JPS63286511A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPS63286511A
JPS63286511A JP12070887A JP12070887A JPS63286511A JP S63286511 A JPS63286511 A JP S63286511A JP 12070887 A JP12070887 A JP 12070887A JP 12070887 A JP12070887 A JP 12070887A JP S63286511 A JPS63286511 A JP S63286511A
Authority
JP
Japan
Prior art keywords
permanent magnet
cooling
magnet
cooling rate
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12070887A
Other languages
Japanese (ja)
Inventor
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP12070887A priority Critical patent/JPS63286511A/en
Publication of JPS63286511A publication Critical patent/JPS63286511A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To manufacture an inexpensive permanent magnet having sufficient coercive force and high efficiency, by subjecting an alloy containing rare-earth elements, transition metals, and boron as principal components to melting, to cooling at a specific cooling rate, and then to heat treatment. CONSTITUTION:An alloy containing rare-earth elements (including Y), transition metals, and boron as principal components is melted, heated at 10<-1>-10<6> deg.C/sec cooling rate by a double roll method, etc., and then heat-treated at >=250 deg.C to undergo magnetic hardening, or, after the above-mentioned cooling, this alloy is subjected to hot working at >=500 deg.C so as to orient a crystal axis in a crystalline state in a specific direction and make the magnet magnetically anisotropic or is subjected to hot working at >=500 deg.C and then to heat treatment at >=500 deg.C to undergo magnetic hardening. In this way, the high-efficiency permanent magnet can be manufactured by means of low-temp. and short-time treatment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、希土類元素と遷移金屑とボロンを主成分とす
る永久磁石及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a permanent magnet whose main components are rare earth elements, transition gold dust, and boron, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

永久磁石は、一般家庭の各種電気製品から大型コンピュ
ーターの周辺端末機器まで幅広い分野で使用されている
重要な電気・電子材料の一つである。
Permanent magnets are important electrical and electronic materials that are used in a wide range of fields, from various household appliances to peripheral terminal equipment for large computers.

最近の電気製品の小型化、高効率化の要求にともない、
永久磁石も益々高性能化が求められている。現在使用さ
れている永久磁石のうち代表的なものはアルニコ・ハー
ドフェライト及び積土i−遷移金属系磁石である。特に
希土類−遷移金属系磁石であるR−C,系永久磁石やR
−Fe−B系永久磁石は、高い磁気性能が得られるので
従来から多くの研究開発が成されている。
With the recent demand for smaller and more efficient electrical products,
Permanent magnets are also required to have increasingly higher performance. Representative permanent magnets currently in use are alnico hard ferrite and earthwork i-transition metal magnets. In particular, rare earth-transition metal magnets such as R-C, permanent magnets, and R
Since -Fe-B permanent magnets provide high magnetic performance, much research and development has been carried out on them.

従来、 これらR−Pe−B系永久磁石の製造方法砂量
しては以下の文献に示すような方法がある。
Conventionally, there are methods for manufacturing these R-Pe-B permanent magnets as shown in the following literature regarding the amount of sand.

(1) 粉末冶金法に基づ(焼結による方法。(1) Based on powder metallurgy (sintering method).

(文献1、文献2) ■ アモルファス合金を製造するに用いる急冷薄帯製造
装置で、厚さ30μm程度の急冷薄片を作り、その薄片
を樹脂結合法で磁石にするメルトスピニング法による急
冷薄片を用いた樹脂結合方法。(文献3、文献4) (3)  上述の■の方法で使用した急冷薄片を2段階
のホットプレス法で、機械的配向処理を行う方法、(文
献4、文献6) ここで、 文献1:特開昭59−46008号公報;文献2:M、
Sagawa、  S、FuJimura、    N
、  Togawa、  H,Yamam。
(References 1 and 2) ■ A quenched thin strip manufacturing device used to manufacture amorphous alloys produces quenched thin flakes with a thickness of about 30 μm, and the quenched thin flakes are made into magnets using a resin bonding method using the melt spinning method. resin bonding method. (References 3, 4) (3) A method of mechanically aligning the rapidly cooled flakes used in the above method (■) using a two-step hot press method (References 4, 6) Here, Reference 1: JP-A-59-46008; Document 2: M,
Sagawa, S., Fujimura, N.
, Togawa, H. Yamam.

to、  and   Y、  Matsuura;J
、  App  1 、  P  h  y  s 、
  V o  1  、 5 5 (6) 1 5 M
 a  r  c  h1984、  p 2083゜ 文献3:特開昭59−2tx549号公報;文献4:R
,W、Lee:APPI、   Phys、Lett、
Vol、46(8)、   15Apri11985、
P2O3 文献5:特開昭80−100402号公報次に上記の従
来方法について説明する。
to, and Y, Matsuura;J
, App 1 , Phys ,
V o 1, 5 5 (6) 1 5 M
a r c h1984, p 2083゜Reference 3: JP-A-59-2TX549; Reference 4: R
,W,Lee:APPI, Phys,Lett,
Vol, 46(8), 15 April 11985,
P2O3 Document 5: Japanese Unexamined Patent Publication No. 80-100402 Next, the above conventional method will be explained.

