JP7247548B2 - Rare earth magnet and manufacturing method thereof - Google Patents

Rare earth magnet and manufacturing method thereof Download PDF

Info

Publication number
JP7247548B2
JP7247548B2 JP2018221584A JP2018221584A JP7247548B2 JP 7247548 B2 JP7247548 B2 JP 7247548B2 JP 2018221584 A JP2018221584 A JP 2018221584A JP 2018221584 A JP2018221584 A JP 2018221584A JP 7247548 B2 JP7247548 B2 JP 7247548B2
Authority
JP
Japan
Prior art keywords
rare earth
phase
earth magnet
main phase
modifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018221584A
Other languages
Japanese (ja)
Other versions
JP2020027933A (en
Inventor
紀次 佐久間
哲也 庄司
正朗 伊東
大輔 一期崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to KR1020180160146A priority Critical patent/KR102156629B1/en
Priority to EP18215888.1A priority patent/EP3522178B1/en
Priority to RU2018146475A priority patent/RU2697837C1/en
Priority to BR102018077206-6A priority patent/BR102018077206A2/en
Priority to CN201811619581.1A priority patent/CN109979699B/en
Publication of JP2020027933A publication Critical patent/JP2020027933A/en
Application granted granted Critical
Publication of JP7247548B2 publication Critical patent/JP7247548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/007Ferrous alloys, e.g. steel alloys containing silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/048Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by pulverising a quenched ribbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Description

本開示は、R-Fe-B系希土類磁石(Rは希土類元素)及びその製造方法に関する。本開示は、特に、高温での保磁力の低下が抑制されているR-Fe-B系希土類磁石及びその製造方法に関する。 The present disclosure relates to an R—Fe—B system rare earth magnet (R is a rare earth element) and a method for producing the same. In particular, the present disclosure relates to an R—Fe—B rare earth magnet whose coercive force is suppressed from decreasing at high temperatures, and a method for producing the same.

R-Fe-B系希土類磁石は、主相と、主相の周囲に存在する粒界相とを備える。主相は、RFe14Bで表される組成を有しており、磁性相である。この主相によって、強い磁性を発現する。一方、粒界相は、主相の周囲に存在して、主相同士を磁気的に分断している。そして、この磁気分断によって、R-Fe-B系希土類磁石の保磁力は高められている。 An R--Fe--B rare earth magnet comprises a main phase and grain boundary phases around the main phase. The main phase has a composition represented by R 2 Fe 14 B and is a magnetic phase. This main phase exhibits strong magnetism. On the other hand, the grain boundary phase exists around the main phase and separates the main phases magnetically. This magnetic division enhances the coercive force of the R—Fe—B system rare earth magnet.

この磁気分断効果を高めるため、種々の試みが行われている。例えば、特許文献1には、主相と粒界相とを備える希土類磁石を前駆体として、その前駆体の内部に改質材を浸透させた希土類磁石が開示されている。 Various attempts have been made to enhance this magnetic separation effect. For example, Patent Document 1 discloses a rare earth magnet obtained by using a rare earth magnet having a main phase and a grain boundary phase as a precursor and infiltrating a modifier into the interior of the precursor.

特許文献1に開示された希土類磁石においては、主相と粒界相の間に中間相を有することによって、希土類磁石全体の保磁力が高められている。 In the rare earth magnet disclosed in Patent Document 1, the coercive force of the entire rare earth magnet is enhanced by having an intermediate phase between the main phase and the grain boundary phase.

国際公開第2014/196605A1号International Publication No. 2014/196605A1

R-Fe-B系希土類磁石は、高性能であるため、多様な分野へ、その使用が拡大している。そのため、R-Fe-B系希土類磁石が、高温環境下で使用されることも増加している。また、R-Fe-B系希土類磁石が、高出力モータに使用され、高出力を長時間にわたって維持したとき、モータの自己発熱によって、R-Fe-B系希土類磁石が高温になる場合もある。 Due to their high performance, R--Fe--B rare earth magnets are being used in a wide variety of fields. Therefore, the use of R--Fe--B rare earth magnets in high-temperature environments is also increasing. In addition, when the R--Fe--B rare earth magnet is used in a high-output motor and the high output is maintained for a long period of time, the temperature of the R--Fe--B rare earth magnet may become high due to self-heating of the motor. .

R-Fe-B系希土類磁石が高温になったとき、保磁力が低下してしまうことがあることが知られている。 It is known that the coercive force of an R--Fe--B rare earth magnet may decrease when the temperature is high.

このことから、高温においても、保磁力の低下が抑制されている、R-Fe-B系希土類磁石が求められている、という課題を本発明者らは見出した。なお、本明細書において、高温とは、130~170℃、特に、140~160℃の範囲のことをいう。また、室温とは、20~25℃の範囲のことをいう。そして、R-Fe-B系希土類磁石とは、主相と、主相の周囲に存在する粒界相を備え、主相が、RFe14Bで表される組成を有する相を含んでいる磁石のことをいう。 Accordingly, the present inventors have found that there is a demand for an R--Fe--B rare earth magnet which is capable of suppressing a decrease in coercive force even at high temperatures. In this specification, high temperature means a temperature range of 130 to 170°C, particularly 140 to 160°C. Further, room temperature means a range of 20 to 25°C. An R--Fe--B rare earth magnet comprises a main phase and a grain boundary phase existing around the main phase, and the main phase contains a phase having a composition represented by R.sub.2Fe.sub.14B . It refers to a magnet that has

本開示は、上記課題を解決するためになされたものである。本開示は、高温においても、保磁力の低下が抑制されている、R-Fe-B系希土類磁石及びその製造方法を提供することを目的とする。 The present disclosure has been made to solve the above problems. An object of the present disclosure is to provide an R--Fe--B rare earth magnet in which a decrease in coercive force is suppressed even at high temperatures, and a method for producing the same.

本発明者らは、上記目的を達成すべく、鋭意検討を重ね、本開示の希土類磁石及びその製造方法を完成させた。本開示の希土類磁石及びその製造方法は、次の実施形態を含む。
〈1〉主相と、
前記主相の周囲に存在する粒界相と、
を備え、
全体組成が、式(Nd(Ce、La)(1-x-y) Fe(100-p-q-r-s)Co ・(R 1-z-w(ただし、Rは、Nd、Ce、及びLa以外の希土類元素から選ばれる1種以上であり、Rは、Pr、Nd、Pm、Sm、Eu、及びGdから選ばれる1種以上であり、Rは、R以外の希土類元素から選ばれる1種以上であり、Mは、Ga、Al、Cu、Au、Ag、Zn、In、及びMnから選ばれる1種以上、並びに不可避的不純物元素であり、Mは、R及びRと合金化することによって、R 1-z-wの融点をRの融点よりも低下させる合金元素及び不可避的不純物元素であり、かつ、
p、q、r、s、及びtが、原子%で、
5.0≦p≦20.0、
0≦q≦8.0、
4.0≦r≦6.5、
0≦s≦2.0、及び
0≦t≦10.0
であり、
x、y、z、及びwが、モル比で、
0.4≦x≦0.8、
0≦y≦0.1、
0.5≦z≦0.8、及び
0≦w≦0.1
である。)で表され、かつ、
前記Ceに対して、前記Laが、モル比で、1/9~3倍含有されている、
希土類磁石。
〈2〉前記Ceに対して、前記Laが、モル比で、1/9~2倍含有されている、〈1〉項に記載の希土類磁石。
〈3〉前記主相と前記粒界相との間に、さらに、中間相を備え、
前記tが、0.1≦t≦10.0であり、かつ
前記Rの濃度が、前記主相においてよりも、前記中間相において高くなっている、
〈1〉又は〈2〉項に記載の希土類磁石。
〈4〉前記RがNdである、〈1〉~〈3〉項のいずれか一項に記載の希土類磁石。
〈5〉Rの濃度が、前記中間相においてよりも、前記主相において、1.5~8.0倍高くなっている、〈3〉又は〈4〉項に記載の希土類磁石。
〈6〉前記中間相の厚さが、2~100nmである、〈3〉~〈5〉項のいずれか一項に記載の希土類磁石。
〈7〉式(Nd(Ce、La)(1-x-y) Fe(100-p-q-r-s)Co (ただし、Rは、Nd、Ce、及びLa以外の希土類元素から選ばれる1種以上であり、Mは、Ga、Al、Cu、Au、Ag、Zn、In、及びMnから選ばれる1種以上、並びに不可避的不純物元素であり、かつ、
p、q、r、及びsが、原子%で、
5.0≦p≦20.0、
0≦q≦8.0、
4.0≦r≦6.5、及び
0≦s≦2.0
であり、
x及びyが、モル比で、
0.4≦x≦0.8、及び
0≦y≦0.1
である。)で表され、かつ、前記Ceに対して、前記Laが、モル比で、1/9~3倍含有されている溶湯を準備すること、
前記溶湯を急冷して、薄帯を得ること、
複数の前記薄帯を熱間で圧縮して、成形体を得ること、及び
前記成形体を熱間で圧縮して、圧縮体を得ること、
を含む、
希土類磁石の製造方法。
〈8〉前記溶湯が、前記Ceに対して、前記Laを、モル比で、1/9~2倍含有している、〈7〉項に記載の方法。
〈9〉式R 1-z-w(ただし、Rは、Pr、Nd、Pm、Sm、Eu、及びGdから選ばれる1種以上であり、Rは、R以外の希土類元素から選ばれる1種以上であり、Mは、R及びRと合金化することによって、R 1-z-wの融点をRの融点よりも低下させる合金元素及び不可避的不純物元素であり、z及びwが、モル比で、0.5≦z≦0.8及び0≦w≦0.1である。)で表される合金を含有する改質材を準備すること、
前記圧縮体と前記改質材を互いに接触させて、接触体を得ること、及び
前記接触体を熱処理して、前記圧縮体の内部に、前記改質材の融液を浸透させること、
を含む、
〈7〉又は〈8〉項に記載の方法。
〈10〉前記Rが、Ndである、〈9〉項に記載の方法。
〈11〉前記成形体を、0.001/s以上0.1/s未満の歪速度、50~70%の圧下率、及び700~800℃の温度で圧縮して、圧縮体を得る、〈7〉~〈10〉項のいずれか一項に記載の方法。
In order to achieve the above object, the present inventors have made intensive studies and completed the rare earth magnet of the present disclosure and the method for producing the same. The rare earth magnet of the present disclosure and its manufacturing method include the following embodiments.
<1> a main phase,
a grain boundary phase existing around the main phase;
with
The overall composition has the formula (Nd x (Ce, La) (1-xy) R 1 y ) p Fe (100-pqr-s) Co q B r M 1 s (R 2 z R 3 w M 2 1-zw ) t (where R 1 is one or more selected from rare earth elements other than Nd, Ce, and La, and R 2 is Pr, Nd, Pm, Sm, Eu , and Gd, R 3 is one or more selected from rare earth elements other than R 2 , M 1 is Ga, Al, Cu, Au, Ag, Zn, In, and Mn is one or more selected from Mn and an unavoidable impurity element, and M2 increases the melting point of R2zR3wM21 -zw to R2 by alloying with R2 and R3 . An alloy element and an unavoidable impurity element that lowers the melting point of
p, q, r, s, and t in atomic %,
5.0≦p≦20.0,
0≤q≤8.0,
4.0≦r≦6.5,
0≦s≦2.0 and 0≦t≦10.0
and
x, y, z, and w, in molar ratios,
0.4≦x≦0.8,
0≤y≤0.1,
0.5≦z≦0.8 and 0≦w≦0.1
is. ), and
The La is contained in a molar ratio of 1/9 to 3 times as much as the Ce,
Rare earth magnet.
<2> The rare earth magnet according to <1>, wherein La is contained in a molar ratio of 1/9 to 2 times as much as Ce.
<3> Further comprising an intermediate phase between the main phase and the grain boundary phase,
wherein t is 0.1 ≤ t ≤ 10.0, and the concentration of R2 is higher in the intermediate phase than in the main phase;
A rare earth magnet according to <1> or <2>.
<4> The rare earth magnet according to any one of <1> to <3>, wherein R2 is Nd.
<5> The rare earth magnet according to <3> or <4>, wherein the concentration of R2 is 1.5 to 8.0 times higher in the main phase than in the intermediate phase.
<6> The rare earth magnet according to any one of <3> to <5>, wherein the intermediate phase has a thickness of 2 to 100 nm.
<7> Formula (Nd x (Ce, La) (1-xy) R 1 y ) p Fe (100-pqr-s) Co q B r M 1 s (where R 1 is Nd, Ce, and one or more selected from rare earth elements other than La, M 1 is one or more selected from Ga, Al, Cu, Au, Ag, Zn, In, and Mn, and inevitable impurities is an element, and
p, q, r, and s in atomic %,
5.0≦p≦20.0,
0≤q≤8.0,
4.0≦r≦6.5 and 0≦s≦2.0
and
x and y, in molar ratio,
0.4≦x≦0.8 and 0≦y≦0.1
is. ) and contains the La in a molar ratio of 1/9 to 3 times the Ce,
quenching the molten metal to obtain a ribbon;
Hot compressing a plurality of ribbons to obtain a compact, and Hot compressing the compact to obtain a compact,
including,
A method for producing a rare earth magnet.
<8> The method according to <7>, wherein the molten metal contains the La in a molar ratio of 1/9 to 2 times the Ce.
<9> Formula R 2 z R 3 w M 2 1-zw (where R 2 is one or more selected from Pr, Nd, Pm, Sm, Eu, and Gd, and R 3 is R 2 is one or more selected from rare earth elements other than 2 , and M 2 is alloyed with R 2 and R 3 to increase the melting point of R 2 z R 3 w M 2 1-zw to the melting point of R 2 An alloy element and an unavoidable impurity element that lower than preparing a modifier containing
Bringing the compressed body and the modified material into contact with each other to obtain a contact body, and heat-treating the contact body to allow the melt of the modified material to permeate the inside of the compressed body;
including,
The method according to <7> or <8>.
<10> The method according to <9>, wherein the R2 is Nd.
<11> The molded body is compressed at a strain rate of 0.001/s or more and less than 0.1/s, a rolling reduction of 50 to 70%, and a temperature of 700 to 800 ° C. to obtain a compressed body. The method according to any one of items 7> to <10>.

本開示によれば、Nd、Ce、及びLaを共存させ、CeとLaの含有量比率を所定の範囲にすることにより、高温において、保磁力の低下を抑制した希土類磁石及びその製造方法を提供することができる。 According to the present disclosure, by coexisting Nd, Ce, and La and setting the content ratio of Ce and La within a predetermined range, a rare earth magnet that suppresses a decrease in coercive force at high temperatures and a method for producing the same are provided. can do.

