JPS63157844A - Manufacture of permanent magnet material - Google Patents

Manufacture of permanent magnet material

Info

Publication number
JPS63157844A
JPS63157844A JP61302625A JP30262586A JPS63157844A JP S63157844 A JPS63157844 A JP S63157844A JP 61302625 A JP61302625 A JP 61302625A JP 30262586 A JP30262586 A JP 30262586A JP S63157844 A JPS63157844 A JP S63157844A
Authority
JP
Japan
Prior art keywords
weight
stage aging
hours
sintering
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61302625A
Other languages
Japanese (ja)
Other versions
JPH0328503B2 (en
Inventor
Teruo Kiyomiya
照夫 清宮
Takaaki Yasumura
隆明 安村
Yasutoshi Mizuno
水野 保敏
Kazuo Matsui
一雄 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP61302625A priority Critical patent/JPS63157844A/en
Publication of JPS63157844A publication Critical patent/JPS63157844A/en
Publication of JPH0328503B2 publication Critical patent/JPH0328503B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Abstract

PURPOSE:To obtain a permanent magnet material having high energy product, by subjecting a Co-base alloy containing rare earth elements, Fe, Cu, and Nb to sintering, to solution heat treatment, to isothermal treatment in two stages, and then to cooling at the prescribe cooling velocity so as to increase coercive force to a value in the practical range. CONSTITUTION:The Co-base alloy containing, by weight ratio, 22-28% R (R means one or more kinds among rare earth elements including Y), <=23% Fe, 0.1-5% Cu, and 0.1-6% Nb is sintered at 1,180-1,250 deg.C and subjected to solution heat treatment at a temp. between 1,100 and 1,240 deg.C and lower by 10-80 deg.C than the sintering temp., which is subjected to isothermal treatment at 400-900 deg.C for >=1hr as the first-stage aging and then to isothermal treatment at a temp. higher than that in the first-stage aging, 700-1,000 deg.C, as the second- stage aging. After that, cooling is continuously applied down to 300-600 deg.C at a cooling rate of 0.2-10 deg.C/min, so that desired permanent magnet material can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、希土類元素とコバルトを主成分とするR、C
o、、系(但しRはYを含む希土類元素)永久磁石材料
の製造方法に関し、更に詳しくは、それに銅とニオブを
添加した2−17型希土類磁石合金の製造方法に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to R, C, containing rare earth elements and cobalt as main components.
The present invention relates to a method for manufacturing a permanent magnet material of type 2-17 (where R is a rare earth element containing Y), and more specifically to a method for manufacturing a 2-17 type rare earth magnet alloy to which copper and niobium are added.

[従来の技術] R−Co−Fe−Cu系の2−17型希土類永久磁石合
金は従来公知である。この系の合金材料において、Cu
の添加は保磁力を高める効果があり10重量%以上は必
要であるとされていた。しかしCuの添加量が増大する
と残留磁化Brが低下してしまう。
[Prior Art] The R-Co-Fe-Cu type 2-17 rare earth permanent magnet alloy is conventionally known. In this type of alloy material, Cu
It was believed that the addition of 10% by weight or more was necessary because it had the effect of increasing the coercive force. However, as the amount of Cu added increases, the residual magnetization Br decreases.

この問題を解決するため適量のNb(ニオブ)を複合添
加する技術が報告されている(特公昭55−48093
号公報)。それによればCuを5〜12重量%含有させ
、Nbを0.2〜4重量%添加している。
In order to solve this problem, a technique has been reported in which a suitable amount of Nb (niobium) is added in combination (Japanese Patent Publication No. 55-48093
Publication No.). According to this, Cu is contained in an amount of 5 to 12% by weight, and Nb is added in an amount of 0.2 to 4% by weight.

[発明が解決しようとする問題点] 上記の技術ではCuの含有量を減少させたとは言え、ま
だ5〜12重量%は必要でありBrを向上させ難い問題
があった。
[Problems to be Solved by the Invention] Although the above technique reduces the Cu content, 5 to 12% by weight is still required, and there is a problem in that it is difficult to improve Br.

本発明の目的は、Cuが5重量%以下という低い組成領
域のR−Co−Fe−Cu−Nb磁石合金材料において
も、熱処理条件を適切に設定することによって永久磁石
の保磁力を実用範囲まで高めることができ、結果として
高エネルギー積を有する永久磁石材料の製造方法を提供
することにある。
The purpose of the present invention is to increase the coercive force of permanent magnets to a practical range by appropriately setting heat treatment conditions even in R-Co-Fe-Cu-Nb magnet alloy materials with a low Cu content of 5% by weight or less. The object of the present invention is to provide a method for producing a permanent magnet material that can be improved and has a high energy product as a result.