先ず(りの焼結法では、溶解・鋳造により合金インゴッ
トを作製し、 粉砕して透当な粒I!(数μm)の磁石
粉を得る。磁石粉は成形助剤のバインダーと混練され、
磁場中でプレス成形されて成形体が出来上がる。 成形
体はアルゴン中で1100℃前後の温度で1時間焼結さ
れ、その後室温まで急冷される。焼結後、600℃前後
の温度で熱処理することにより保磁力を向上させる。
First, in the sintering method, an alloy ingot is produced by melting and casting, and then pulverized to obtain magnet powder with transparent grains I! (several μm).The magnet powder is kneaded with a binder, which is a forming aid, and
The molded body is completed by press molding in a magnetic field. The compact is sintered in argon at a temperature around 1100° C. for 1 hour and then rapidly cooled to room temperature. After sintering, the coercive force is improved by heat treatment at a temperature of around 600°C.

■のメルトスピニング法による急冷薄片を用いた樹脂結
合方法では、先ず急冷薄帯製造装置の最適な回転数で、
R−Fe−B合金の急冷薄帯を作る。得られた厚さ30
μmのリボン状薄帯は、直径が400λ以下の結晶の集
合体であり、脆くて割れ易く、結晶粒は等方的に分布し
ているので、磁気的にも等方性である。との薄帯を適当
な粒度に粉砕して、樹脂と混練してプレス成形する。
In the resin bonding method using quenched thin strips by the melt spinning method, first, the quenched ribbon manufacturing equipment is rotated at the optimal rotation speed.
A quenched ribbon of R-Fe-B alloy is made. Obtained thickness 30
A μm ribbon-like thin strip is an aggregate of crystals with a diameter of 400λ or less, is brittle and easily broken, and since the crystal grains are distributed isotropically, it is also magnetically isotropic. The thin ribbon is crushed to an appropriate particle size, kneaded with resin, and press-molded.

(3)の製造方法は、(2)におけるリボン状急冷薄帯
あるいは薄片を、真空中あるいは不活性雰囲気中で二段
階ホットプレス法と呼ばれる方法で緻密で異方性を育す
るR−Fe−B磁石を得るものである。
In the manufacturing method (3), the R-Fe- This is to obtain a B magnet.

このプレス過程では一紬性の圧力が加えられ、磁化容易
軸がプレス方向と平行に配向して、合金は異方性化する
In this pressing process, a uniform pressure is applied, the axis of easy magnetization is oriented parallel to the pressing direction, and the alloy becomes anisotropic.

尚、最初のメルトスピニング法で作られるリボン状薄帯
の結晶粒は、それが最大の保磁力を示す時の粒径よりも
小さめにしておき、後のホットプレス中に結晶粒の粗大
化が生じて最適の粒径になるようにしておく。
In addition, the crystal grains of the ribbon-like thin strip produced by the initial melt spinning method are made smaller than the grain size at which they exhibit the maximum coercive force, to avoid coarsening of the crystal grains during the subsequent hot pressing. Allow the particles to grow to the optimum particle size.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以下の従来技術で一応希土類元素と鉄とボロンを主成分
とする永久磁石は製造出来るが、これらの製造方法には
次の如き欠点を存している。
Permanent magnets containing rare earth elements, iron, and boron as main components can be manufactured using the following conventional techniques, but these manufacturing methods have the following drawbacks.

(1)の焼結法は、合金を粉末にするのが必須であるが
、R−re−B系合金は大変酸素に対して活性であるの
で、粉末化すると余計酸化が漱しくなり、焼結体中の酸
素濃度はどうしても高(なってしまう。又粉末−を成形
するときに、例えばステアリン酸亜鉛のような成形助剤
を使用しなければならず、これは焼結工程で前も、て取
り除かれるのであるが、成形助剤中の敵側は、磁石体の
中に炭素の形で残ってしまう、この炭素は著しく R−
Fe−B合金の磁気性能を低下させ好ましくない。
In the sintering method (1), it is essential to turn the alloy into powder, but since R-re-B alloys are very active against oxygen, turning them into powder will make the oxidation even more stale and cause sintering. The oxygen concentration in the compact is unavoidably high.Also, when the powder is compacted, a compacting aid such as zinc stearate must be used; However, the enemy in the forming aid remains in the form of carbon inside the magnet, and this carbon has a significant R-
This is undesirable because it lowers the magnetic performance of the Fe-B alloy.

成形助剤を加えてプレス成形した後の成形体はグリーン
体と言われ、これは大変脆く、ハンドリングが難しい。
The molded body after press molding with the addition of a molding aid is called a green body, which is extremely brittle and difficult to handle.

従って焼結炉にきれいに並べて入れるのには、相当の手
間が掛かることも大きな欠点である。これらの欠点があ
るので、一般的に言ってR−Fe−B系の永久磁石の製
造には、高価な設備が必要になるばかりでなく、生産効
率が悪く1結局磁石の製造コストが高(なってしまう。
Therefore, a major drawback is that it takes a considerable amount of effort to arrange them neatly in the sintering furnace. Because of these drawbacks, generally speaking, the production of R-Fe-B permanent magnets not only requires expensive equipment, but also has poor production efficiency1. turn into.