図1は、Nd、Ce、及びLaの含有量割合を示す図である。FIG. 1 is a diagram showing content ratios of Nd, Ce, and La. 図2は、本開示に係る希土類磁石の組織の一態様を模式的に示す図である。FIG. 2 is a diagram schematically showing one aspect of the structure of a rare earth magnet according to the present disclosure. 図3は、本開示に係る希土類磁石の組織の別態様を示す図である。FIG. 3 is a diagram illustrating another embodiment of the organization of a rare earth magnet according to the present disclosure. 図4は、実施例15及び比較例1の試料について、温度と保磁力の関係を示すグラフである。4 is a graph showing the relationship between temperature and coercive force for the samples of Example 15 and Comparative Example 1. FIG. 図5は、実施例15及び比較例1の試料について、温度と残留磁化の関係を示す図である。5 is a diagram showing the relationship between temperature and residual magnetization for the samples of Example 15 and Comparative Example 1. FIG. 図6は、実施例6の試料について、組織観察及び成分分析位置を示す図である。FIG. 6 is a diagram showing tissue observation and component analysis positions for the sample of Example 6. FIG. 図7は、実施例6の試料(第1視野)についての組織観察及び成分分析結果を示す図である。7 is a diagram showing the results of structural observation and component analysis of the sample (first field of view) of Example 6. FIG. 図8は、実施例6の試料(第2視野)についての組織観察及び成分分析結果を示す図である。FIG. 8 is a diagram showing the results of structural observation and component analysis of the sample (second field of view) of Example 6. FIG. 図9は、実施例12の試料について、組織観察及び成分分析位置を示す図である。FIG. 9 is a diagram showing tissue observation and component analysis positions for the sample of Example 12. FIG. 図10は、実施例12の試料(第1視野)についての組織観察及び成分分析結果を示す図である。10 is a diagram showing the results of structural observation and component analysis of the sample (first field of view) of Example 12. FIG. 図11は、実施例12の試料(第2視野)についての組織観察及び成分分析結果を示す図である。FIG. 11 is a diagram showing the results of structural observation and component analysis of the sample of Example 12 (second field of view). 図12は、実施例17の試料について、組織観察及び成分分析位置を示す図である。FIG. 12 is a diagram showing tissue observation and component analysis positions for the sample of Example 17. FIG. 図13は、実施例17の試料(第1視野)についての組織観察及び成分分析結果を示す図である。FIG. 13 is a diagram showing the results of structural observation and component analysis of the sample (first field of view) of Example 17. FIG. 図14は、実施例17の試料(第2視野)についての組織観察及び成分分析結果を示す図である。FIG. 14 is a diagram showing the results of structural observation and component analysis of the sample of Example 17 (second field of view). 図15は、実施例39の試料について、結晶粒の粒径tの一例を示す図である。FIG. 15 is a diagram showing an example of grain size t of crystal grains in the sample of Example 39. In FIG. 図16は、実施例40の試料について、結晶粒の粒径tの一例を示す図である。FIG. 16 is a diagram showing an example of grain size t of crystal grains for the sample of Example 40. In FIG. 図17は、実施例6の試料について、結晶粒の粒径tの一例を示す図である。FIG. 17 is a diagram showing an example of grain size t of crystal grains in the sample of Example 6. In FIG. 図18は、実施例12の試料について、結晶粒の粒径tの一例を示す図である。FIG. 18 is a diagram showing an example of grain size t of crystal grains for the sample of Example 12. In FIG. 図19は、実施例39の試料について、組織観察結果及び成分分析位置を示す図である。19 is a diagram showing the tissue observation results and component analysis positions for the sample of Example 39. FIG. 図20は、図19の白線で示した位置での成分分析結果を示す図である。FIG. 20 is a diagram showing the results of component analysis at positions indicated by white lines in FIG. 図21は、実施例40の試料について、組織観察結果及び成分分析位置を示す図である。FIG. 21 is a diagram showing tissue observation results and component analysis positions for the sample of Example 40. FIG. 図22は、図21の白線で示した位置での成分分析結果を示す図である。FIG. 22 is a diagram showing the results of component analysis at positions indicated by white lines in FIG. 図23は、実施例6の試料について、組織観察結果及び成分分析位置を示す図である。23 is a diagram showing the tissue observation results and component analysis positions for the sample of Example 6. FIG. 図24は、図23の白線で示した位置での成分分析結果を示す図である。FIG. 24 is a diagram showing the results of component analysis at positions indicated by white lines in FIG. 図25は、実施例12の試料について、組織観察結果及び成分分析位置を示す図である。25 is a diagram showing the tissue observation results and component analysis positions for the sample of Example 12. FIG. 図26は、図25の白線で示した位置での成分分析結果を示す図である。FIG. 26 is a diagram showing the results of component analysis at positions indicated by white lines in FIG.

以下、本開示に係る希土類磁石及びその製造方法の実施形態を詳細に説明する。なお、以下に示す実施形態は、本開示に係る希土類磁石及びその製造方法を限定するものではない。 Hereinafter, embodiments of a rare earth magnet and a method for manufacturing the same according to the present disclosure will be described in detail. It should be noted that the embodiments shown below do not limit the rare earth magnet and the manufacturing method thereof according to the present disclosure.

R-Fe-B系希土類磁石において、1)主相の粒径を小さくする、2)主相の異方性磁界を高くする、3)主相同士を磁気的に分断する、と保磁力が向上する。 In the R—Fe—B system rare earth magnet, coercive force can be increased by 1) reducing the grain size of the main phase, 2) increasing the anisotropic magnetic field of the main phase, and 3) magnetically separating the main phases. improves.

主相の粒径を小さくするため、R-Fe-B系希土類磁石は、液体急冷等を用いて、主相をナノ結晶化している。これにより、R-Fe-B系希土類磁石中に、主相として、多量のRFe14B相が存在し、その主相の周囲には、粒界相が存在する。粒界相には、過剰なRを含有するRリッチ相と、Feを含む少量の磁性相(例えば、RFe相等)が存在する。 In order to reduce the grain size of the main phase, the main phase of the R--Fe--B rare earth magnet is nano-crystallized by liquid quenching or the like. As a result, a large amount of R 2 Fe 14 B phase exists as the main phase in the R—Fe—B system rare earth magnet, and grain boundary phases exist around the main phase. The grain boundary phase includes an R-rich phase containing excess R and a small amount of magnetic phase containing Fe (for example, RFe 2 phase).

NdFe14B相は、室温での異方性磁界が高いが、キュリー点は、320℃であり、あまり高くない。そのため、キュリー点に達しなくても、高温時には、NdFe14B相の異方性磁界は低下する。一方、Feを含む磁性相(例えば、RFe相等)は、常温より高い温度で常磁性であるが、NdFe14B相同士(結晶粒同士)の磁気スピン相互作用を伝播する可能性がある。主相として、多量のNdFe14B相が存在すると、室温においては、粒界相中のFeを含む磁性相の影響が小さいため、保磁力は高い。しかし、高温時には、粒界相中のFeを含む磁性相がNdFe14B相(主相)同士の磁気スピン相互作用を伝播させる効果がある。これにより、主相の粒径が見かけ上大きくなり、主相のナノ結晶化の効果が低下するおそれがある。その結果、保磁力は急激に低下する。 The Nd 2 Fe 14 B phase has a high anisotropic magnetic field at room temperature, but the Curie point is 320° C., which is not very high. Therefore, even if the Curie point is not reached, the anisotropic magnetic field of the Nd 2 Fe 14 B phase decreases at high temperatures. On the other hand, a magnetic phase containing Fe (for example, the RFe 2 phase) is paramagnetic at temperatures higher than room temperature, but there is a possibility of propagating the magnetic spin interaction between the Nd 2 Fe 14 B phases (crystal grains). be. When a large amount of Nd 2 Fe 14 B phase is present as the main phase, the coercive force is high at room temperature because the effect of the magnetic phase containing Fe in the grain boundary phase is small. However, at high temperatures, the magnetic phase containing Fe in the grain boundary phase has the effect of propagating the magnetic spin interaction between the Nd 2 Fe 14 B phases (main phases). As a result, the grain size of the main phase apparently increases, and the effect of nanocrystallization of the main phase may decrease. As a result, the coercive force drops sharply.

R-Fe-B系希土類磁石のRが、Nd、Ce、及びLaを含むと、室温及び高温のいずれにおいても、(Nd、Ce、La)Fe14Bの異方性磁界は、NdFe14Bの異方性磁界よりも低い。以下、Nd、Ce、及びLaを含むR-Fe-B系希土類磁石を「(Nd、Ce、La)-Fe-B系希土類磁石」ということがある。 When R of the R—Fe—B system rare earth magnet contains Nd, Ce, and La, the anisotropic magnetic field of (Nd, Ce, La) 2 Fe 14 B at both room temperature and high temperature is Nd 2 Lower than the anisotropy field of Fe 14 B. Hereinafter, the R—Fe—B system rare earth magnet containing Nd, Ce, and La is sometimes referred to as “(Nd, Ce, La)—Fe—B system rare earth magnet”.

理論に拘束されないが、(Nd、Ce、La)-Fe-B系希土類磁石においては、CeとLaの含有量比率が所定の範囲であると、Nd-Fe-B系希土類磁石と比べて、粒界相中のFeを含む磁性相(RFe相等)の安定性が低下する。これにより、(Nd、Ce、La)-Fe-B系希土類磁石においては、粒界相中のFeは、Feを含む磁性相以外の相の生成に寄与し易くなる。Feを含む磁性相以外の相としては、CeFe相等が挙げられる。 Although not bound by theory, in the (Nd, Ce, La)-Fe-B rare earth magnet, when the content ratio of Ce and La is within a predetermined range, compared with the Nd-Fe-B rare earth magnet, The stability of the magnetic phase ( RFe2 phase, etc.) containing Fe in the grain boundary phase is lowered. As a result, in the (Nd, Ce, La)--Fe--B rare earth magnet, Fe in the grain boundary phase easily contributes to the formation of phases other than the magnetic phase containing Fe. Phases other than the magnetic phase containing Fe include a CeFe 2 phase and the like.

(Nd、Ce、La)Fe14B相が生成されることにより、主相の全体数が増加する。その結果、NdがCe及びLaで置換されることによって異方性磁界が低下したことを補い、(Nd、Ce、La)-Fe-B系希土類磁石全体の保磁力低下を抑制する。この保磁力向上は、高温のときに顕著である。なお、本明細書において、理論に拘束されないが、(Nd、Ce、La)Fe14B相は、NdFe14B相のNdに位置にCe又はLaが存在している。 The production of the (Nd, Ce, La) 2 Fe 14 B phase increases the total number of main phases. As a result, the decrease in the anisotropic magnetic field due to the replacement of Nd with Ce and La is compensated for, and the decrease in the coercive force of the (Nd, Ce, La)--Fe--B system rare earth magnet as a whole is suppressed. This coercive force improvement is remarkable at high temperatures. In this specification, although not bound by theory, the (Nd, Ce, La) 2 Fe 14 B phase has Ce or La at the position of Nd in the Nd 2 Fe 14 B phase.

また、(Nd、Ce、La)-Fe-B系希土類磁石を前駆体として、その前駆体の内部に、Rを含有する改質材を浸透させると、改質材中の合金の浸透量によっては、主相と粒界相の間に、中間相が生成される。 In addition, when a (Nd, Ce, La)-Fe-B-based rare earth magnet is used as a precursor and a modifier containing R 2 is permeated into the precursor, the permeation amount of the alloy in the modifier is In some cases, an intermediate phase is generated between the main phase and the grain boundary phase.

理論に拘束されないが、前駆体の主相中に存在するCe及び/又はLaの一部がRで置換されて、中間相が生成されると考えられる。したがって、中間相においては、前駆体の主相においてよりも、Rの濃度が高いことから、中間相の異方性磁界は、前駆体の主相の異方性磁界よりも高い。高温になると、中間相の異方性磁界は低下する。しかし、高温時においても、前駆体の主相と比べてRの濃度が高くなっている分だけ、中間相の異方性磁界は、前駆体の主相の異方性磁界よりも高い。その結果、保磁力低下の抑制に寄与する。 Without being bound by theory, it is believed that some of the Ce and/or La present in the main phase of the precursor are replaced with R2 to produce the intermediate phase. Therefore, the anisotropy field of the mesophase is higher than that of the main phase of the precursor, since there is a higher concentration of R2 in the mesophase than in the main phase of the precursor. At higher temperatures, the anisotropy field of the mesophase decreases. However, even at high temperatures, the anisotropy field of the intermediate phase is higher than that of the main phase of the precursor due to the higher concentration of R2 compared to the main phase of the precursor. As a result, it contributes to suppression of coercive force reduction.

これまで説明してきたことにより、R-Fe-B系希土類磁石に関し、高温時において、保磁力の低下を抑制することができることを、本発明者らは知見した。 From what has been explained so far, the present inventors have found that it is possible to suppress a decrease in coercive force at high temperatures with respect to R—Fe—B rare earth magnets.

これらの知見に基づく、本開示に係る希土類磁石及びその製造方法の構成要件を次に説明する。 Constituent requirements of the rare earth magnet according to the present disclosure and the manufacturing method thereof based on these findings will be described below.

《希土類磁石》
まず、本開示の希土類磁石の構成要件について説明する。
《Rare earth magnet》
First, the constituent elements of the rare earth magnet of the present disclosure will be described.

〈全体組成〉
本開示の希土類磁石の全体組成は、式(Nd(Ce、La)(1-x-y) Fe(100-p-q-r-s)Co ・(R 1-z-wで表される。
<Overall composition>
The overall composition of the rare earth magnet of the present disclosure is represented by the formula (Nd x (Ce, La) (1-xy) R 1 y ) p Fe (100-pqr-s) Co q B r M 1 s Represented by (R 2 z R 3 w M 2 1-zw ) t .

上式において、(R 1-z-wは、後述する改質材に由来する組成を表す。改質材を浸透させない場合、t=0であり、本開示の希土類磁石の全体組成は、(Nd(Ce、La)(1-x-y) Fe(100-p-q-r-s)Co で表される。 In the above formula, (R 2 z R 3 w M 2 1-zw ) t represents the composition derived from the modifier, which will be described later. When no modifier is permeated, t=0, and the overall composition of the rare earth magnet of the present disclosure is (Nd x (Ce, La) (1-xy) R 1 y ) p Fe (100-p- qrs) Co q B r M 1 s .

一方、改質材を浸透させる場合、tは0でない正の値であり、(Nd(Ce、La)(1-x-y) Fe(100-p-q-r-s)Co は、希土類磁石前駆体の組成を表す。 On the other hand, when the modifier is permeated, t is a non-zero positive value and (Nd x (Ce, La) (1-xy) R 1 y ) p Fe (100-pqr- s) Co q B r M 1 s represents the composition of the rare earth magnet precursor.

上式中、Ndはネオジム、Ceはセリウム、Laはランタン、Rは、Nd、Ce、及びLa以外の希土類元素から選ばれる1種以上、Feは鉄、Coはコバルト、そして、Bはホウ素である。Mは、Ga、Al、Cu、Au、Ag、Zn、In、及びMnから選ばれる1種以上、並びに不可避的不純物元素である。Gaはガリウム、Alはアルミニウム、Cuは銅、Auは金、Agは銀、Znは亜鉛、Inはインジウム、そして、Mnはマンガンである。Rは、Pr、Nd、Pm、Sm、Eu、及びGdから選ばれる1種以上である。Prはプラセオジム、Ndはネオジム、Pmはプロメチウム、Smはサマリウム、Euはユウロビウム、そして、Gdはガドリニウムである。Mは、R及びRと合金化することによって、R 1-z-wの融点を、Rの融点よりも低下させる合金元素及び不可避的不純物元素である。 In the above formula, Nd is neodymium, Ce is cerium, La is lanthanum, R1 is one or more selected from rare earth elements other than Nd, Ce, and La, Fe is iron, Co is cobalt, and B is boron is. M1 is one or more selected from Ga, Al, Cu, Au, Ag, Zn, In, and Mn, and an unavoidable impurity element. Ga is gallium, Al is aluminum, Cu is copper, Au is gold, Ag is silver, Zn is zinc, In is indium, and Mn is manganese. R2 is one or more selected from Pr, Nd, Pm, Sm, Eu, and Gd. Pr is praseodymium, Nd is neodymium, Pm is promethium, Sm is samarium, Eu is eurobium and Gd is gadolinium. M2 is an alloying element and an unavoidable impurity element that lowers the melting point of R2zR3wM21 - zw below that of R2 by alloying with R2 and R3 . .

