPH1036949A (en) Alloy for rare earth magnet and its production
US4192696A (en) Permanent-magnet alloy
US5186761A (en) Magnetic alloy and method of production
JP2000219942A (en) Alloy thin strip for rare earth magnet, alloy fine powder and their production
EP0288637B1 (en) Permanent magnet and method of making the same
JPH08181009A (en) Permanent magnet and its manufacturing method
JPS6317504A (en) Permanent magnet and its manufacture
US5460662A (en) Permanent magnet and method of production
JP2587617B2 (en) Manufacturing method of rare earth permanent magnet
JPH1064710A (en) Isotropic permanent magnet having high magnetic flux density and manufacture thereof
JPS6318604A (en) Resin-bonded permanent magnet and manufacture thereof
JP3380575B2 (en) RB-Fe cast magnet
JPH0521216A (en) Permanent magnet alloy and its production
JP3536943B2 (en) Alloy for rare earth magnet and method for producing the same
JPH01168844A (en) Permanent magnet material
JPH0533076A (en) Rare earth permanent magnet alloy and its production
JPH06325916A (en) Manufacture of anisotropic permanent magnet
JP2787447B2 (en) Quenched ribbon magnet with high remanence
JPH0483830A (en) Method for improving magnetic characteristic of rare-earth alloy for permanent magnet
JPH0533095A (en) Permanent magnet alloy and its production
JPH02101710A (en) Permanent magnet and manufacture thereof
JPH01706A (en) Rare earth magnet manufacturing method
JPH0641655A (en) Rare earth metal alloy for magnet and production thereof