従って、比較的原料費の安いR−Fe−B系磁石の長所
を活かすことが出来る方法とは言い難い。
Therefore, it cannot be said that this is a method that can take advantage of the advantages of R-Fe-B magnets, which have relatively low raw material costs.

又、(2)並びに(3)の方法は、従来の永久磁石製造
の概念を変える興味深いものであるが ■ 約10”C/secもの冷却速度を必要とし、冷却
速度のバラツキが性能に大きく影響する。
Furthermore, although methods (2) and (3) are interesting and change the concept of conventional permanent magnet manufacturing, they require a cooling rate of about 10"C/sec, and variations in the cooling rate greatly affect performance. do.

■ 組織中には結晶質相だけでな(、非晶質をも含存し
、その相が磁気特性に大きく依存している。そのため非
晶質相が結晶化する高温での安定性に乏しい。
■ The structure contains not only a crystalline phase (but also an amorphous phase, which is highly dependent on the magnetic properties. Therefore, it has poor stability at high temperatures where the amorphous phase crystallizes. .

■ 異方化のための熱間加工も結晶化をさせないため短
時間で行なう必要があり、製造技術が困難 ■ 保磁力機構がピニングあり、なおかつ温度特性の悪
さをカバーするため高保磁力であるので、磁石の着脱磁
が非常に困難 といった、生産性に起因する問題が数多く存在する。
■ Hot processing for anisotropy needs to be done in a short time to avoid crystallization, making manufacturing technology difficult ■ The coercive force mechanism has pinning, and it has a high coercive force to compensate for poor temperature characteristics. There are many problems caused by productivity, such as the difficulty in attaching and detaching magnets.

本発明は、以上の従来技術の欠点を解決するものであり
、その目的とするところは高性能且つ低コストな希土類
−鉄系永久磁石及びその製造方法を提供することにある
The present invention solves the above-mentioned drawbacks of the prior art, and its purpose is to provide a high-performance, low-cost rare earth-iron permanent magnet and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の永久磁石の製造方法のfJlは、希土類元素(
但しYを含む)と遷移金属とボロンを基本成分とする永
久磁石の製造方法において、溶解後10”−’ 〜10
’ ” C/secの冷却速度で該合金を冷却した後、
250℃以上の温度で熱処理を施し、磁気的に硬化せし
めたことを特徴とする永久磁石の製造方法であり、その
製造方法の第2は、溶解後10−1〜10’ ” C/
secの冷却速度で該合金を冷却した後500″C以上
の温度で熱間加工することにより該磁石を磁気的に異方
化したことを特徴とする永久磁石の製造方法であり、更
にその製造方法の第3は前記第2の製造方法の熱間加工
後250” (:以上の温度で熱処理することにより磁
気的に硬化したことを特徴とする永久磁石の製造方法で
ある。またさらに、前記第1、第2および第3の製造方
法の後に、それぜれ粉砕工程、樹脂との混練工程を加え
、樹脂で結合しても良い。
fJl in the permanent magnet manufacturing method of the present invention is a rare earth element (
However, in the manufacturing method of a permanent magnet whose basic components are Y), a transition metal, and boron, after melting 10"-' to 10
''' After cooling the alloy at a cooling rate of C/sec,
This is a method for producing a permanent magnet, characterized by subjecting it to heat treatment at a temperature of 250° C. or higher and magnetically hardening it.
A method for producing a permanent magnet, characterized in that the magnet is made magnetically anisotropic by cooling the alloy at a cooling rate of sec and then hot working at a temperature of 500"C or higher, and further comprising: The third method is a method for producing a permanent magnet, which is characterized in that the permanent magnet is magnetically hardened by heat treatment at a temperature of 250" or more after hot working in the second production method. After the first, second, and third manufacturing methods, a pulverization step and a kneading step with a resin may be added, and bonding may be performed with the resin.

〔作用〕[Effect]

前記のように希土類−鉄系磁石の製造方法である焼結法
、急冷法は夫々粉砕による粉末管理の困難さ、生産性の
悪さといった大きな欠点を育している。
As mentioned above, the sintering method and the quenching method, which are methods for producing rare earth-iron magnets, each have major drawbacks such as difficulty in powder control through pulverization and poor productivity.

本発明者等は、これらの欠点を改良するため、バルク伏
信での磁石化の研究に着手し、先づ前記希土類元素、遷
移金属及びポロ/を基本成分とする磁石の組成域で、溶
解後の冷却速度を制御してクロ組織を微細にしたものに
熱処理を施すことにより充分な保磁力が得られることを
知見した。またこの磁石は熱間加工により異方化できる
ことも知見した。以下にこの点について説明を加える。
In order to improve these shortcomings, the present inventors started research on magnetization using bulk materials, and first, melting in the composition range of magnets whose basic components are rare earth elements, transition metals, and porous metals. It has been found that a sufficient coercive force can be obtained by controlling the subsequent cooling rate and heat-treating the black structure to make it finer. We also discovered that this magnet can be made anisotropic by hot working. This point will be explained below.