本明細書において、希土類元素は、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの17元素である。このうち、Sc、Y、La、及びCeは、軽希土類元素である。Pr、Nd、Pm、Sm、Eu、及びGdは、中希土類元素である。Tb、Dy、Ho、Er、Tm、Yb、及びLuは、重希土類元素である。なお、一般に、重希土類元素の希少性は高く、軽希土類元素の希少性は低い。中希土類元素の希少性は、重希土類元素と軽希土類元素の間である。 In this specification, the rare earth elements are 17 elements of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. Among these, Sc, Y, La, and Ce are light rare earth elements. Pr, Nd, Pm, Sm, Eu, and Gd are middle rare earth elements. Tb, Dy, Ho, Er, Tm, Yb, and Lu are heavy rare earth elements. In general, heavy rare earth elements are highly rare, and light rare earth elements are relatively rare. The rarity of the medium rare earth elements is between the heavy rare earth elements and the light rare earth elements.

次に、p、q、r、s、及びt、並びに、x、y、z、及びwについて説明する。以下の説明は、改質材を浸透させる場合について説明する。改質材を浸透させない場合については、「希土類磁石前駆体」を「希土類磁石」に読み替えるものとし、改質材に由来する事項に関する記述は、ないものとして扱うものとする。 Next, p, q, r, s, and t, and x, y, z, and w are explained. The following description explains the case of infiltrating the modifier. In the case where the modifying material is not permeated, the "rare earth magnet precursor" shall be read as "rare earth magnet", and the description regarding matters derived from the modifying material shall be treated as non-existent.

希土類磁石前駆体において、pは、Nd、Ce、La、及びRの合計含有量であり、qは、Coの含有量であり、rは、B(ホウ素)の含有量であり、sは、Mの含有量である。改質材に由来する事項に関し、tは、希土類磁石前駆体に対する、改質材中の合金の浸透量であり、R、R、及びMの合計含有量である。p、q、r、s、及びtの値は、それぞれ、原子%である。 In the rare earth magnet precursor, p is the total content of Nd, Ce, La, and R1 , q is the content of Co, r is the content of B (boron), and s is , is the content of M 1 . Regarding matters derived from the modifier, t is the penetration amount of the alloy in the modifier with respect to the rare earth magnet precursor, and is the total content of R 2 , R 3 and M 2 . The values for p, q, r, s, and t are each in atomic %.

希土類磁石前駆体において、x及びyの値は、それぞれ、次の含有量割合(モル比)である。xは、Nd、Ce、La、及びRの合計含有量に対する、Ndの含有量割合を示す。yは、Nd、Ce、La、及びRの合計含有量に対する、Rの含有量割合を示す。改質材に由来する事項に関し、z及びwの値は、それぞれ、次の含有量割合(モル比)である。zは、R、R、及びMの合計含有量に対する、Rの含有量割合を示す。wは、R、R、及びMの合計含有量に対する、Rの含有量割合を示す。 In the rare earth magnet precursor, the values of x and y are the following content ratios (molar ratios). x indicates the content ratio of Nd with respect to the total content of Nd, Ce, La and R1 . y indicates the content ratio of R1 to the total content of Nd, Ce, La and R1 . Regarding matters derived from the modifier, the values of z and w are the following content ratios (molar ratios). z represents the content ratio of R 2 with respect to the total content of R 2 , R 3 and M 2 . w indicates the content ratio of R 3 to the total content of R 2 , R 3 and M 2 .

上述した式で表される希土類磁石前駆体の構成元素について、次に説明する。 The constituent elements of the rare earth magnet precursor represented by the above formula will be described below.

〈Nd〉
Ndは、本開示の希土類磁石前駆体に必須の成分である。Ndの含有によって、室温及び高温において、高い磁化を発現できる。また、室温において、NdFe14B相は、高い異方性磁界を有する。
<Nd>
Nd is an essential component of the rare earth magnet precursor of the present disclosure. By containing Nd, high magnetization can be exhibited at room temperature and high temperature. Also, at room temperature, the Nd 2 Fe 14 B phase has a high anisotropy field.

〈Ce〉
Ceは、本開示の希土類磁石前駆体に必須の成分である。主相(NdFe14B相)中のNdがCeで置換されると、粒界相中のFeを含む磁性相、すなわち、CeFe相を生成しやすくなる。CeFe相は、常磁性であり、主相同士の磁気スピン相互作用を伝播する効果が予想され、保磁力を低下させる。保磁力の低下を抑制するためには粒界相中のFeを含む磁性相の安定性を低下させることが必要である。
〈Ce〉
Ce is an essential component of the rare earth magnet precursors of the present disclosure. Substitution of Nd in the main phase (Nd 2 Fe 14 B phase) with Ce facilitates generation of a magnetic phase containing Fe in the grain boundary phase, ie, a CeFe 2 phase. The CeFe2 phase is paramagnetic, and the effect of propagating the magnetic spin interaction between the main phases is expected, reducing the coercive force. In order to suppress the decrease in coercive force, it is necessary to decrease the stability of the magnetic phase containing Fe in the grain boundary phase.

また、Ceは、3価又は4価をとり得る。理論に拘束されないが、Laの働きにより、多くのCeは3価になる。3価のCeにおいては、4f電子が局在するため、磁化が向上し、好都合である。 Also, Ce can be trivalent or tetravalent. Without being bound by theory, La works to make most of Ce trivalent. Since 4f electrons are localized in trivalent Ce, the magnetization is improved, which is advantageous.

〈La〉
Laは、本開示の希土類磁石前駆体に必須の成分である。主相(NdFe14B相)中のNdがLaで置換されることにより、粒界相中のFeを含む磁性相の安定性が低下する。これは、熱力学的にLaとFe等の遷移金属の化合物は全体的に不安定になるため、混ざり合うことがないためである。つまり、Laを添加することで、RFe相の生成を抑制する効果が予想される。したがって、Laは、保磁力低下の抑制への寄与が大きい。しかも、Laは、Ndと比べて安価であることも、好都合である。また、Ceを添加するとCeFe相が生成しやすくなり、保磁力が低下する。しかし、LaをCeと同時に添加することで、CeFe相の生成が抑制されて、主相の粒同士の磁気スピン相互作用の伝播を抑制する。
<La>
La is an essential component of the rare earth magnet precursor of the present disclosure. Substitution of La for Nd in the main phase (Nd 2 Fe 14 B phase) reduces the stability of the magnetic phase containing Fe in the grain boundary phase. This is because the compounds of La and transition metals such as Fe are thermodynamically unstable as a whole and do not mix. In other words, the addition of La is expected to have the effect of suppressing the formation of the RFe 2 phase. Therefore, La greatly contributes to suppression of reduction in coercive force. Moreover, it is advantageous that La is cheaper than Nd. Also, the addition of Ce facilitates the formation of the CeFe 2 phase, which lowers the coercive force. However, by adding La at the same time as Ce, the generation of the CeFe 2 phase is suppressed, and the propagation of the magnetic spin interaction between grains of the main phase is suppressed.

〈Nd、Ce、及びLaの含有量割合〉
上述したように、xはNdの含有量割合である。CeFe14B相及びLaFe14B相においてよりも、NdFe14B相において、飽和磁化及び異方性磁界は高い。このことから、xが0.40以上であれば、本開示の希土類磁石において、所望の磁化及び保磁力を得やすい。この観点からは、xは、0.45以上、0.50以上、又は0.55以上であってよい。一方、xが0.80以下であれば、Ce及びLaの含有量割合が小さすぎて、Ce及びLaの作用効果を得難くなることはない。この観点からは、xは、0.75以下、0.70以下、又は0.65以下であってよい。
<Content ratio of Nd, Ce, and La>
As described above, x is the content ratio of Nd. The saturation magnetization and the anisotropy field are higher in the Nd2Fe14B phase than in the Ce2Fe14B and La2Fe14B phases . From this, if x is 0.40 or more, it is easy to obtain desired magnetization and coercive force in the rare earth magnet of the present disclosure. From this point of view, x may be 0.45 or greater, 0.50 or greater, or 0.55 or greater. On the other hand, if x is 0.80 or less, the content ratio of Ce and La is too small, and it is not difficult to obtain the effects of Ce and La. From this point of view, x may be 0.75 or less, 0.70 or less, or 0.65 or less.

希土類磁石前駆体において、Ceの含有量に対して、Laの含有量は、モル比で、1/9~3倍である。図1は、Nd、Ce、及びLaの含有量割合を示す図である。図1において、(1)で示した直線は、Ceの含有量に対して、Laの含有量が、モル比で、1/9倍である組成を示す。(2)で示した直線は、Ceの含有量に対して、Laの含有量が、モル比で、1/3倍である組成を示す。(3)で示した直線は、Ceの含有量に対して、Laの含有量が、モル比で、2/3倍である組成を示す。(4)で示した直線は、Ceの含有量に対して、Laの含有量が、モル比で、3倍である組成を示す。 In the rare earth magnet precursor, the content of La is 1/9 to 3 times the content of Ce in molar ratio. FIG. 1 is a diagram showing content ratios of Nd, Ce, and La. In FIG. 1, the straight line indicated by (1) indicates a composition in which the content of La is 1/9 times the content of Ce in terms of molar ratio. The straight line indicated by (2) indicates a composition in which the content of La is 1/3 times the content of Ce in terms of molar ratio. The straight line indicated by (3) indicates a composition in which the content of La is 2/3 times the content of Ce in terms of molar ratio. The straight line indicated by (4) indicates a composition in which the content of La is three times the content of Ce in molar ratio.

上記を言い換えると、次のようになる。(1)の直線は、Ce:La=1:1/9である組成を示す。(2)の直線は、Ce:La=1:1/3である組成を示す。(3)の直線は、Ce:La=1:2/3である組成を示す。(4)の直線は、Ce:La=1:3である組成を示す。 In other words, the above is as follows. The straight line (1) indicates a composition of Ce:La=1:1/9. The straight line (2) indicates the composition where Ce:La=1:1/3. The straight line (3) indicates a composition of Ce:La=1:2/3. The straight line (4) indicates a composition of Ce:La=1:3.

上述したように、Ndの含有量割合xは、0.4~0.8であるため、本開示の希土類磁石前駆体の組成は、図1において、「Nd80」と「Nd40」で挟まれた領域と、直線(1)と直線(4)で挟まれた領域の重複部分で示される。 As described above, the content ratio x of Nd is 0.4 to 0.8, so the composition of the rare earth magnet precursor of the present disclosure is sandwiched between “Nd80” and “Nd40” in FIG. It is indicated by the area and the overlapping portion of the area sandwiched by straight lines (1) and (4).

Ceの含有量に対して、Laの含有量が、モル比で、1/9倍以上であれば、室温及び高温で、所望の磁化を得ることができる。この観点からは、1/8倍以上が好ましく、1/7倍以上がより好ましい。一方、Ceの含有量に対して、Laの含有量が、モル比で、3倍以下であれば、粒界相のNdがCe及び/又はLaに置き換わることで、Feを含む磁性相(RFe相等)の安定性が低下し、Feを含む磁性相の含有量(体積率)が低下する。その結果、粒界相が、主相同士の磁気スピン相互作用を伝播させる効果を抑制し、高温時の保磁力の低下を抑制する。この観点からは、5/2倍以下が好ましく、2倍以下がより好ましい。 Desired magnetization can be obtained at room temperature and high temperature if the molar ratio of the La content to the Ce content is 1/9 or more. From this point of view, it is preferably 1/8 times or more, more preferably 1/7 times or more. On the other hand, when the La content is 3 times or less the Ce content, the Nd in the grain boundary phase is replaced with Ce and/or La, resulting in a magnetic phase containing Fe (RFe 2 phases, etc.) is lowered, and the content (volume ratio) of the magnetic phase containing Fe is lowered. As a result, the grain boundary phase suppresses the effect of propagating the magnetic spin interaction between the main phases and suppresses the decrease in coercive force at high temperatures. From this point of view, it is preferably 5/2 times or less, more preferably 2 times or less.

〈R
は、Nd、Ce、及びLa以外の希土類元素から選ばれる1種以上である。本開示の希土類磁石は、Nd、Ce、及びLaを必須の成分とする。これらの必須成分の原材料において、Nd、Ce、及びLa以外の希土類元素Rを皆無にすることは難しい。しかし、Rの含有量割合yの値が0~0.1であれば、本開示の希土類磁石の特性は、yの値が0であるときと、実質的に同等と考えてよい。
<R 1 >
R 1 is one or more selected from rare earth elements other than Nd, Ce, and La. The rare earth magnet of the present disclosure has Nd, Ce, and La as essential components. It is difficult to eliminate rare earth elements R1 other than Nd, Ce, and La from the raw materials of these essential components. However, when the value of the content ratio y of R 1 is 0 to 0.1, the properties of the rare earth magnet of the present disclosure can be considered to be substantially the same as when the value of y is 0.

必須成分の原材料の純度を過剰に上昇させることは、製造コストの上昇を招くため、yの値は、0.01以上、0.02以上、0.03以上、0.04以上、又は0.05以上であってよい。一方、yの値は、製造コストの上昇を招かない限り、低い方がよく、0.09以下、0.08以下、0.07以下、又は0.06以下であってよい。 Since excessively increasing the purity of the raw materials of the essential ingredients leads to an increase in manufacturing costs, the value of y is 0.01 or more, 0.02 or more, 0.03 or more, 0.04 or more, or 0.04 or more. 05 or more. On the other hand, the value of y should be as low as possible, and may be 0.09 or less, 0.08 or less, 0.07 or less, or 0.06 or less, as long as the manufacturing cost does not increase.

Nd、Ce、La、及びRの合計含有量pが、5.0原子%以上であれば、(Nd、Ce、La)Fe14Bで表される主相が生成され難くなることはない。(Nd、Ce、La)Fe14Bで表される主相の生成されやすさの観点からは、pは、7.0原子%以上、9.0原子%以上、11.0原子%以上、又は13.0原子%以上であってよい。一方、pが20.0原子%以下であれば、粒界相の存在割合(体積率)が過剰になることはない。粒界相の存在割合が過剰にならないという観点からは、19.0原子%以下、18.0原子%以下、又は17.0原子%以下であってよい。 When the total content p of Nd, Ce, La, and R1 is 5.0 atomic % or more, the main phase represented by (Nd, Ce, La) 2 Fe 14 B is hardly generated. do not have. From the viewpoint of ease of formation of the main phase represented by (Nd, Ce, La) 2 Fe 14 B, p is 7.0 atomic % or more, 9.0 atomic % or more, 11.0 atomic % or more , or 13.0 atomic % or more. On the other hand, when p is 20.0 atomic % or less, the existence ratio (volume fraction) of the grain boundary phase does not become excessive. From the viewpoint that the existence ratio of the grain boundary phase does not become excessive, it may be 19.0 atomic % or less, 18.0 atomic % or less, or 17.0 atomic % or less.

〈B〉
Bは、主相の含有量と、粒界相中のFeを含む磁性相の含有量に影響を与える。Bの含有量が少なすぎると、(Nd、Ce、La)Fe14Bで表される主相が生成され難くなる。Bの含有量rが4.0原子%以上であれば、(Nd、Ce、La)Fe14Bで表される主相が生成され難くなることはない。この観点からは、rは、4.5原子%以上、5.0原子%以上、又は5.5原子%以上であってよい。一方、Bの含有量rが過剰であると、粒界相に、RFe相等のFeを含む磁性相が生成されやすくなる。rが6.5原子%以下であれば、α-Fe相が多量に生成し難い。この観点からは、rは、6.3原子%以下又は6.0原子%以下であってよい。
<B>
B affects the content of the main phase and the content of the magnetic phase containing Fe in the grain boundary phase. If the B content is too low, the main phase represented by (Nd, Ce, La) 2 Fe 14 B will be difficult to generate. When the B content r is 4.0 atomic % or more, the main phase represented by (Nd, Ce, La) 2 Fe 14 B is not difficult to be generated. From this point of view, r may be 4.5 atomic % or more, 5.0 atomic % or more, or 5.5 atomic % or more. On the other hand, when the B content r is excessive, magnetic phases containing Fe such as the RFe 4 B 4 phase are likely to be generated in the grain boundary phase. If r is 6.5 atomic % or less, it is difficult to generate a large amount of α-Fe phase. From this point of view, r may be 6.3 atomic % or less or 6.0 atomic % or less.

〈Co〉
Coは、主相、粒界相、及び中間相で、Feと置換可能な元素である。本明細書で、Feと記載されている場合には、Feの一部がCoで置換可能である。例えば、(Nd、Ce、La)Fe14B相のFeの一部がCoで置換されて、(Nd、Ce、La)(Fe、Co)14B相となる。また、粒界相中のFeを含む磁性相(RFe17相等)は、そのFeの一部がCoで置換された磁性相(R(Fe、Co)17相等)になる。
〈Co〉
Co is an element that can be substituted for Fe in the main phase, grain boundary phase, and intermediate phase. In this specification, when Fe is described, part of Fe can be replaced with Co. For example, part of Fe in the (Nd, Ce, La) 2 Fe 14 B phase is replaced with Co to form the (Nd, Ce, La) 2 (Fe, Co) 14 B phase. Also, the magnetic phase containing Fe in the grain boundary phase (R 2 Fe 17 phase, etc.) becomes a magnetic phase (R 2 (Fe, Co) 17 phase, etc.) in which a part of the Fe is substituted with Co.

このように、Feの一部がCoで置換されることにより、各相のキュリー点が向上する。キュリー点の向上を望まない場合には、Coを含有しなくてもよく、Coの含有は必須ではない。Coの含有量qが0.5原子%以上であれば、キュリー点の向上が実質的に認められる。キュリー点の向上の観点からは、1.0原子%以上、2.0原子%以上、3.0原子%以上、又は4.0原子%以上であってよい。一方、Coは高価であるため、経済的観点から、Coの含有量qは、8.0原子%以下、7.0原子%以下、または0.6原子%以下であってよい。 By substituting a part of Fe with Co in this way, the Curie point of each phase is improved. If the Curie point is not desired to be improved, Co may be omitted, and the inclusion of Co is not essential. When the Co content q is 0.5 atomic % or more, the Curie point is substantially improved. From the viewpoint of improving the Curie point, it may be 1.0 atomic % or more, 2.0 atomic % or more, 3.0 atomic % or more, or 4.0 atomic % or more. On the other hand, since Co is expensive, from an economical point of view, the Co content q may be 8.0 atomic % or less, 7.0 atomic % or less, or 0.6 atomic % or less.

〈M
は、本開示の希土類磁石の特性を損なわない範囲で含有することができる。Mには不可避的不純物元素を含んでよい。不可避的不純物元素とは、希土類磁石の原材料に含まれる不純物元素、あるいは、製造工程で混入してしまう不純物元素等、その含有を回避することが避けられない、あるいは、回避するためには著しい製造コストの上昇を招くような不純物元素のことをいう。製造工程で混入してしまう不純物元素等には、製造上の都合により、磁気特性に影響を与えない範囲で含有させる元素を含む。
<M1>
M1 can be contained within a range that does not impair the properties of the rare earth magnet of the present disclosure. M1 may contain unavoidable impurity elements. Unavoidable impurity elements are impurity elements contained in the raw materials of rare earth magnets, or impurity elements mixed in during the manufacturing process. Impurity elements that increase costs. Impurity elements and the like that are mixed in during the manufacturing process include elements that are contained within a range that does not affect the magnetic properties due to manufacturing circumstances.

本開示の希土類磁石の特性を損なわない範囲で含有することができる元素としては、Ga、Al、Cu、Au、Ag、Zn、In、及びMnが挙げられる。 Ga, Al, Cu, Au, Ag, Zn, In, and Mn are examples of elements that can be contained within a range that does not impair the properties of the rare earth magnet of the present disclosure.

Ga、Al、Zn、In、Au、Ag及びCuは、液体急冷法等で得られる薄帯等の内部に存在する粒界相の融点を低下させる。これにより、複数の薄帯から成形体を得るとき、及び/又は、成形体から圧縮体を得るときに、金型寿命の向上等のために、これらの元素を含有させてもよいが、必須ではない。そして、Mの含有量の上限以下であれば、これらの元素は、実質的に磁気特性に影響を与えない。これらの元素は、磁気特性の観点からは、不可避的不純物元素とみなしてもよい。 Ga, Al, Zn, In, Au, Ag and Cu lower the melting point of the grain boundary phase present inside the ribbon obtained by the liquid quenching method or the like. As a result, when obtaining a compact from a plurality of strips and/or when obtaining a compact from a compact, these elements may be included for improving the life of the mold, etc., but it is essential isn't it. These elements do not substantially affect the magnetic properties if the content of M1 is below the upper limit. These elements may be regarded as unavoidable impurity elements from the viewpoint of magnetic properties.

Mnは、(Nd、Ce、La)Fe14B相中のFeの一部と置換して、(Nd、Ce、La)Fe14B相の安定化に寄与する。 Mn replaces part of Fe in the (Nd, Ce, La) 2 Fe 14 B phase and contributes to stabilization of the (Nd, Ce, La) 2 Fe 14 B phase.

の含有量sが、2.0原子%以下であれば、本開示の磁気特性を損なうことはない。この観点からは、Mの含有量sは、1.5原子%以下、1.0原子%以下、又は0.5原子%であってよい。 If the content s of M1 is 2.0 atomic % or less, the magnetic properties of the present disclosure are not impaired. From this point of view, the content s of M1 may be 1.5 atomic % or less, 1.0 atomic % or less, or 0.5 atomic %.

として、Ga、Al、Cu、Au、Ag、Zn、In、及びMnを含有しない場合でも、不可避的不純物元素を皆無にすることはできないため、Mの含有量sの下限は、0.05原子%、0.1原子%、又は0.2原子%であっても、実用上問題はない。 Even if M 1 does not contain Ga, Al, Cu, Au, Ag, Zn, In, and Mn, the inevitable impurity elements cannot be eliminated, so the lower limit of the content s of M 1 is 0 Even if it is 0.05 atomic %, 0.1 atomic %, or 0.2 atomic %, there is no practical problem.

これまで説明してきた、p、q、r、及びsの値それぞれは、通常のR-Fe-B系希土類磁石の場合と同等である。 Each of the values of p, q, r, and s explained so far are equivalent to those of a normal R--Fe--B rare earth magnet.

〈Fe〉
Feは、これまで説明したNd、Ce、La、R、Co、B、及びMの残部であり、Feの含有量(原子%)は、(100-p-q-r-s)で表される。p、q、r、及びsを、これまでに説明した範囲にすると、主相及び粒界相が得られる。また、主相及び粒界相を有する希土類磁石を前駆体として、その前駆体に改質材を十分に浸透させると、中間相が得られる。以下、主相、粒界相、及び中間相について説明する。
〈Fe〉
Fe is the remainder of Nd, Ce, La, R 1 , Co, B, and M 1 explained so far, and the Fe content (atomic %) is (100-pqrs). expressed. When p, q, r, and s are within the ranges described above, a main phase and a grain boundary phase are obtained. Further, when a rare earth magnet having a main phase and a grain boundary phase is used as a precursor and the modifier is sufficiently impregnated into the precursor, an intermediate phase is obtained. The main phase, grain boundary phase, and intermediate phase are described below.

〈主相、粒界相、及び中間相〉
図2は、本開示に係る希土類磁石の組織の一態様を模式的に示す図である。図3は、本開示に係る希土類磁石の組織の別態様を示す図である。
<Main Phase, Grain Boundary Phase, and Intermediate Phase>
FIG. 2 is a diagram schematically showing one aspect of the structure of a rare earth magnet according to the present disclosure. FIG. 3 is a diagram illustrating another embodiment of the organization of a rare earth magnet according to the present disclosure.

図2に示した態様では、本開示の希土類磁石100は、主相10及び粒界相20を有する。図3に示した態様では、本開示の希土類磁石100は、主相10及び粒界相20に加えて、さらに、中間相30を有する。 2, the rare earth magnet 100 of the present disclosure has a main phase 10 and a grain boundary phase 20. In the embodiment shown in FIG. In the embodiment shown in FIG. 3 , the rare earth magnet 100 of the present disclosure has an intermediate phase 30 in addition to the main phase 10 and grain boundary phase 20 .

図2に示した態様は、改質材を浸透させないか、あるいは、非常に少ない量の改質材を浸透させたときに認められる。図2に示した態様の希土類磁石100は、改質材を浸透させる希土類磁石前駆体として用いられる。図3に示した態様は、希土類磁石前駆体に十分な量の改質材を浸透させたときに認められる。 The embodiment shown in FIG. 2 is observed when no modifier or a very small amount of modifier is infiltrated. A rare earth magnet 100 of the embodiment shown in FIG. 2 is used as a rare earth magnet precursor that is impregnated with a modifier. The aspect shown in FIG. 3 is observed when the rare earth magnet precursor is impregnated with a sufficient amount of modifier.

希土類磁石100は、主相10、粒界相20、及び中間相30以外の相(図示しない)を含有してもよい。主相10、粒界相20、及び中間相30以外の相としては、酸化物、窒化物、及び金属間化合物等が挙げられる。 The rare earth magnet 100 may contain phases (not shown) other than the main phase 10 , the grain boundary phase 20 and the intermediate phase 30 . Phases other than the main phase 10, the grain boundary phase 20, and the intermediate phase 30 include oxides, nitrides, intermetallic compounds, and the like.

希土類磁石100の特性は、主として、主相10、粒界相20、及び中間相30によって発揮される。主相10、粒界相20、及び中間相30以外の相は、その大半が、不純物である。したがって、希土類磁石100に対する、主相10、粒界相20、及び中間相30の合計含有量については、95体積%以上が好ましく、97体積%以上がより好ましく、99体積%以上がより一層好ましい。 The properties of the rare earth magnet 100 are mainly exhibited by the main phase 10, the grain boundary phase 20, and the intermediate phase 30. Most of the phases other than the main phase 10, the grain boundary phase 20, and the intermediate phase 30 are impurities. Therefore, the total content of the main phase 10, the grain boundary phase 20, and the intermediate phase 30 in the rare earth magnet 100 is preferably 95% by volume or more, more preferably 97% by volume or more, and even more preferably 99% by volume or more. .

主相10はナノ結晶化されている。ナノ結晶化されているとは、主相10の平均粒径が、1~1000nmであることをいう。平均粒径は、10nm以上、50nm以上、又は100nm以上であってもよく、900nm以下、700nm以下、500nm以下、又は300nm以下であってもよい。 The main phase 10 is nanocrystallized. Being nano-crystallized means that the main phase 10 has an average grain size of 1 to 1000 nm. The average particle size may be 10 nm or more, 50 nm or more, or 100 nm or more, and may be 900 nm or less, 700 nm or less, 500 nm or less, or 300 nm or less.

「平均粒径」とは、例えば、図2で示す主相10の長手方向の長さtの平均値のことである。例えば、希土類磁石100の走査型電子顕微鏡像又は透過型電子顕微鏡像で、一定領域を規定し、この一定領域内に存在する主相10それぞれの長さtの平均値を算出し、それを「平均粒径」とする。主相10の断面形状が楕円形の場合は、その長軸の長さをtとする。主相の断面が四角形の場合は、長い方の対角線の長さをtとする。図3で示す態様の場合には、中間相30も含んで、tを設定する。これは、後述するように、中間相30は、主相10に由来するためである。 The “average particle size” is, for example, the average value of the longitudinal length t of the main phase 10 shown in FIG. For example, in a scanning electron microscope image or a transmission electron microscope image of the rare earth magnet 100, a certain area is defined, the average value of the length t of each of the main phases 10 existing in this certain area is calculated, and it is expressed as " "average particle size". When the cross-sectional shape of the main phase 10 is elliptical, the length of the major axis is t. When the cross section of the main phase is square, the length of the longer diagonal is t. In the case of the embodiment shown in FIG. 3, the intermediate phase 30 is also included in setting t. This is because the intermediate phase 30 is derived from the main phase 10 as will be described later.

図2に示した希土類磁石100を希土類磁石前駆体(以下、「前駆体100」ということがある。)として、これに改質材を浸透させると、改質材は、粒界相20を通じて、主相10と粒界相20との界面に到達する。そして、改質材中のRが、粒界相20から主相10の内部へ浸透し、図3に示すように、中間相30が形成される。 Using the rare earth magnet 100 shown in FIG. 2 as a rare earth magnet precursor (hereinafter sometimes referred to as “precursor 100”), when the modifier is permeated into this, the modifier passes through the grain boundary phase 20, It reaches the interface between the main phase 10 and the grain boundary phase 20 . Then, R2 in the modifier permeates from the grain boundary phase 20 into the main phase 10, forming an intermediate phase 30 as shown in FIG.

粒界相20は主相10の周囲に存在する。中間相30は、主相10と粒界相20の間に挟まれている。中間相30の形成を、改質材の組成の観点から説明する。 The grain boundary phase 20 exists around the main phase 10 . Intermediate phase 30 is sandwiched between main phase 10 and grain boundary phase 20 . Formation of the intermediate phase 30 will be described in terms of the composition of the modifier.

〈R、R、及びM
改質材は、R 1-z-wで表される組成を有する合金を含有する。一方、前駆体100は、(Nd(Ce、La)(1-x-y) Fe(100-p-q-r-s)Co で表される組成を有する。
<R 2 , R 3 , and M 2 >
The modifier contains an alloy having a composition represented by R 2 z R 3 w M 2 1-zw . On the other hand, the precursor 100 is represented by (Nd x (Ce, La) (1-xy) R 1 y ) p Fe (100-pqr-s) Co q B r M 1 s have the composition

は、Pr、Nd、Pm、Sm、Eu、及びGdから選ばれる1種以上である。また、Rは、R以外の希土類元素から選ばれる1種以上である。そして、Mは、R及びRと合金化することによって、R 1-z-wの融点を、Rの融点よりも低下させる合金元素及び不可避的不純物元素である。 R2 is one or more selected from Pr, Nd, Pm, Sm, Eu, and Gd. R 3 is one or more selected from rare earth elements other than R 2 . M2 is an alloying element and an unavoidable impurity element that lowers the melting point of R2zR3wM21 - zw below the melting point of R2 by alloying with R2 and R3 . is.

前駆体100は、希土類元素として、主として、Nd、Ce、及びLaを含有する。一方、改質材中の合金は、希土類元素として、主として、Pr、Nd、Pm、Sm、Eu、及びGdから選ばれる1種以上であるRを含有する。 The precursor 100 mainly contains Nd, Ce, and La as rare earth elements. On the other hand, the alloy in the modifier mainly contains R2 , which is one or more selected from Pr, Nd, Pm, Sm, Eu, and Gd, as a rare earth element.

改質材のRと、前駆体100のNd、Ce、及びLaとでは、1種以上の希土類元素の種類が異なるため、理論に拘束されないが、Rが主相10に浸透し、中間相30を形成する。そのため、Rの濃度は、主相10においてよりも、中間相30において高くなる。理論に拘束されないが、Rの主相10への浸透の理由は、次のとおりであると考えられる。 Since R 2 of the modifier and Nd, Ce, and La of the precursor 100 are different in type of one or more rare earth elements, it is not bound by theory, but R 2 permeates the main phase 10 and penetrates the intermediate A phase 30 is formed. Therefore, the concentration of R 2 is higher in the interphase 30 than in the main phase 10 . Although not bound by theory, the reason for the penetration of R2 into the main phase 10 is believed to be as follows.