従来のR−Fe−B系磁石を保磁力機構の上から分類す
ると、前記従来技術における(1)の焼結法はニューク
リエージ2ンタイプであり、(2)(3)の急冷法はピ
ニングタイプである。この2つの区分は切破化曲線の立
ち上がりを調べることで容易にできる。すなわちニュー
クリエージタンタイプでは切破化曲線の立ち上がりが急
唆であり、ピニングタイプでは切破化曲線は、磁化が析
出物でピン止めされている間は立ち上がりづらく、ピニ
ングフォー文以上になると急に立ち上がるといった形と
なる。一般にR−Fe−B磁石では、残留磁求密[fB
rや保磁力iHcの温度系数が大きいので、これをカバ
ーするためiHcを太き(している。
Classifying conventional R-Fe-B magnets based on the coercive force mechanism, the sintering method (1) in the above conventional technology is the nucleage 2-in type, and the quenching method (2) and (3) is the pinning type. It is. These two divisions can be easily made by examining the rise of the truncation curve. In other words, in the nucleated tan type, the rise of the rupture curve is abrupt, and in the pinning type, the rupture curve is difficult to rise while the magnetization is pinned by the precipitate, and suddenly rises when the value exceeds the pinning four pattern. It takes the form of standing up. Generally, in R-Fe-B magnets, residual magnetic density [fB
Since the temperature coefficients of r and coercive force iHc are large, iHc is made thick to cover this.

ところがfHcを大きくすると、磁石として着脱磁が非
常に困難となる。特に最近の希土類磁石使用の主流であ
る回転機等では、多[着磁が必要になることが多(、こ
の問題の重要性が増している。この点を考慮すると、二
、−クリエージ望ンタイプは、切破化曲線の立ち上がり
が急なので、十分な着磁場がなくとも、ある程度の着磁
ができるが、ピニングタイプではピニングフォース以内
の磁場だとほとんど着磁できないことになる。この点で
はニュークリエーションタイプがを利となる。
However, when fHc is increased, it becomes extremely difficult to attach and detach the magnet. In particular, in rotating machines, etc., which are the mainstream in which rare earth magnets are used these days, multiple magnetizations are often required (this problem is becoming increasingly important. In the case of the pinning type, the rise of the cutting curve is steep, so some degree of magnetization can be achieved even without a sufficient magnetic field, but in the case of the pinning type, magnetization is hardly possible if the magnetic field is within the pinning force. Creation type is an advantage.

しかし焼結法では、前述のように粉砕・焼結という工程
を経るため粉末管理が困難でしかも、酸素炭素濃度が高
くなってしまう、という欠点がある。これらの点を解決
するには、保磁力機構はニュークリエージ3ンモデルで
なおかっ、粉砕・焼結という工程を経ずとも磁石化でき
ればよい。
However, the sintering method has disadvantages in that it is difficult to control the powder because it involves the steps of crushing and sintering as described above, and the oxygen and carbon concentration increases. In order to solve these problems, the coercive force mechanism should be a Nucleage 3 model, as long as it can be made into a magnet without going through the process of crushing and sintering.

一般にニュークリニーシコンモデルでは、主相(希土類
−鉄−ボロン系の場合はRs Fet a B相、Rは
希土類元素)が単磁区の臨界半径に近づき、容易に逆磁
区を発生させ得ないようにすることが保磁力発生の原因
とされている。ところがR1F e 、a B相の臨界
半径はサブミクロンオーダであるにもかかわらず、焼結
磁石の粒径は10μm程度である。これは焼結法の場合
、鋳造インプットをいったん粉砕するという工程を経る
ので、その段階で表面積が大きく増加し酸素濃度が増す
ために、現実には臨界半径に近い粒径を持つ焼結体は作
成不能ということになる。
In general, in the New Clinicon model, the main phase (Rs Feta B phase in the case of rare earth-iron-boron system, R is the rare earth element) approaches the critical radius of a single magnetic domain, so that it cannot easily generate a reverse magnetic domain. This is said to be the cause of coercive force generation. However, although the critical radius of the R1F e , a B phase is on the submicron order, the grain size of the sintered magnet is about 10 μm. This is because in the case of the sintering method, the casting input goes through the process of being pulverized, and at that stage the surface area increases significantly and the oxygen concentration increases, so in reality, sintered bodies with a particle size close to the critical radius are This means that it cannot be created.