前駆体100に改良材を浸透させるとき、改質材中の合金が、主相10と同じ希土類元素を主として含有するとき、改質材中の希土類元素は、主相10中に浸透し難い。例えば、Nd-Fe-B系希土類磁石前駆体に、Nd-Cu合金を含有する改質材を浸透する際、改質材中のNdは、粒界相20に留まり易く、主相(NdFe14B相)に浸透し難い。 When the modifier is infiltrated into the precursor 100 , the rare earth element in the modifier hardly penetrates into the main phase 10 when the alloy in the modifier mainly contains the same rare earth element as the main phase 10 . For example, when impregnating a Nd--Fe--B rare earth magnet precursor with a modifier containing an Nd--Cu alloy, Nd in the modifier tends to remain in the grain boundary phase 20 and the main phase (Nd 2 (Fe 14 B phase).

これに対し、改質材中の合金が、主相10と異なる希土類元素を主として含有するとき、改質材中の希土類元素は、主相10に浸透し易い。例えば、(Nd、Ce、La)-Fe-B系希土類磁石に、Nd-Cu合金を含有する改質材を浸透する際、Ce及びLaの存在によって、改質材中のNdは、主相10に浸透し易い。中間相30の飽和磁化及び異方性磁界をバランスよく向上させる観点からは、RはNdが好ましい。 In contrast, when the alloy in the modifier mainly contains a rare earth element different from that of the main phase 10 , the rare earth element in the modifier easily penetrates into the main phase 10 . For example, when a modifier containing an Nd-Cu alloy is infiltrated into a (Nd, Ce, La)-Fe-B rare earth magnet, the presence of Ce and La causes Nd in the modifier to become the main phase Easy to penetrate 10. From the viewpoint of improving the saturation magnetization and anisotropic magnetic field of the intermediate phase 30 in a well-balanced manner, R2 is preferably Nd.

改質材中の合金の組成は、R 1-z-wで表される。Rは、R以外の希土類元素から選ばれる1種以上である。改質材中の合金が含有する希土類元素はRであるが、R以外の希土類元素Rを皆無にすることは難しい。しかし、Rの含有量割合wの値が0~0.1であれば、改質材としての特性は、wの値が0であるときと、実質的に同等と考えてよい。 The composition of the alloy in the modifier is represented by R 2 z R 3 w M 2 1-zw . R 3 is one or more selected from rare earth elements other than R 2 . The rare earth element contained in the alloy in the modifier is R2 , but it is difficult to eliminate the rare earth element R3 other than R2 . However, if the value of the content ratio w of R3 is 0 to 0.1, it can be considered that the properties as a modifier are substantially the same as when the value of w is 0.

wの値は、0に近いことが理想であるが、wの値は、0.01以上、0.02以上、0.03以上、0.04以上、又は0.05以上であってよい。一方、wの値は、製造コストの上昇を招かない限り、低い方がよく、0.09以下、0.08以下、0.07以下、又は0.06以下であってよい。 Ideally, the value of w is close to 0, but the value of w may be 0.01 or more, 0.02 or more, 0.03 or more, 0.04 or more, or 0.05 or more. On the other hand, the value of w is preferably as low as possible, and may be 0.09 or less, 0.08 or less, 0.07 or less, or 0.06 or less, as long as it does not increase the manufacturing cost.

全体組成の式(Nd(Ce、La)(1-x-y) Fe(100-p-q-r-s)Co ・(R 1-z-wにおいて、tの値は、前駆体100に対する改良材中の合金の浸透量(原子%)に相当する。tの値によって、中間相30でのRの濃度と、中間相30の厚さが変化する。 Overall composition formula (Nd x (Ce, La) (1-xy) R 1 y ) p Fe (100-pqr-s) Co q B r M 1 s (R 2 z R 3 In w M 2 1-zw ) t , the value of t corresponds to the penetration of the alloy in the modifier relative to the precursor 100 (atomic %). The value of t varies the concentration of R2 in the interphase 30 and the thickness of the interphase 30 .

図3において、Rの濃度が、主相10においてよりも、中間相30において、1.5倍以上高ければ、磁気分断を明瞭に認識できる。一方、Rの濃度が、主相10においてよりも、中間相30において、8.0倍高くても、磁気分断の効果は飽和しない。したがって、Rの濃度は、主相10においてよりも、中間相30において、1.5~8.0倍高くなっていることが好ましい。Rの濃度は、1.5~5.0倍高くなっていてもよく、1.5~3.0倍高くなっていてもよい。 In FIG. 3, if the concentration of R2 is 1.5 times or more higher in the intermediate phase 30 than in the main phase 10, the magnetic decoupling can be clearly recognized. On the other hand, even if the concentration of R2 is 8.0 times higher in the intermediate phase 30 than in the main phase 10, the magnetic decoupling effect does not saturate. Therefore, the concentration of R 2 is preferably 1.5 to 8.0 times higher in the interphase 30 than in the main phase 10 . The concentration of R 2 may be 1.5-5.0 times higher, and may be 1.5-3.0 times higher.

中間相30としての機能を明瞭に認識するためには、中間相30の厚さは、2nm以上が好ましく、10nm以上がより好ましく、20nm以上がより一層好ましい。一方、中間相30の厚さは、改質材の浸透量に依存する。改質材は、磁化に寄与しないMを含有しているため、浸透量が多すぎると粒界相の体積分率が増加し、希土類磁石100の磁化が低下する。この観点からは、中間相30の厚さは、100nm以下が好ましく、70nm以下がより好ましく、40nm以下がより一層好ましい。 In order to clearly recognize the function of the intermediate phase 30, the thickness of the intermediate phase 30 is preferably 2 nm or more, more preferably 10 nm or more, and even more preferably 20 nm or more. On the other hand, the thickness of the intermediate phase 30 depends on the penetration amount of the modifier. Since the modifier contains M2 that does not contribute to magnetization, if the permeation amount is too large, the volume fraction of the grain boundary phase increases and the magnetization of the rare earth magnet 100 decreases. From this point of view, the thickness of the intermediate phase 30 is preferably 100 nm or less, more preferably 70 nm or less, and even more preferably 40 nm or less.

《製造方法》
次に、本開示の希土類磁石の製造方法について説明する。
"Production method"
Next, a method for manufacturing the rare earth magnet of the present disclosure will be described.

〈溶湯の準備〉
式(Nd(Ce、La)(1-x-y) Fe(100-p-q-r-s)Co で表され、かつ、Ceに対して、Laが、モル比で、1/9~3倍含有されている溶湯を準備する。あるいは、Ceに対して、Laを、モル比で、1/9~2倍含有されている溶湯を準備してもよい。Nd、Ce、La、R、Fe、Co、B、及びMに関すること、並びに、x、y、p、q、r、及びsに関することは、希土類磁石についての説明と同様である。なお、溶湯の準備中、あるいは、後続する工程で、特定の成分が減耗する場合には、その分を見込んでおいてもよい。
<Molten metal preparation>
Represented by the formula (Nd x (Ce, La) (1-xy) R 1 y ) p Fe (100-pqr-s) Co q B r M 1 s , and for Ce , and La in a molar ratio of 1/9 to 3 times. Alternatively, a molten metal containing 1/9 to 2 times La in molar ratio with respect to Ce may be prepared. Nd, Ce, La, R 1 , Fe, Co, B, and M 1 and x, y, p, q, r, and s are the same as the rare earth magnets. If a specific component is depleted during the preparation of the molten metal or in subsequent steps, that amount may be taken into consideration.

溶湯を準備する方法に制限はなく、例えば、原材料を高周波溶解することが挙げられる。溶解中の原材料及び保持中の溶湯の酸化を防止するため、溶湯の準備は、不活性ガス雰囲気中で行うことが好ましい。 The method of preparing the melt is not limited, and includes, for example, high frequency melting of raw materials. In order to prevent oxidation of the raw material being melted and the molten metal being held, it is preferable to prepare the molten metal in an inert gas atmosphere.

〈薄帯の作製〉
上記の溶湯を急冷して、薄帯を得る。薄帯中の主相をナノ結晶化できれば、急冷方法に特に制限はない。例えば、液体急冷法が挙げられる。薄帯中の主相をナノ結晶化するためには、典型的には、溶湯の冷却速度は、1×10K/秒以上、1×10K/秒以上、1×10K/秒以上であってよく、1×10K/秒以下、1×10K/秒以下、又は1×10K/秒以下であってよい。
<Fabrication of ribbon>
The molten metal is quenched to obtain a ribbon. There is no particular limitation on the quenching method as long as the main phase in the ribbon can be nanocrystallized. For example, a liquid quenching method can be mentioned. In order to nanocrystallize the main phase in the ribbon, the cooling rate of the molten metal is typically 1×10 2 K/sec or more, 1×10 3 K/sec or more, 1×10 4 K/sec or more. seconds or more, and may be 1×10 7 K/sec or less, 1×10 6 K/sec or less, or 1×10 5 K/sec or less.

液体急冷法の条件としては、例えば、50kPa以下に減圧した不活性ガス雰囲気中で、溶湯を銅製単ロールに向けて吐出して、薄帯を得ることが挙げられるが、これに限られない。 Conditions for the liquid quenching method include, but are not limited to, discharging the molten metal toward a single copper roll in an inert gas atmosphere with a reduced pressure of 50 kPa or less to obtain a ribbon.

溶湯吐出温度としては、典型的には、1300℃以上、1350℃以上、又は1400℃以上であってよく、1600℃以下、1550℃以下、又は1500℃以下であってよい。 The molten metal discharge temperature may typically be 1300° C. or higher, 1350° C. or higher, or 1400° C. or higher, and may be 1600° C. or lower, 1550° C. or lower, or 1500° C. or lower.

単ロールの周速としては、典型的には、20m/s以上、24m/s以上、又は28m/s以上であってよく、40m/s以下、36m/s以下、又は32m/s以下であってよい。 The peripheral speed of the single roll is typically 20 m/s or more, 24 m/s or more, or 28 m/s or more, and 40 m/s or less, 36 m/s or less, or 32 m/s or less. you can

〈成形体の作製〉
液体急冷で得た薄帯を熱間で圧縮して、成形体を得る。成形体は、複数の薄帯から得られる。圧縮の方法に、特に制限はないが、例えば、ダイスに薄帯を装入して、熱間プレスすることが挙げられる。熱間プレスの前に、薄帯を10μm以下に粉砕してもよい。熱間プレス時の温度は、成形体が得られる温度であればよいが、薄帯中の粒界相の一部が溶融する温度であってもよい。すなわち、薄帯を液相焼結してもよい。熱間プレス中の雰囲気は、薄帯及び成形体の酸化を防止するため、不活性ガス雰囲気が好ましい。また、熱間プレスについては、薄帯を粉砕して得た粉末を圧粉して圧粉体を得たあと、その圧粉体を焼結(液相焼結を含む)してもよい。
<Production of compact>
The ribbon obtained by liquid quenching is hot compressed to obtain a compact. A compact is obtained from a plurality of strips. The method of compression is not particularly limited, but an example is hot pressing after inserting the strip into a die. The ribbon may be pulverized to 10 μm or less before hot pressing. The temperature during hot pressing may be a temperature at which a compact can be obtained, but may be a temperature at which a part of the grain boundary phase in the ribbon melts. That is, the ribbon may be liquid phase sintered. The atmosphere during hot pressing is preferably an inert gas atmosphere in order to prevent oxidation of the ribbon and compact. As for hot pressing, powder obtained by pulverizing the ribbon may be compacted to obtain a compact, and then the compact may be sintered (including liquid phase sintering).

熱間プレス時の圧力としては、典型的には、200MPa以上、300MPa以上、又は350MPa以上であってよく、600MPa以下、500MPa以下、又は450MPa以下であってよい。 The pressure during hot pressing may typically be 200 MPa or higher, 300 MPa or higher, or 350 MPa or higher, and may be 600 MPa or lower, 500 MPa or lower, or 450 MPa or lower.

熱間プレス時の温度としては、典型的には、550℃以上、600℃以上、又は630℃以上であってよく、750℃以下、700℃以下、又は670℃以下であってよい。 The temperature during hot pressing may typically be 550° C. or higher, 600° C. or higher, or 630° C. or higher, and may be 750° C. or lower, 700° C. or lower, or 670° C. or lower.

熱間プレス時の加圧時間としては、典型的には、5秒以上、20秒以上、又は40秒以上であってよく、120秒以下、100秒以下、又は80秒以下であってよい。 The pressing time during hot pressing may typically be 5 seconds or more, 20 seconds or more, or 40 seconds or more, and may be 120 seconds or less, 100 seconds or less, or 80 seconds or less.

〈圧縮体の作製〉
上述の成形体を、さらに、熱間で強加工して圧縮体(塑性加工体)を得る。熱間強加工(以下、単に「強加工」ということがある。)の方法は、異方性を有する圧縮体が得られれば、特に制限はない。例えば、成形体を、超硬製の金型に装入し、圧下率10~75%で強加工することが挙げられる。強加工の方法としては、据え込み加工、及び後方押出し加工等が挙げられる。圧下率は、所望の異方性が得られるように設定すればよい。強加工時の温度は、圧縮体が破壊されず、かつ、圧縮体中の結晶粒が粗大化しないように設定すればよい。
<Preparation of compressed body>
The above molded body is further subjected to strong hot working to obtain a compressed body (plastically worked body). There is no particular limitation on the method of hot hard working (hereinafter sometimes simply referred to as "hard working") as long as a compressed body having anisotropy can be obtained. For example, the compact is placed in a cemented carbide mold and heavily worked at a rolling reduction of 10 to 75%. Upsetting, backward extrusion, and the like can be mentioned as methods of strong working. The draft may be set so as to obtain the desired anisotropy. The temperature at the time of heavy working may be set so that the compressed body is not destroyed and crystal grains in the compressed body are not coarsened.

強加工時の圧下率としては、典型的には、10%以上、30%以上、50%以上、60%以上であってよく、75%以下、70%以下、又は65%以下であってよい。 The rolling reduction during heavy working may be typically 10% or more, 30% or more, 50% or more, 60% or more, and may be 75% or less, 70% or less, or 65% or less. .

強加工時の温度としては、650℃以上、700℃以上、又は720℃以上であってよく、850℃以下、800℃以下、又は770℃以下であってよい。 The temperature during heavy working may be 650° C. or higher, 700° C. or higher, or 720° C. or higher, and may be 850° C. or lower, 800° C. or lower, or 770° C. or lower.

強加工時の歪速度は、0.001/s以上、0.01/s以上、0.1/s以上、又は1.0/s以上であってよく、10.0/s以下、5.0/s以下、又は3.0/s以下であってよい。 4. The strain rate during heavy working may be 0.001/s or more, 0.01/s or more, 0.1/s or more, or 1.0/s or more, and 10.0/s or less. It may be 0/s or less, or 3.0/s or less.