逆にいうと、ニュークリニーシコンモデルの保磁力に従
う磁石であるかぎり、わざわざ鋳造インゴットの粉砕か
ら焼結という工程を経ずとも、冷却時の速度を速め、粗
大な柱状晶あるいは等軸品の成長を抑制すれば、充分な
保磁力を得るのに可能な粒径にRs Few a B相
を制御できる。この方法では、バルク状囮で保磁力を得
ることが可能となり、前述のように粉末管理の困難さと
いった生産性の問題から解放される。
Conversely, as long as the magnet complies with the coercive force of the New Clinic model, it is possible to increase the cooling speed and grow coarse columnar crystals or equiaxed products without having to go through the process of crushing and sintering the cast ingot. By suppressing this, it is possible to control the Rs Few a B phase to a particle size that is possible to obtain a sufficient coercive force. This method makes it possible to obtain coercive force with a bulk decoy, and is freed from productivity problems such as the difficulty in powder management as described above.

ここで冷却速度を規定する理由を説明する。本発明で規
定する冷却速度は、基本的にアモルファス相を含まず、
かつ保磁力を得られないような粗大粒にもしない冷却速
度範囲である。本発明の規定より冷却速度を速めるとア
モルファス相ができやす(なり、保磁力機構は前述した
ピニング的になってしまう。 また本発明の規定より遅
くすると、結晶粒が粗大化し、保磁力が得られな(なっ
てしまう。またこの冷却速度範囲では、鋳造インゴット
あるいは薄片の厚さも数mm〜数cmといった厚さが可
能で、従来例■のような数10μmという厚さに比して
著しく生産性が高くなる。
Here, the reason for specifying the cooling rate will be explained. The cooling rate specified in the present invention basically does not include an amorphous phase,
Moreover, the cooling rate is within a range that does not cause the grains to become so coarse that they cannot obtain coercive force. If the cooling rate is faster than specified in the present invention, an amorphous phase tends to form (and the coercive force mechanism becomes like the pinning described above.) If the cooling rate is slower than specified in the present invention, the crystal grains become coarse and the coercive force becomes insufficient. In addition, within this cooling rate range, the thickness of the cast ingot or flake can be from several mm to several centimeters, which significantly improves productivity compared to the conventional example (2), which has a thickness of several tens of micrometers. becomes more sexual.

また嘱本発明は従来技術(2)によらない新たなR−F
e−B系樹脂結合磁石への応用も、可能である。本発明
になる永久磁石の切破化曲線はニュークリエーションタ
イプであるが、同様なタイプの切破化曲線を存する焼結
磁石を粉砕すると保磁力が激減してしまい、 樹脂結合
磁石化できなかった。これは粉砕による機械歪と結晶が
大きすぎることに起因している。ところが本発明を用い
て、冷却速度を速めて、アモルファス相を析出させない
範囲で結晶粒を微細化すれば樹脂結合磁石用粉末の粒径
(数〜数μm)にしても保磁力を存する粉末の作成が可
能となり、 従来技術(2)とは異なり、ニュークリエ
ージ茸ンタイプの樹脂結合磁石の作成が可能となる。
Furthermore, the present invention provides a new R-F that is not based on the prior art (2).
Application to e-B resin bonded magnets is also possible. The breaking curve of the permanent magnet of the present invention is of the nucleation type, but when a sintered magnet with a similar type of breaking curve was crushed, the coercive force was drastically reduced, and it could not be made into a resin-bonded magnet. . This is due to mechanical strain caused by crushing and the crystals being too large. However, by using the present invention to increase the cooling rate and refine the crystal grains within a range that does not precipitate the amorphous phase, it is possible to obtain a powder that maintains coercive force even when the particle size of the powder for resin-bonded magnets is (several to several μm). Unlike conventional technology (2), it becomes possible to create a Nucleage mushroom-type resin bonded magnet.

以下、本発明による永久磁石の好ましい組成範囲につい
て説明する。
The preferred composition range of the permanent magnet according to the present invention will be explained below.

希土類としてはN Y、La、Ce、Pr、Nd、Sm
、Eu、Gd、Tb、Dy−Ho、Er、Tm、Yb、
Luが候補として挙げられ、これらのうち1!1あるい
は28[以上を組合わせて用いられる。最も高い磁気性
能はPrで得られる。
Rare earths include N Y, La, Ce, Pr, Nd, Sm
, Eu, Gd, Tb, Dy-Ho, Er, Tm, Yb,
Lu is listed as a candidate, and among these, 1!1 or 28 [or more] may be used in combination. The highest magnetic performance is obtained with Pr.

従って実用的にはPr、Pr−Nd合金、Ce−Pr−
Nd合金等が用いられる。また少量の添加元素、例えば
重希土元素のD y s  T b等やA1、MOlS
i等は保磁力の向上に育効である。
Therefore, Pr, Pr-Nd alloy, Ce-Pr-
Nd alloy or the like is used. In addition, small amounts of additive elements, such as heavy rare earth elements such as D y s T b, A1, MOIS
i etc. are effective in improving coercive force.

R−Fe−B系磁石の主相はR1Fet a Bである
。従ってRが8原子%未満では、もはや上記化合物を形
成せずα−鉄と同一構造の立方晶組織となるため高磁気
特性は得られない。
The main phase of the R-Fe-B magnet is R1FetaB. Therefore, if R is less than 8 at %, the above compound is no longer formed and a cubic crystal structure having the same structure as α-iron is formed, so that high magnetic properties cannot be obtained.