理論に拘束されないが、強加工中の成形体の内部では、次のことが発生していると考えられる。成形体は、主相10と、主相10の周囲に存在する粒界相20とを備える(図2、参照)。成形体を強加工すると、主相10が変形する。このとき、その変形によって、少なくとも一部の主相10で、主相10同士が互いに直接接する部分を生じ易い。そして、この接触部は、主相10の粒成長の起点となり得る。強加工時の歪速度が遅いと、その接触部を起点として主相10が粒成長し易い。強加工は熱間で行われるため、歪速度が遅いことは、前述の接触部が長時間に亘って高温であることを意味する。そうすると、接触部を通じて原子拡散が起こり、主相10が粒成長する。一方、強加工の初期段階では、主相10から粒界相20へ、Ce及びLa、特にLaが排出される。Ce及びLaの排出によって、主相10が変形するとき、主相10同士の間にCe及びLaが入り込み、前述の接触部の生成が抑制される。また、Ce及びLaの排出によって、粒界相20の融点が低下する。強加工は、粒界相20の少なくとも一が溶融する温度で行われる。粒界相20の融点が低下することによって、強加工時の粒界相20の融液の粘性が低下する。その結果、変形中の主相10は、融液中で回転し易くなり、主相10が特定の方向に配向し易い。これらのことから、歪速度が遅い場合、典型的には、歪速度が0.001/s以上0.01/s未満の場合であっても、主相10の粒成長を抑制して保磁力の低下を抑制するとともに、主相10の配向を促進して磁化が向上する。この観点からは、歪速度は、0.001/s以上0.008/s以下、又は0.001/s以上0.005/s以下であってもよい。 Although not bound by theory, it is believed that the following occurs inside the compact during severe working. The compact comprises a main phase 10 and grain boundary phases 20 existing around the main phase 10 (see FIG. 2). When the compact is severely worked, the main phase 10 is deformed. At this time, due to the deformation, at least some of the main phases 10 tend to have portions where the main phases 10 are in direct contact with each other. This contact portion can become a starting point for grain growth of the main phase 10 . If the strain rate during heavy working is slow, grain growth of the main phase 10 tends to occur starting from the contact portion. Since severe working is performed hot, a slow strain rate means that the aforementioned contact portion is at a high temperature for a long period of time. Then, atomic diffusion occurs through the contact portion, and grain growth of the main phase 10 occurs. On the other hand, in the initial stage of heavy working, Ce and La, especially La, are discharged from the main phase 10 to the grain boundary phase 20 . When the main phase 10 is deformed by discharge of Ce and La, Ce and La enter between the main phases 10, suppressing the formation of the aforementioned contact portion. Moreover, the melting point of the grain boundary phase 20 is lowered by the discharge of Ce and La. Strong working is performed at a temperature at which at least one of the grain boundary phases 20 melts. By lowering the melting point of the grain boundary phase 20, the viscosity of the melt of the grain boundary phase 20 during heavy working is reduced. As a result, the main phase 10 during deformation is easily rotated in the melt, and the main phase 10 is easily oriented in a specific direction. From these, when the strain rate is slow, typically, even when the strain rate is 0.001 / s or more and less than 0.01 / s, the grain growth of the main phase 10 is suppressed and the coercive force is suppressed, and the orientation of the main phase 10 is promoted to improve the magnetization. From this point of view, the strain rate may be 0.001/s or more and 0.008/s or less, or 0.001/s or more and 0.005/s or less.

このようにして得られた圧縮体を、そのまま、希土類磁石として使用してもよいし、この圧縮体を希土類磁石前駆体として、後続する工程を行ってもよい。 The compressed body thus obtained may be used as it is as a rare earth magnet, or may be used as a rare earth magnet precursor for subsequent steps.

〈改質材の準備〉
式R 1-z-wで表される組成の合金を含有する改質材を準備する。R及びRに関すること、並びに、wに関することについては、希土類磁石についての説明と同様である。
<Preparation of modifier>
A modifier containing an alloy having a composition represented by the formula R 2 z R 3 w M 2 1-zw is prepared. The matters concerning R 2 and R 3 and the matters concerning w are the same as those for the rare earth magnet.

は、R及びRと合金化することによって、R 1-z-wの融点をRの融点よりも低下させる合金元素及び不可避的不純物元素である。これにより、後述する熱処理の温度を過度に高くしなくとも、改質材中の合金を溶融することができる。その結果、希土類磁石前駆体の組織を粗大化することなく、改質材中の合金を希土類磁石前駆体に浸透させることができる。Mには不可避的不純物元素を含んでよい。不可避的不純物元素とは、原材料に含まれる不純物元素等、その含有を回避することが避けられない、あるいは、回避するためには著しい製造コストの上昇を招くような不純物元素のことをいう。 M 2 is an alloying element and an unavoidable impurity element that lowers the melting point of R 2 z R 3 w M 2 1-zw below that of R 2 by alloying with R 2 and R 3 . As a result, the alloy in the reforming material can be melted without excessively increasing the temperature of the heat treatment described later. As a result, the alloy in the modifier can permeate the rare earth magnet precursor without coarsening the structure of the rare earth magnet precursor. M2 may contain unavoidable impurity elements. An unavoidable impurity element is an impurity element such as an impurity element contained in a raw material, which cannot be avoided, or whose avoidance causes a significant increase in manufacturing cost.

は、Cu、Al、及びCoから選ばれる1種以上及び不可避的不純物元素であることが好ましい。Cu、Al、及びCoは、希土類磁石の磁気特性等への悪影響が小さいためである。 M2 is preferably one or more selected from Cu, Al, and Co and an unavoidable impurity element. This is because Cu, Al, and Co have little adverse effect on the magnetic properties and the like of rare earth magnets.

1-z-wで表される組成の合金としては、Nd-Cu合金、Pr-Cu合金、Nd-Pr-Cu合金、Nd-Al合金、Pr-Al合金、Nd-Pr-Al合金、Nd-Co合金、Pr-Co合金、及びNd-Pr-Co合金等が挙げられる。 Examples of alloys having compositions represented by R 2 z R 3 w M 2 1-zw include Nd--Cu alloys, Pr--Cu alloys, Nd--Pr--Cu alloys, Nd--Al alloys, Pr--Al alloys, Nd--Pr--Al alloy, Nd--Co alloy, Pr--Co alloy, Nd--Pr--Co alloy and the like.

の含有量割合zについて説明する。zが0.50以上であれば、合金中のRの含有量が多いため、Rを主相10及び中間相30まで浸透させ易い。この観点からは、zについては、0.55以上が好ましく、0.60以上がより好ましい。一方、zが0.80以下であれば、改質材中の合金の融点が適正に低下するため、後述する熱処理の温度が適正となる。その結果、希土類磁石前駆体の組織が粗大化を抑制できる。合金の融点の適正化の観点からは、zについては、0.75以下が好ましく、0.70以下がより好ましい。なお、zについては、Rが2種以上の元素である場合には、それらの合計である。Mについても同様である。 The content ratio z of R 2 will be explained. When z is 0.50 or more, the content of R2 in the alloy is large, so R2 easily penetrates into the main phase 10 and the intermediate phase 30. From this point of view, z is preferably 0.55 or more, more preferably 0.60 or more. On the other hand, if z is 0.80 or less, the melting point of the alloy in the modifier is properly lowered, so the temperature of the heat treatment described later becomes appropriate. As a result, coarsening of the structure of the rare earth magnet precursor can be suppressed. From the viewpoint of optimizing the melting point of the alloy, z is preferably 0.75 or less, more preferably 0.70 or less. As for z, when R2 is two or more elements, it is the sum of them. The same is true for M2 .

改質材の製造方法は特に制限されない。改質材の製造方法としては、鋳造法、液体急冷法等が挙げられる。改質材の部位により、合金成分のばらつきが小さい、酸化物等の不純物が少ないという観点から、液体急冷法が好ましい。 The method for producing the modifier is not particularly limited. Examples of the method for producing the reforming material include casting, liquid quenching, and the like. The liquid quenching method is preferable from the viewpoints that variations in the alloy components are small depending on the part of the modifier and impurities such as oxides are small.

改質材中の合金の浸透量は、全体組成の式のt(原子%)で表される。改質材の浸透効果は、磁気特性の向上等で、tが0.05原子%以上であれば認められる。図3に示されるように、中間相30が明瞭に認識できるようにするためには、tは、0.1原子%以上が好ましく、1.0原子%以上がより好ましく、1.5原子%以上がより一層好ましい。一方、改質材はMを含有するため、改質材の浸透量が過剰になると、改質材浸透後の希土類磁石の磁化が低下する。tが10.0原子%以下であれば、磁化の低下は、実用上問題ない。この観点からは、tは、9.0原子%以下が好ましく、8.0原子%以下がより好ましく、7.0原子%以下がより一層好ましい。 The permeation amount of the alloy in the modifier is represented by t (atomic %) in the overall composition formula. The permeation effect of the modifier, such as improvement in magnetic properties, is recognized when t is 0.05 atomic % or more. As shown in FIG. 3, in order to clearly recognize the intermediate phase 30, t is preferably 0.1 atomic % or more, more preferably 1.0 atomic % or more, and 1.5 atomic %. The above is more preferable. On the other hand, since the modifier contains M2 , if the amount of permeation of the modifier becomes excessive, the magnetization of the rare earth magnet after the permeation of the modifier decreases. If t is 10.0 atomic % or less, the decrease in magnetization poses no practical problem. From this point of view, t is preferably 9.0 atomic % or less, more preferably 8.0 atomic % or less, and even more preferably 7.0 atomic % or less.

〈接触体の作製〉
希土類磁石前駆体と改質材を互いに接触させて、接触体を得る。希土類磁石前駆体は、上述した圧縮体である。この際、希土類磁石前駆体の少なくとも一面と、改質材の少なくとも一面とを、互いに接触させる。
<Production of contact body>
A contact body is obtained by bringing the rare earth magnet precursor and the modifier into contact with each other. The rare earth magnet precursor is the compact as described above. At this time, at least one surface of the rare earth magnet precursor and at least one surface of the modifier are brought into contact with each other.

〈熱処理〉
上述の接触体を熱処理して、希土類磁石前駆体の内部に、改質材の融液を浸透させる。これにより、改質材の融液が、希土類磁石前駆体の粒界相を通じて、主相の表面部に到達し、改質材中のRが主相に浸透して、中間相を形成する。
<Heat treatment>
The above-described contact body is heat-treated to allow the melt of the modifier to permeate the inside of the rare earth magnet precursor. As a result, the melt of the modifier reaches the surface of the main phase through the grain boundary phase of the rare earth magnet precursor, and the R2 in the modifier permeates the main phase to form an intermediate phase. .

熱処理温度は、改質材が溶融し、かつ、希土類磁石前駆体の主相にまで、改質材の融液を浸透させることができれば、特に制限はない。 The heat treatment temperature is not particularly limited as long as the modifier melts and the melt of the modifier can penetrate into the main phase of the rare earth magnet precursor.

熱処理温度が高いほど、改質材の融液、特にRを希土類磁石前駆体の主相へ浸透させ易い。この観点からは、熱処理温度については、580℃以上が好ましく、600℃以上がより好ましく、620℃以上がより一層好ましい。一方、熱処理温度が低いほど、希土類磁石前駆体の組織、特に主相の粗大化を抑制し易い。この観点からは、熱処理温度については、800℃以下が好ましく、775℃以下がより好ましく、725℃以下がより一層好ましい。 The higher the heat treatment temperature, the easier it is for the modifier melt, especially R2 , to permeate the main phase of the rare earth magnet precursor. From this point of view, the heat treatment temperature is preferably 580° C. or higher, more preferably 600° C. or higher, and even more preferably 620° C. or higher. On the other hand, the lower the heat treatment temperature, the easier it is to suppress coarsening of the structure of the rare earth magnet precursor, particularly the main phase. From this point of view, the heat treatment temperature is preferably 800° C. or lower, more preferably 775° C. or lower, and even more preferably 725° C. or lower.

熱処理雰囲気に特に制限はないが、希土類磁石前駆体及び改質材の酸化抑制の観点からは、不活性ガス雰囲気が好ましい。 The heat treatment atmosphere is not particularly limited, but an inert gas atmosphere is preferable from the viewpoint of suppressing oxidation of the rare earth magnet precursor and modifier.

以下、本開示の希土類磁石及びその製造方法を実施例により、さらに具体的に説明する。なお、本開示の希土類磁石及びその製造方法は、以下の実施例で用いた条件に限定されるものではない。 Hereinafter, the rare earth magnet of the present disclosure and the method for producing the same will be described more specifically with reference to examples. It should be noted that the rare earth magnet of the present disclosure and its manufacturing method are not limited to the conditions used in the following examples.

〈実施例1~26の試料の作製〉
まず、希土類磁石前駆体を作製する。R13.11Fe80.43Cu0.105.99Ga0.37で表される組成を有する合金溶湯を、単ロール法で液体急冷して薄帯を得た。Rは後述する表1-1のとおりである。液体急冷の条件としては、溶湯温度(吐出温度)が1420℃であり、ロール周速が30m/sであった。このとき、溶湯の冷却速度は、10K/秒であった。液体急冷は、アルゴンガス減圧雰囲気下で行われた。薄帯がナノ結晶化していることを透過電子顕微鏡(TEM)観察で確認した。
<Preparation of samples of Examples 1 to 26>
First, a rare earth magnet precursor is produced. A molten alloy having a composition represented by R 13.11 Fe 80.43 Cu 0.10 B 5.99 Ga 0.37 was liquid quenched by a single roll method to obtain a ribbon. R is as shown in Table 1-1 below. The liquid quenching conditions were a melt temperature (discharge temperature) of 1420° C. and a roll peripheral speed of 30 m/s. At this time, the cooling rate of the molten metal was 10 6 K/sec. Liquid quenching was performed under an argon gas reduced pressure atmosphere. It was confirmed by observation with a transmission electron microscope (TEM) that the ribbon was nano-crystallized.

薄帯を粗粉砕して粉末とし、その粉末をダイスに装入し、加圧及び加熱して、成形体を得た。加圧及び加熱条件としては、加圧力が400MPaであり、加熱温度が650℃であり、加圧及び加熱の保持時間が60秒であった。 The thin strip was coarsely pulverized into powder, and the powder was charged into a die, pressurized and heated to obtain a compact. As the pressurization and heating conditions, the pressurization force was 400 MPa, the heating temperature was 650° C., and the pressurization and heating holding time was 60 seconds.

成形体を熱間据え込み加工(熱間強加工)して、圧縮体(塑性加工体)を得た。熱間強加工は、高さが15mmの試料を、4.5mmまで圧縮した。熱間据え込み加工条件としては、加工温度が780℃であり、歪速度が0.01/sであり、圧下率が70%であった。圧縮体が配向したナノ結晶を有していることを走査型電子顕微鏡(SEM)で確認した。この圧縮体を希土類磁石前駆体とした。 The compact was subjected to hot upsetting (strong hot working) to obtain a compressed body (plastically worked body). Intensive hot working compressed a sample with a height of 15 mm to 4.5 mm. The hot upsetting conditions were a working temperature of 780° C., a strain rate of 0.01/s, and a rolling reduction of 70%. Scanning electron microscopy (SEM) confirmed that the compact had oriented nanocrystals. This compressed body was used as a rare earth magnet precursor.

改質材としてNd70Cu30合金を作製した。(株)高純度化学製のNd粉末とCu粉末を秤量して、それをアーク溶解し、液体急冷して薄帯を得た。 A Nd 70 Cu 30 alloy was produced as a modifier. Nd powder and Cu powder manufactured by Kojundo Chemical Co., Ltd. were weighed, arc-melted, and liquid-quenched to obtain a ribbon.

希土類磁石前駆体と改質材を互いに接触させて、加熱炉で熱処理した。改質材の量は、希土類磁石前駆体に対して、1.59原子%、3.72原子%、及び5.32原子%であった(表1-1、参照)。熱処理条件としては、熱処理温度が625℃であり、熱処理時間が165分であった。 The rare earth magnet precursor and the modifier were brought into contact with each other and heat-treated in a heating furnace. The modifier amounts were 1.59 atomic %, 3.72 atomic %, and 5.32 atomic % relative to the rare earth magnet precursor (see Table 1-1). As the heat treatment conditions, the heat treatment temperature was 625° C., and the heat treatment time was 165 minutes.

〈比較例1の試料の作製〉
希土類磁石前駆体を作製するための合金の組成が、Nd13.11Fe80.43Cu0.105.99Ga0.37であること、及び希土類磁石前駆体に改質材を浸透させなかったことを除き、実施例1~26と同様に試料を作製した。
<Preparation of sample of Comparative Example 1>
The composition of the alloy for making the rare earth magnet precursor is Nd 13.11 Fe 80.43 Cu 0.10 B 5.99 Ga 0.37 , and the modifier is impregnated into the rare earth magnet precursor. Samples were prepared as in Examples 1-26, except that there was no

〈実施例27~32の試料の作製〉
希土類磁石前駆体のRが表1-3のとおりであることを除き、実施例1~26と同様に試料を作製した。
<Preparation of samples of Examples 27 to 32>
Samples were prepared in the same manner as in Examples 1-26, except that the R of the rare earth magnet precursor was as shown in Table 1-3.