一方Rが30原子を越えると非磁性のRリッチ相が多く
なり磁気特性は著しく低下する。よってRの範囲8〜3
0原子%が適当である。しかし本発明による磁石とする
ため、好ましくはR8〜25原子が適当である。
On the other hand, when R exceeds 30 atoms, the nonmagnetic R-rich phase increases and the magnetic properties deteriorate significantly. Therefore, the range of R is 8 to 3
0 atomic % is appropriate. However, in order to form a magnet according to the present invention, preferably R8 to R25 atoms are suitable.

Bは、Rs Fet a B相を形成するための必須元
素であり、2原子%未満では菱面体のR−Fe系になる
ため高保磁力は望めない。 また28原子%を越えると
Bに富む非磁性相が多(なり、残留磁束密度は著しく低
下してくる。しかし本発明による磁石としては好ましく
はB88原子以下がよく、それ以上で微細なR* Fe
+ a B相を得ることが困難で、保磁力は小さくなる
B is an essential element for forming the Rs Feta B phase, and if it is less than 2 atomic %, it becomes a rhombohedral R-Fe system, so a high coercive force cannot be expected. Moreover, if it exceeds 28 at%, there will be a large amount of B-rich non-magnetic phase, and the residual magnetic flux density will drop significantly. However, for the magnet according to the present invention, it is preferable that the B content is 88 atoms or less, and if it is more than that, fine R* Fe
+a It is difficult to obtain the B phase, and the coercive force becomes small.

Coは本系磁石のキュリ一点を増加させるのにを効な元
素であり、基本的にFeのサイトを置換しR* Co、
a Bを形成するのだが、この化合物は結晶異方性磁界
が小さく、その量が増すにつれて磁石全体としての保磁
力は小さくなる。そのため永久磁石として考えられるI
KOe以上の保磁力を与えるには50原子%以内がよい
Co is an element that is effective in increasing the Curie point of this magnet, and basically replaces the Fe site to create R* Co,
a B is formed, but this compound has a small crystal anisotropy magnetic field, and as the amount increases, the coercive force of the magnet as a whole decreases. Therefore, I can be considered as a permanent magnet.
In order to provide a coercive force of KOe or more, the content is preferably within 50 atomic %.

AIは、保磁力の増大効果を存する。(文献7:Zha
ng  Maocai他、Proceedings  
of  the  8th  Internation
al  Workshop  on  Rare−Ea
rth  Magnets、   1985、   p
541) この文献7は焼結磁石に対する効果を示したものである
が、その効果は本発明による磁石でも同様に存在する。
AI has the effect of increasing coercive force. (Reference 7: Zha
ng Maocai et al., Proceedings
of the 8th International
al Workshop on Rare-Ea
rth Magnets, 1985, p.
541) This document 7 shows the effect on a sintered magnet, but the effect also exists in the magnet according to the present invention.

しかしAIは非磁性元素であるため、その添加量を増す
と残留磁束密度が低下し、15原子%を越えるとハード
フェライト以下の残留磁束密度になってしまうので希土
類磁石としての目的を果たし得ない。よってA1の添加
量は15原子%以下がよい。
However, since AI is a non-magnetic element, increasing the amount added will lower the residual magnetic flux density, and if it exceeds 15 at %, the residual magnetic flux density will be lower than that of hard ferrite, so it cannot fulfill its purpose as a rare earth magnet. . Therefore, the amount of A1 added is preferably 15 atomic % or less.

次に本発明の実施例について述べる。Next, embodiments of the present invention will be described.

〔実施例〕〔Example〕

(実施例1) @1表に示すような組成の合金を誘導炉で溶解し、これ
につらなる直径150mm5幅200mmの鋼製ロール
からなる双ロールの薄板連続鋳造機に注湯した。このと
きロール回転数は40RPMで出来あがった。薄板の厚
さは約3mmであった(このときの冷却速度は約lθ″
”C/5ec)これを800℃で4時間アニール処理を
施し、磁気特性を測定した。比較例として同組成を発熱
体付セラミック鋳型(冷却速度10−s″C/5ec)
に鋳込んで粗大を発達させインゴット伏にしたもの(厚
さ10mm)に10009CX24時間のアニール処理
を施したものの測定結果をかかげた。結果を第2表に示
す。
(Example 1) An alloy having a composition as shown in Table 1 was melted in an induction furnace and poured into a twin-roll thin plate continuous casting machine consisting of steel rolls with a diameter of 150 mm and a width of 200 mm. At this time, the roll rotation speed was 40 RPM. The thickness of the thin plate was approximately 3 mm (the cooling rate at this time was approximately lθ''
"C/5ec) This was annealed at 800°C for 4 hours and its magnetic properties were measured. As a comparative example, the same composition was used in a ceramic mold with a heating element (cooling rate 10-s"C/5ec).
The following are the measurement results of a 10009CX 24-hour annealed ingot (thickness: 10 mm) that was cast and roughened and turned into an ingot. The results are shown in Table 2.