〈実施例33~36の試料の作製〉
希土類磁石前駆体のRが表1-3のとおりであること、希土類磁石前駆体に改質材を浸透させなかったことを除き、実施例1~26と同様に試料を作製した。
<Preparation of samples of Examples 33 to 36>
Samples were prepared in the same manner as in Examples 1 to 26, except that the R of the rare earth magnet precursor was as shown in Table 1-3 and that the modifier was not permeated into the rare earth magnet precursor.

〈実施例37~38の試料の作製〉
希土類磁石前駆体を作製するための合金の組成が、R13.11Fe80.80Cu0.105.99であること、希土類磁石前駆体のRが表1-3のとおりであることを除き、実施例1~26と同様に試料を作製した。
<Preparation of samples of Examples 37 to 38>
The composition of the alloy for producing the rare earth magnet precursor is R 13.11 Fe 80.80 Cu 0.10 B 5.99 , and the R of the rare earth magnet precursor is as shown in Table 1-3. Samples were prepared in the same manner as in Examples 1 to 26, except for

〈実施例39〉
成形体の熱間据え込み加工時の歪速度が0.001/sにしたこと以外、実施例6と同様に試料を作製した。
<Example 39>
A sample was prepared in the same manner as in Example 6, except that the strain rate during hot upsetting of the compact was set to 0.001/s.

〈実施例40〉
成形体の熱間据え込み加工時の歪速度が0.001/sにしたこと以外、実施例12と同様に試料を作製した。
<Example 40>
A sample was prepared in the same manner as in Example 12, except that the strain rate during hot upsetting of the compact was set to 0.001/s.

〈比較例2の試料の作製〉
希土類磁石前駆体を作製するための合金の組成が、Nd13.11Fe80.43Cu0.105.99Ga0.37であることを除き、実施例1~26と同様に試料を作製した。
<Preparation of sample of Comparative Example 2>
Samples were prepared in the same manner as in Examples 1-26, except that the composition of the alloy for making the rare earth magnet precursor was Nd 13.11 Fe 80.43 Cu 0.10 B 5.99 Ga 0.37 . made.

〈比較例3~7の試料の作製〉
希土類磁石前駆体のRが表1-3のとおりであることを除き、実施例1~26と同様に試料を作製した。
<Preparation of samples of Comparative Examples 3 to 7>
Samples were prepared in the same manner as in Examples 1-26, except that the R of the rare earth magnet precursor was as shown in Table 1-3.

〈比較例8の試料の作製〉
希土類磁石前駆体のRが表1-3のとおりであることを除き、比較例1と同様に比較例8の試料を作製した。
<Preparation of sample of Comparative Example 8>
A sample of Comparative Example 8 was prepared in the same manner as in Comparative Example 1, except that the R of the rare earth magnet precursor was as shown in Table 1-3.

〈比較例9の試料の作製〉
希土類磁石前駆体のRが表1-3のとおりであること、及び改質材の浸透量が3.72原子%であることを除き、比較例2と同様に比較例9の試料を作製した。なお、比較例9の試料は、比較例8の試料に3.72原子%の改質材を浸透させたものと同等である。
<Preparation of sample of Comparative Example 9>
A sample of Comparative Example 9 was prepared in the same manner as in Comparative Example 2, except that the R of the rare earth magnet precursor was as shown in Table 1-3 and that the permeation amount of the modifier was 3.72 atomic %. . The sample of Comparative Example 9 is equivalent to the sample of Comparative Example 8 in which 3.72 atom % of the modifier is permeated.

〈比較例10の試料の作製〉
希土類磁石前駆体のRが表1-3のとおりであることを除き、比較例1と同様に比較例10の試料を作製した。
<Preparation of sample of Comparative Example 10>
A sample of Comparative Example 10 was prepared in the same manner as in Comparative Example 1, except that the R of the rare earth magnet precursor was as shown in Table 1-3.

〈比較例11の試料の作製〉
希土類磁石前駆体のRが表1-3のとおりであること、及び改質材の浸透量が3.72原子%であることを除き、比較例2と同様に比較例11の試料を作製した。なお、比較例11の試料は、比較例10の試料に3.72原子%の改質材を浸透させたものと同等である。
<Preparation of sample of Comparative Example 11>
A sample of Comparative Example 11 was prepared in the same manner as in Comparative Example 2, except that the R of the rare earth magnet precursor was as shown in Table 1-3 and that the permeation amount of the modifier was 3.72 atomic %. . The sample of Comparative Example 11 is equivalent to the sample of Comparative Example 10 in which 3.72 atomic % of the modifier is permeated.

〈比較例12の試料の作製〉
希土類磁石前駆体のRが表1-3のとおりであること、及び改質材の浸透量が3.72原子%であることを除き、比較例2と同様に比較例13の試料を作製した。
<Preparation of sample of Comparative Example 12>
A sample of Comparative Example 13 was prepared in the same manner as in Comparative Example 2, except that the R of the rare earth magnet precursor was as shown in Table 1-3 and the permeation amount of the modifier was 3.72 atomic %. .

〈評価〉
実施例1~40及び比較例1~12の試料について、保磁力及び残留磁化を測定した。測定には、東英工業株式会社製パルス励磁型磁気特性測定装置(最大印加磁場:15T)を用いた。保磁力及び残留磁化のいずれも、23℃、100℃、140℃、160℃で測定した。
<evaluation>
The samples of Examples 1-40 and Comparative Examples 1-12 were measured for coercive force and residual magnetization. For the measurement, a pulse excitation type magnetic property measuring device manufactured by Toei Industry Co., Ltd. (maximum applied magnetic field: 15 T) was used. Both coercivity and remanent magnetization were measured at 23°C, 100°C, 140°C and 160°C.

結果を表1-1~1-4及び表2-1~2-2に示す。表1-1及び表1-3には、各試料の組成を併記した。また、保磁力については、23~160℃の間の勾配ΔHcを、残留磁化については、23~160℃の間の勾配ΔBrを、それぞれ、併記した。表2-1には、熱間据え込み加工の条件及び平均粒径を併記した。ここで、平均粒径とは、主相10と中間相30で構成される結晶粒の平均粒径tを意味する(図3、参照)。図4は、実施例15及び比較例1の試料について、温度と保磁力の関係を示すグラフである。図5は、実施例15及び比較例1の試料について、温度と残留磁化の関係を示す図である。 The results are shown in Tables 1-1 to 1-4 and Tables 2-1 to 2-2. Tables 1-1 and 1-3 also show the composition of each sample. Further, the gradient ΔHc between 23° C. and 160° C. for the coercive force and the gradient ΔBr between 23° C. and 160° C. for the residual magnetization are also shown. Table 2-1 also shows the hot upset conditions and the average grain size. Here, the average grain size means the average grain size t of crystal grains composed of the main phase 10 and the intermediate phase 30 (see FIG. 3). 4 is a graph showing the relationship between temperature and coercive force for the samples of Example 15 and Comparative Example 1. FIG. 5 is a diagram showing the relationship between temperature and residual magnetization for the samples of Example 15 and Comparative Example 1. FIG.

実施例6、12、17、39、及び40の試料については、走査型透過電子顕微鏡(STEM)を用いて組織観察し、成分分析(EDX線分析)を行った。 The samples of Examples 6, 12, 17, 39, and 40 were subjected to structural observation using a scanning transmission electron microscope (STEM) and component analysis (EDX-ray analysis).

評価結果を、図6~26に示す。このうち、図6~14は、表1-1~1-4で示す実施例及び比較例に関する評価結果であり、図15~26は、表2-1~2-2で示す実施例に関する評価結果である。 Evaluation results are shown in FIGS. Among these, FIGS. 6 to 14 are the evaluation results for the examples and comparative examples shown in Tables 1-1 to 1-4, and FIGS. 15 to 26 are the evaluations for the examples shown in Tables 2-1 to 2-2. This is the result.

図6は、実施例6の試料について、組織観察及び成分分析位置を示す図である。図7は、実施例6の試料(第1視野)についての組織観察及び成分分析結果を示す図である。図8は、実施例6の試料(第2視野)についての組織観察及び成分分析結果を示す図である。図9は、実施例12の試料について、組織観察及び成分分析位置を示す図である。図10は、実施例12の試料(第1視野)についての組織観察及び成分分析結果を示す図である。図11は、実施例12の試料(第2視野)についての組織観察及び成分分析結果を示す図である。図12は、実施例17の試料について、組織観察及び成分分析位置を示す図である。図13は、実施例17の試料(第1視野)についての組織観察及び成分分析結果を示す図である。図14は、実施例17の試料(第2視野)についての組織観察及び成分分析結果を示す図である。 FIG. 6 is a diagram showing tissue observation and component analysis positions for the sample of Example 6. FIG. 7 is a diagram showing the results of structural observation and component analysis of the sample (first field of view) of Example 6. FIG. FIG. 8 is a diagram showing the results of structural observation and component analysis of the sample (second field of view) of Example 6. FIG. FIG. 9 is a diagram showing tissue observation and component analysis positions for the sample of Example 12. FIG. 10 is a diagram showing the results of structural observation and component analysis of the sample (first field of view) of Example 12. FIG. FIG. 11 is a diagram showing the results of structural observation and component analysis of the sample of Example 12 (second field of view). FIG. 12 is a diagram showing tissue observation and component analysis positions for the sample of Example 17. FIG. FIG. 13 is a diagram showing the results of structural observation and component analysis of the sample (first field of view) of Example 17. FIG. FIG. 14 is a diagram showing the results of structural observation and component analysis of the sample of Example 17 (second field of view).

図15は、実施例39の試料について、結晶粒の粒径tの一例を示す図である。図16は、実施例40の試料について、結晶粒の粒径tの一例を示す図である。図17は、実施例6の試料について、結晶粒の粒径tの一例を示す図である。図18は、実施例12の試料について、結晶粒の粒径tの一例を示す図である。表2の平均粒径は、図15~18それぞれにおいて、視野中に含まれる結晶粒それぞれの粒径tの平均である。 FIG. 15 is a diagram showing an example of grain size t of crystal grains in the sample of Example 39. In FIG. FIG. 16 is a diagram showing an example of grain size t of crystal grains for the sample of Example 40. In FIG. FIG. 17 is a diagram showing an example of grain size t of crystal grains in the sample of Example 6. In FIG. FIG. 18 is a diagram showing an example of grain size t of crystal grains for the sample of Example 12. In FIG. The average grain size in Table 2 is the average grain size t of each crystal grain included in the field of view in each of FIGS.

図19は、実施例39の試料について、組織観察結果及び成分分析位置を示す図である。図20は、図19の白線で示した位置での成分分析結果を示す図である。図21は、実施例40の試料について、組織観察結果及び成分分析位置を示す図である。図22は、図21の白線で示した位置での成分分析結果を示す図である。図23は、実施例6の試料について、組織観察結果及び成分分析位置を示す図である。図24は、図23の白線で示した位置での成分分析結果を示す図である。図25は、実施例12の試料について、組織観察結果及び成分分析位置を示す図である。図26は、図25の白線で示した位置での成分分析結果を示す図である。また、表3に、実施例39、実施例40、実施例6、及び実施例12について、図20、図22、図24、及び図26から、粒界相でのLa及びCeのピーク濃度並びにそれらの合計ピーク濃度を求めた結果を示す。 19 is a diagram showing the tissue observation results and component analysis positions for the sample of Example 39. FIG. FIG. 20 is a diagram showing the results of component analysis at positions indicated by white lines in FIG. FIG. 21 is a diagram showing tissue observation results and component analysis positions for the sample of Example 40. FIG. FIG. 22 is a diagram showing the results of component analysis at positions indicated by white lines in FIG. 23 is a diagram showing the tissue observation results and component analysis positions for the sample of Example 6. FIG. FIG. 24 is a diagram showing the results of component analysis at positions indicated by white lines in FIG. 25 is a diagram showing the tissue observation results and component analysis positions for the sample of Example 12. FIG. FIG. 26 is a diagram showing the results of component analysis at positions indicated by white lines in FIG. In addition, Table 3 shows the peak concentrations of La and Ce in the grain boundary phase and The results of determining their total peak concentrations are shown.

Figure 0007247548000001
Figure 0007247548000001
Figure 0007247548000002
Figure 0007247548000002

Figure 0007247548000003
Figure 0007247548000003
Figure 0007247548000004
Figure 0007247548000004

表1-1~1-4から、実施例1~38のすべての試料について、比較例1~4よりも、ΔHcの絶対値が小さいことを確認できた。また、実施例1~38のすべての試料について、ΔBrの絶対値が非常に小さいことが確認できた。さらに、比較例5~7においては、高温時の磁化の低下が大きいことが確認できた。これらにより、本開示の希土類磁石は、磁化に大きな影響を与えることなく、高温時の保磁力の低下が抑制できていることを確認できた。同様のことは、図4及び5でも確認できた。また、図6~11から、中間相30の形成を確認できた。 From Tables 1-1 to 1-4, it was confirmed that all the samples of Examples 1-38 had smaller absolute values of ΔHc than those of Comparative Examples 1-4. Also, it was confirmed that the absolute value of ΔBr was very small for all the samples of Examples 1 to 38. Furthermore, in Comparative Examples 5 to 7, it was confirmed that the magnetization decreased significantly at high temperatures. From these results, it was confirmed that the rare earth magnet of the present disclosure can suppress a decrease in coercive force at high temperatures without significantly affecting magnetization. The same thing was confirmed in FIGS. 4 and 5 as well. Also, from FIGS. 6 to 11, the formation of the intermediate phase 30 could be confirmed.

改質材を浸透させた試料について、実施例1~32及び実施例37~38の試料と比較例9、11、及び12の試料とを比較する。そうすると、希土類元素に関し、Nd、Ce、及びLaを含有している実施例1~32及び実施例37~38の試料においては、Nd及びLaのみを含有している比較例9、11、及び12の試料においてよりも、ΔHcの絶対値が小さいことを確認できた。改質材を浸透させていない試料について、実施例33~36の試料と比較例8及び10の試料との間にも、同様のことが確認できた。 Regarding the samples impregnated with the modifier, the samples of Examples 1 to 32 and Examples 37 to 38 and the samples of Comparative Examples 9, 11 and 12 are compared. Then, in the samples of Examples 1 to 32 and Examples 37 to 38 containing Nd, Ce, and La with respect to rare earth elements, Comparative Examples 9, 11, and 12 containing only Nd and La It was confirmed that the absolute value of ΔHc was smaller than in the sample of . The same was confirmed between the samples of Examples 33 to 36 and the samples of Comparative Examples 8 and 10 with respect to the samples in which the modifier was not permeated.

Figure 0007247548000005
Figure 0007247548000005
Figure 0007247548000006
Figure 0007247548000006

Figure 0007247548000007
Figure 0007247548000007

表2から、歪速度が遅い場合でも、結晶粒の平均粒径の増加が抑制され、その結果、保磁力が劣化しないことを確認できた。それに加えて、歪速度が遅い場合には、磁化が向上することを確認できた。また、表3から、歪速度が速い場合と比較して、歪速度が遅い場合には、粒界相20のCe及びLa、特にLaの濃度が高く、保磁力の維持及び磁化の向上は、主相10から粒界相20へのCe及びLaの排出と関連性が高い可能性があることを確認できた。 From Table 2, it was confirmed that even when the strain rate was slow, the increase in the average grain size of the crystal grains was suppressed, and as a result, the coercive force did not deteriorate. In addition, it was confirmed that the magnetization was improved when the strain rate was slow. Also, from Table 3, when the strain rate is slow compared to when the strain rate is fast, the concentrations of Ce and La, particularly La, in the grain boundary phase 20 are high, and the coercive force is maintained and the magnetization is improved. It has been confirmed that there is a high possibility that there is a high correlation with discharge of Ce and La from the main phase 10 to the grain boundary phase 20 .