本発明を用いて、冷却速度を規定すると低温、短時間ア
ニールで高磁気特性が得られていることがわかる。
It can be seen that by using the present invention and specifying the cooling rate, high magnetic properties can be obtained with low temperature and short time annealing.

第1表 第2表 (実施例2) 実施例1の第1表で最も性能の高かったNo11組成P
r+ s Dye Fes t Baを用いて、今度は
ロール回転数をIORPMに下げて約10mm厚の板を
作成した。これをホットプレス(型はグラファイト使用
)で1000℃で厚さ3mm(加工[70%)に成形し
、次いで1000℃4時間の熱処理を施して、磁期特性
を測定した。
Table 1 Table 2 (Example 2) No. 11 composition P that had the highest performance in Table 1 of Example 1
Using r+s Dye Fes t Ba, a plate with a thickness of about 10 mm was produced by lowering the roll rotation speed to IORPM. This was molded to a thickness of 3 mm (processing [70%)] at 1000° C. using a hot press (using graphite as the mold), and then heat treated at 1000° C. for 4 hours to measure the magnetic period characteristics.

比較例としては、実施例1で使用したインゴットを同条
件で成形、熱処理したものを用いた。結果は第3表に示
す。
As a comparative example, the ingot used in Example 1 was molded and heat treated under the same conditions. The results are shown in Table 3.

第3表 本発明によるほうが異方性磁石も高性能に作成できるこ
とがわかる。
Table 3 shows that anisotropic magnets can also be produced with higher performance according to the present invention.

(実施例3) 実施例2と同じ<P rs a Dye Fes v 
Baを用いて、今度は回転数を1100RPにして、0
.5mm厚の薄板を作成し、次いで800℃で4時間の
アニール処理を施した。これを平均粒径20μmにまで
機械粉砕し、エポキシ樹脂2wt%と混練後、20KO
eの磁場中でブロック状に成形し、150℃でキュア処
理を行い、樹脂結合磁石とした。磁場印加方向と、その
直角方向の2方向で磁気特性を測定した。
(Example 3) Same as Example 2 <Prs a Dye Fes v
Using Ba, set the rotation speed to 1100RP this time and set it to 0.
.. A thin plate with a thickness of 5 mm was prepared, and then annealed at 800° C. for 4 hours. This was mechanically crushed to an average particle size of 20μm, and after kneading with 2wt% of epoxy resin, 20KO
It was molded into a block shape in a magnetic field of e, and cured at 150°C to obtain a resin-bonded magnet. Magnetic properties were measured in two directions: the direction of magnetic field application and the direction perpendicular to that direction.

結果を第4表に示す。The results are shown in Table 4.

第4表 本発明によると異方性の樹脂結合磁石の作成が可能とな
ることがわかる。
Table 4 It can be seen that according to the present invention, it is possible to create an anisotropic resin-bonded magnet.

(実施例4) 実施例2.3と同じ<Prt s DY* Fee 1
B4を用いて、種々の冷却速度で、溶湯を冷却した。冷
却速度の調整は、実施例1.2.3で用いた双ロールの
、回転速度調整と通常鋳造の型材質(水冷胴、鉄、セラ
ミック、発熱体付制御冷却セラミック型)等で行なった
。出来上がった鋳片はすべて1000℃X12時間、 
熱処理を行ない、保磁力を測定した。結果を第1図に示
す。
(Example 4) Same as Example 2.3 <Prt s DY* Fee 1
B4 was used to cool the molten metal at various cooling rates. The cooling rate was adjusted by adjusting the rotational speed of the twin rolls used in Example 1.2.3 and the mold material for normal casting (water-cooled shell, iron, ceramic, controlled cooling ceramic mold with heating element). All finished slabs were heated at 1000℃ for 12 hours.
Heat treatment was performed and coercive force was measured. The results are shown in Figure 1.

冷却速度が増すにつれて保磁力iHcが増していること
がわかる。これは粒が微細化しているためである。10
6″″C/secの冷却速度でもiHcは出るが、ヒス
テリシス曲線の角型性が、悪くなり、保磁力機構もピニ
ング化する(アモルファス相の出現)ため10″℃/s
ecがニュークリエージ層ンモデルの切目化曲線を存す
る磁石としては限界である。
It can be seen that the coercive force iHc increases as the cooling rate increases. This is because the grains have become finer. 10
Even at a cooling rate of 6″C/sec, iHc is obtained, but the squareness of the hysteresis curve deteriorates and the coercive force mechanism becomes pinning (the appearance of an amorphous phase), so the cooling rate of 10″C/s
ec is the limit for a magnet that has the truncation curve of the nucleage layer model.