以上の結果から、本開示の希土類磁石及びその製造方法の効果を確認できた。 From the above results, the effects of the rare earth magnet of the present disclosure and the method for producing the same have been confirmed.

10 主相
20 粒界相
30 中間相
100 希土類磁石(前駆体)
10 main phase 20 grain boundary phase 30 intermediate phase 100 rare earth magnet (precursor)

Claims (11)

主相と、
前記主相の周囲に存在する粒界相と、
を備え、
全体組成が、式(Nd(Ce、La)(1-x-y) Fe(100-p-q-r-s)Co ・(R 1-z-w で表され、
は、Nd、Ce、及びLa以外の希土類元素から選ばれる1種以上であり、Rは、Pr、Nd、Pm、Sm、Eu、及びGdから選ばれる1種以上であり、Rは、R以外の希土類元素から選ばれる1種以上であり、Mは、Ga、Al、Cu、Au、Ag、Zn、In、及びMnから選ばれる1種以上、並びに不可避的不純物元素であり、Mは、R及びRと合金化することによって、R 1-z-wの融点をRの融点よりも低下させる合金元素及び不可避的不純物元素であり
、q、r、s、及びtが、原子%で、
5.0≦p≦20.0、
0≦q≦8.0、
4.0≦r≦6.5、
0≦s≦2.0、及び
0≦t≦10.0
であり、
x、y、z、及びwが、モル比で、
0.4≦x≦0.8、
0≦y≦0.1、
0.5≦z≦0.8、及び
0≦w≦0.1
であり、
q、s、y、及びwそれぞれが0であるとは、前記式で、Co、M 、R 、及びR それぞれが存在しないことを意味し
が0であるとは、前記式で、・(R 1-z-wが存在しないことを意味し、
前記Ceに対して、前記Laが、モル比で、1/9~3倍含有されており、かつ、
前記主相の平均粒径が1~1000nmである、
希土類磁石。
main phase and
a grain boundary phase existing around the main phase;
with
The overall composition has the formula (Nd x (Ce, La) (1-xy) R 1 y ) p Fe (100-pqr-s) Co q B r M 1 s (R 2 z R 3 w M 2 1-zw ) t ,
R 1 is one or more selected from rare earth elements other than Nd, Ce, and La, R 2 is one or more selected from Pr, Nd, Pm, Sm, Eu, and Gd, and R 3 is one or more selected from rare earth elements other than R2 , and M1 is one or more selected from Ga, Al, Cu, Au, Ag, Zn, In, and Mn, and unavoidable impurity elements and M2 is an alloying element and an unavoidable impurity element that lowers the melting point of R2zR3wM21 - zw below that of R2 by alloying with R2 and R3 . Yes ,
p , q, r, s, and t in atomic %,
5.0≦p≦20.0,
0≤q≤8.0,
4.0≦r≦6.5,
0≦s≦2.0 and 0≦t≦10.0
and
x, y, z, and w, in molar ratios,
0.4≦x≦0.8,
0≤y≤0.1,
0.5≦z≦0.8 and 0≦w≦0.1
and
q, s, y, and w each being 0 means that Co q , M 1 s , R 1 y , and R 3 w are absent in the above formula ;
that t is 0 means that (R 2 z R 3 w M 2 1-zw ) t does not exist in the above formula ;
The La is contained in a molar ratio of 1/9 to 3 times that of the Ce , and
The average particle size of the main phase is 1 to 1000 nm,
Rare earth magnet.
前記Ceに対して、前記Laが、モル比で、1/9~2倍含有されている、請求項1に記載の希土類磁石。 2. The rare earth magnet according to claim 1, wherein said La is contained in a molar ratio of 1/9 to 2 times said Ce with respect to said Ce. 前記主相と前記粒界相との間に、さらに、中間相を備え、
前記tが、0.1≦t≦10.0であり、かつ
前記Rの濃度が、前記主相においてよりも、前記中間相において高くなっている、
請求項1又は2に記載の希土類磁石。
Further comprising an intermediate phase between the main phase and the grain boundary phase,
wherein t is 0.1 ≤ t ≤ 10.0, and the concentration of R2 is higher in the intermediate phase than in the main phase;
A rare earth magnet according to claim 1 or 2.
前記Rが、Ndである、請求項に記載の希土類磁石。 4. A rare earth magnet according to claim 3 , wherein said R2 is Nd. の濃度が、前記主相においてよりも、前記中間相において、1.5~8.0倍高くなっている、請求項3又は4に記載の希土類磁石。 A rare earth magnet according to claim 3 or 4, wherein the concentration of R2 is 1.5 to 8.0 times higher in said intermediate phase than in said main phase. 前記中間相の厚さが、2~100nmである、請求項3~5のいずれか一項に記載の希土類磁石。 A rare earth magnet according to any one of claims 3 to 5, wherein the thickness of said mesophase is 2 to 100 nm. 式(Nd(Ce、La)(1-x-y) Fe(100-p-q-r-s)Co で表され、
は、Nd、Ce、及びLa以外の希土類元素から選ばれる1種以上であり、Mは、Ga、Al、Cu、Au、Ag、Zn、In、及びMnから選ばれる1種以上、並びに不可避的不純物元素であり
、q、r、及びsが、原子%で、
5.0≦p≦20.0、
0≦q≦8.0、
4.0≦r≦6.5、及び
0≦s≦2.0
であり、
x及びyが、モル比で、
0.4≦x≦0.8、及び
0≦y≦0.1
であり
、s、及びyそれぞれが0であるとは、前記式で、Co、M 、及びR それぞれが存在しないことを意味し、かつ、
前記Ceに対して、前記Laが、モル比で、1/9~3倍含有されている溶湯を準備すること、
前記溶湯を急冷して、平均粒径が1~1000nmである主相を有する薄帯を得ること、
複数の前記薄帯を熱間で圧縮して、成形体を得ること、及び
前記成形体を熱間で圧縮して、圧縮体を得ること、
を含む、
希土類磁石の製造方法。
Represented by the formula (Nd x (Ce, La) (1-xy) R 1 y ) p Fe (100-pqr-s) Co q B r M 1 s ,
R 1 is one or more selected from rare earth elements other than Nd, Ce, and La; M 1 is one or more selected from Ga, Al, Cu, Au, Ag, Zn, In, and Mn; and unavoidable impurity elements ,
p , q, r, and s in atomic %,
5.0≦p≦20.0,
0≤q≤8.0,
4.0≦r≦6.5 and 0≦s≦2.0
and
x and y, in molar ratio,
0.4≦x≦0.8 and 0≦y≦0.1
and
q 1 , s, and y each being 0 means that Co q , M 1 s , and R 1 w are absent in the above formula, and
Preparing a molten metal containing 1/9 to 3 times the La in molar ratio with respect to the Ce;
quenching the molten metal to obtain a ribbon having a main phase with an average particle size of 1 to 1000 nm;
Hot compressing a plurality of ribbons to obtain a compact, and Hot compressing the compact to obtain a compact,
including,
A method for producing a rare earth magnet.
前記溶湯が、前記Ceに対して、前記Laを、モル比で、1/9~2倍含有している、請求項7に記載の方法。 8. The method according to claim 7, wherein the molten metal contains La in a molar ratio of 1/9 to 2 times that of Ce. 式R 1-z-w で表され、は、Pr、Nd、Pm、Sm、Eu、及びGdから選ばれる1種以上であり、Rは、R以外の希土類元素から選ばれる1種以上であり、Mは、R及びRと合金化することによって、R 1-z-wの融点をRの融点よりも低下させる合金元素及び不可避的不純物元素であり、z及びwが、モル比で、0.5≦z≦0.8及び0≦w≦0.1であり、かつ、wが0であるとは、前記式で、R が存在しないことを意味する合金を含有する改質材を準備すること、
前記圧縮体と前記改質材を互いに接触させて、接触体を得ること、及び
前記接触体を熱処理して、前記圧縮体の内部に、前記改質材の融液を浸透させること、
を含む、
請求項7又は8に記載の方法。
Represented by the formula R 2 z R 3 w M 2 1-zw , R 2 is one or more selected from Pr, Nd, Pm, Sm, Eu, and Gd, and R 3 is other than R 2 is one or more rare earth elements selected from the group consisting of rare earth elements, and M 2 makes the melting point of R 2 z R 3 w M 2 1 -zw higher than the melting point of R 2 by alloying with R 2 and R 3 It is an alloying element and an unavoidable impurity element that lowers, and z and w are 0.5 ≤ z ≤ 0.8 and 0 ≤ w ≤ 0.1 in molar ratio, and w is 0 , providing a modifier containing an alloy in which R 3 w is absent,
Bringing the compressed body and the modified material into contact with each other to obtain a contact body, and heat-treating the contact body to allow the melt of the modified material to permeate the inside of the compressed body;
including,
9. A method according to claim 7 or 8.
前記Rが、Ndである、請求項9に記載の方法。 10. The method of claim 9, wherein said R2 is Nd. 前記成形体を、0.001/s以上0.01/s未満の歪速度、50~70%の圧下率、及び700~800℃の温度で圧縮して、圧縮体を得る、請求項7~10のいずれか一項に記載の方法。 The molded body is compressed at a strain rate of 0.001 / s or more and less than 0.01 / s, a rolling reduction of 50 to 70%, and a temperature of 700 to 800 ° C. to obtain a compressed body, claims 7- 11. The method of any one of 10.
JP2018221584A 2017-12-28 2018-11-27 Rare earth magnet and manufacturing method thereof Active JP7247548B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020180160146A KR102156629B1 (en) 2017-12-28 2018-12-12 Rare earth magnet and production method thereof
EP18215888.1A EP3522178B1 (en) 2017-12-28 2018-12-24 Rare earth magnet and production method thereof
RU2018146475A RU2697837C1 (en) 2017-12-28 2018-12-26 Rare-earth metal magnet and method of its manufacturing
BR102018077206-6A BR102018077206A2 (en) 2017-12-28 2018-12-27 RARE EARTH MAGNET AND SAME PRODUCTION METHOD
CN201811619581.1A CN109979699B (en) 2017-12-28 2018-12-28 Rare earth magnet and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017254475 2017-12-28
JP2017254475 2017-12-28
JP2018151433 2018-08-10
JP2018151433 2018-08-10

Publications (2)

Publication Number Publication Date
JP2020027933A JP2020027933A (en) 2020-02-20
JP7247548B2 true JP7247548B2 (en) 2023-03-29

Family

ID=69620383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018221584A Active JP7247548B2 (en) 2017-12-28 2018-11-27 Rare earth magnet and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP7247548B2 (en)
RU (1) RU2697837C1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7298533B2 (en) * 2020-04-21 2023-06-27 トヨタ自動車株式会社 Rare earth magnet and manufacturing method thereof
JP7303157B2 (en) * 2020-06-01 2023-07-04 トヨタ自動車株式会社 Rare earth magnet and manufacturing method thereof
JP7409285B2 (en) 2020-10-22 2024-01-09 トヨタ自動車株式会社 Rare earth magnet and its manufacturing method
WO2023112894A1 (en) * 2021-12-13 2023-06-22 国立研究開発法人物質・材料研究機構 HOT-WORKED R-Fe-B MAGNET FOR VARIABLE-MAGNETIC-FORCE MOTOR, VARIABLE-MAGNETIC-FORCE MOTOR, AND ELECTRONIC DEVICE FOR VEHICLE AND HOUSEHOLD

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103523A (en) 2005-09-30 2007-04-19 Tdk Corp Rare earth magnet
JP2016111136A (en) 2014-12-04 2016-06-20 トヨタ自動車株式会社 Rare-earth magnet
JP2016115774A (en) 2014-12-12 2016-06-23 トヨタ自動車株式会社 Rare-earth magnet powder and method of producing the same
JP2017130645A (en) 2015-12-18 2017-07-27 江西金力永磁科技股▲分▼有限公司Jl Mag Rare−Earth Co., Ltd. Neodymium iron boron magnet and method of preparing the same
JP2017188659A (en) 2016-04-08 2017-10-12 沈陽中北通磁科技股▲ふん▼有限公司Shenyang General Magnetic Co.,Ltd. Cerium-containing neodymium iron boron magnet and method for manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136099A (en) * 1985-08-13 2000-10-24 Seiko Epson Corporation Rare earth-iron series permanent magnets and method of preparation
JP2857824B2 (en) * 1985-08-13 1999-02-17 セイコーエプソン株式会社 Rare earth-iron permanent magnet manufacturing method
RU2202134C2 (en) * 2001-03-02 2003-04-10 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Magnetic material and part made of such material
JP5445888B2 (en) * 2005-09-16 2014-03-19 日立金属株式会社 Soft magnetic alloy, method for producing the same, and magnetic component
JP2011258935A (en) * 2010-05-14 2011-12-22 Shin Etsu Chem Co Ltd R-t-b-based rare earth sintered magnet
CN105518809B (en) * 2013-06-05 2018-11-20 丰田自动车株式会社 Rare-earth magnet and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103523A (en) 2005-09-30 2007-04-19 Tdk Corp Rare earth magnet
JP2016111136A (en) 2014-12-04 2016-06-20 トヨタ自動車株式会社 Rare-earth magnet
JP2016115774A (en) 2014-12-12 2016-06-23 トヨタ自動車株式会社 Rare-earth magnet powder and method of producing the same
JP2017130645A (en) 2015-12-18 2017-07-27 江西金力永磁科技股▲分▼有限公司Jl Mag Rare−Earth Co., Ltd. Neodymium iron boron magnet and method of preparing the same
JP2017188659A (en) 2016-04-08 2017-10-12 沈陽中北通磁科技股▲ふん▼有限公司Shenyang General Magnetic Co.,Ltd. Cerium-containing neodymium iron boron magnet and method for manufacturing the same

Also Published As

Publication number Publication date
RU2697837C1 (en) 2019-08-22
JP2020027933A (en) 2020-02-20

Similar Documents

Publication Publication Date Title
JP7247548B2 (en) Rare earth magnet and manufacturing method thereof
US10056177B2 (en) Method for producing rare-earth magnet
JP6156375B2 (en) Sintered magnet
JP6201446B2 (en) Sintered magnet
CN109979699B (en) Rare earth magnet and method for producing same
JP6815863B2 (en) Rare earth magnets and their manufacturing methods
JP7056696B2 (en) Rare earth magnets and their manufacturing methods
CN108735412B (en) Method for producing rare earth magnet
JP7167709B2 (en) Rare earth magnet and manufacturing method thereof
JP7298533B2 (en) Rare earth magnet and manufacturing method thereof
JP7167665B2 (en) Rare earth magnet and manufacturing method thereof
JP5288276B2 (en) Manufacturing method of RTB-based permanent magnet
JP6578916B2 (en) Method for manufacturing alloy for RTB-based rare earth sintered magnet and method for manufacturing RTB-based rare earth sintered magnet
JP7252105B2 (en) Rare earth magnet and manufacturing method thereof
JP7303157B2 (en) Rare earth magnet and manufacturing method thereof
JP7409285B2 (en) Rare earth magnet and its manufacturing method
JP2023016537A (en) Manufacturing method of rare earth magnet
JP2022093885A (en) Manufacturing method of rare-earth magnet
JP2018110159A (en) Rare earth magnet
JP2022072860A (en) Rare earth magnet and production method thereof
JP2024060440A (en) R-T-B rare earth magnet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230227

R151 Written notification of patent or utility model registration

Ref document number: 7247548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151