〔発明の効果〕〔Effect of the invention〕

以上の如く本発明の永久磁石の製造方法によれば、 粉
砕・焼結という工程を経ることな(、低温・短時間の熱
処理だけで、充分な保磁力が得られ、異方性の樹脂結合
磁石の製造も可能という効果を秦す。
As described above, according to the method of manufacturing a permanent magnet of the present invention, sufficient coercive force can be obtained without going through the steps of crushing and sintering (with only a short heat treatment at a low temperature), and anisotropic resin bonding can be achieved. The effect is that it is also possible to manufacture magnets.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例における冷却速度と保磁力i
Hcの関係を示すグラフ。 以  上 出願人 セイコーエプソン株式会社   、−ヘ。
Figure 1 shows the cooling rate and coercive force i in an embodiment of the present invention.
Graph showing the relationship between Hc. Applicant: Seiko Epson Corporation, -f.

Claims (3)

【特許請求の範囲】[Claims] (1)希土類元素(但しYを含む)と遷移金属とボロン
を基本成分とする永久磁石の製造方法において、溶解後
、10^−^1〜10^6℃/secの冷却速度で該合
金を冷却した後、250℃以上の温度で熱処理を施し、
磁気的に硬化せしめたことを特徴とする永久磁石の製造
方法。
(1) In a method for manufacturing a permanent magnet whose basic components are rare earth elements (including Y), transition metals, and boron, the alloy is melted at a cooling rate of 10^-^1 to 10^6°C/sec. After cooling, heat treatment is performed at a temperature of 250°C or higher,
A method for manufacturing a permanent magnet characterized by magnetically hardening it.
(2)希石類元素(但しYを含む)と遷移金属とボロン
を基本成分とする永久磁石の製造方法において溶解後1
0^−^1〜10^6℃/secの冷注速度で該合金を
冷却した後、その後500℃以上の温度で熱間加工する
ことにより、結晶状の結晶軸を特定の方向に配向せしめ
て該磁石を磁気的に異方性化することを特徴とする永久
磁石の製造方法。
(2) After melting in the method for manufacturing permanent magnets whose basic components are rare stone elements (including Y), transition metals, and boron.
After cooling the alloy at a cold pouring rate of 0^-^1 to 10^6°C/sec, the crystal axes of the crystal are oriented in a specific direction by hot working at a temperature of 500°C or higher. A method for producing a permanent magnet, comprising making the magnet magnetically anisotropic.
(3)希土類元素(但しYを含む)と遷移金属とボロン
を基本成分とする永久磁石の製造方法において溶解後、
10^−^1〜10^6℃/secの冷却速度で該合金
を冷却した後その後、500℃以上の温度で熱間加工し
、次に250℃以上の温度で熱処理することにより磁気
的に硬化したことを特徴とする永久磁石の製造方法
(3) After melting in the method for manufacturing permanent magnets whose basic components are rare earth elements (including Y), transition metals, and boron,
After cooling the alloy at a cooling rate of 10^-^1 to 10^6°C/sec, it is then hot worked at a temperature of 500°C or higher, and then heat treated at a temperature of 250°C or higher to magnetically Method for producing a permanent magnet characterized by being hardened
JP12070887A 1987-05-18 1987-05-18 Manufacture of permanent magnet Pending JPS63286511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12070887A JPS63286511A (en) 1987-05-18 1987-05-18 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12070887A JPS63286511A (en) 1987-05-18 1987-05-18 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPS63286511A true JPS63286511A (en) 1988-11-24

Family

ID=14793025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12070887A Pending JPS63286511A (en) 1987-05-18 1987-05-18 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPS63286511A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179304A (en) * 1987-12-29 1989-07-17 Daido Steel Co Ltd Manufacture of permanent magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179304A (en) * 1987-12-29 1989-07-17 Daido Steel Co Ltd Manufacture of permanent magnet

Similar Documents

Publication Publication Date Title
JP2003226944A (en) Sintered magnet using rare earth-iron-boron alloy powder for magnet
JPS62276803A (en) Rare earth-iron permanent magnet
JP2558095B2 (en) Rare earth ferrous iron permanent magnet manufacturing method
JPH01171209A (en) Manufacture of permanent magnet
EP0288637B1 (en) Permanent magnet and method of making the same
JP2530185B2 (en) Manufacturing method of permanent magnet
JPS63286511A (en) Manufacture of permanent magnet
JP2857824B2 (en) Rare earth-iron permanent magnet manufacturing method
JP3755902B2 (en) Magnet powder for anisotropic bonded magnet and method for producing anisotropic bonded magnet
JP2611221B2 (en) Manufacturing method of permanent magnet
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPH07123083B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JP2746111B2 (en) Alloy for permanent magnet
JPS63287005A (en) Permanent magnet and manufacture thereof
JPH08250312A (en) Rare earth-fe permanent magnet and manufacture thereof
JPH01171219A (en) Manufacture of permanent magnet integral with york
JPS63285909A (en) Permanent magnet and manufacture thereof
JPH03196601A (en) Permanent magnet and manufacture thereof
JPS63286513A (en) Manufacture of permanent magnet
JPH01175207A (en) Manufacture of permanent magnet
JPS63286515A (en) Manufacture of permanent magnet
JPH01161802A (en) Manufacture of permanent magnet
JP2631380B2 (en) Rare earth-iron permanent magnet manufacturing method
JPS63287006A (en) Permanent magnet and manufacture thereof