[問題点を解決するための手段] 本発明者等はR−Co−Fe−Cu−Nb系の希土類永
久磁石合金材料に関しCuO量を極力少なくしつつ永久
磁石としての保磁力を実用範囲まで高めうる方法につい
て種々検討した結果、焼結し溶体化処理を施した材料に
ついて2段時効を行い、第2段時効を第1段時効よりも
高い温度で行い所定の速度で冷却することによって前記
目的を達成できることを見出し、本発明を完成させるに
至ったものである。
[Means for Solving the Problems] The present inventors have developed an R-Co-Fe-Cu-Nb rare earth permanent magnet alloy material by increasing the coercive force as a permanent magnet to a practical range while minimizing the amount of CuO. As a result of various studies on methods of aging, we found that the above objective could be achieved by performing two-stage aging on the sintered and solution-treated material, performing the second aging at a higher temperature than the first aging, and cooling at a predetermined rate. The present invention has been completed based on the discovery that the following can be achieved.

即ち本発明において素材となる原料とその重量比率は、
22〜28重量%のR(但しRはY(イツトリウム)を
含む希土類元素の1種もしくは2種以上)、23重量%
以下のFe。
That is, the raw materials and their weight ratios in the present invention are as follows:
22 to 28% by weight of R (where R is one or more rare earth elements including Y (yttrium)), 23% by weight
The following Fe.

0.1〜5重量%のCu、0.1〜6重量%のNb、残
部がCoからなる組成である。
The composition consists of 0.1 to 5% by weight of Cu, 0.1 to 6% by weight of Nb, and the balance Co.

このような組成の合金をまず1180〜1250℃で焼
結し、1100〜1240℃で且つ焼結温度より10〜
80℃低い温度で溶体化処理を行う。次に第1段時効と
して400〜900℃で1時間以上等温処理し、第2段
時効として第1段時効よりも高い温度の700〜100
0℃で等温処理を行う。その後、毎分0.2〜10℃の
冷却速度で連続的に300〜600℃まで冷却するもの
である。
An alloy with such a composition is first sintered at 1180-1250°C, and then heated at 1100-1240°C and 10-10°C below the sintering temperature.
Solution treatment is performed at a temperature 80°C lower. Next, as the first stage aging, isothermal treatment is performed at 400 to 900 °C for more than 1 hour, and as the second stage aging, the temperature is 700 to 100 °C, which is higher than the first stage aging.
Perform isothermal treatment at 0°C. Thereafter, it is continuously cooled to 300 to 600°C at a cooling rate of 0.2 to 10°C per minute.

本発明の特徴は、上記のように第1段時効よりも高い温
度で第2段時効を行い、引き続いて徐冷する点にある。
A feature of the present invention is that, as described above, the second stage aging is performed at a higher temperature than the first stage aging, followed by slow cooling.

本発明において合金の組成比率や処理条件等は全て以下
に述べる実施例に示すような実験結果に基づいている。
In the present invention, the alloy composition ratio, processing conditions, etc. are all based on experimental results as shown in the Examples described below.

まずR,Co、  Feの比率は、この種の三元系組成
物で一般的に使用されているものとほぼ同様である。R
を22〜28重量%としたのは22重量%未満では保磁
力が低下し、28重量%超えると残留磁化が低下するか
らである。Feの添加量の上限を23重量%とじたのは
、iHcが低下するからである。
First, the ratios of R, Co, and Fe are approximately the same as those commonly used in ternary compositions of this type. R
is set to 22 to 28% by weight because if it is less than 22% by weight, the coercive force will decrease, and if it exceeds 28% by weight, the residual magnetization will decrease. The reason why the upper limit of the amount of Fe added is set at 23% by weight is that iHc decreases.

Cuの含有量を0.1〜5重量%とじたのは、従来は5
重量%以上でないと保磁力がでなかったが熱処理条件を
適切に設定することによって保磁力を実用範囲まで高め
られるとともにBrを向上することができたためである
。さらに0.1〜5重量%の範囲において熱処理時間を
短くする場合はCuの添加量を多くし、そうでない、つ
まり冷却速度を遅くできる場合にはCuの含有量を少な
くできる等の調整も可能である。Nbの添加量を0.1
〜6重量%とじたのは、6重量%を超えると4πI−H
ループの角形性が悪くなるからである。
Conventionally, the Cu content was limited to 0.1 to 5% by weight.
This is because the coercive force could not be obtained unless it was at least % by weight, but by appropriately setting the heat treatment conditions, the coercive force could be increased to a practical range and the Br could be improved. Furthermore, in the range of 0.1 to 5% by weight, if the heat treatment time is to be shortened, the amount of Cu added can be increased; otherwise, if the cooling rate can be slowed down, the amount of Cu can be decreased. It is. The amount of Nb added is 0.1
~6% by weight is because if it exceeds 6% by weight, 4πI-H
This is because the squareness of the loop deteriorates.

焼結温度を1180〜1250℃としたのは、一般に焼
結温度が高いほど密度が上がり残留磁化が高くなるため
1180℃以上としたものであり、1250℃を超える
と焼結体が溶は残留磁化がかえって低くなるからである
。また焼結温度より10〜80℃低い11oo〜124
0℃で溶体化処理を行うのは、そのような溶体化処理に
よって角形性が向上するためである。
The reason why the sintering temperature was set at 1180 to 1250°C was because the higher the sintering temperature, the higher the density and the higher the residual magnetization. This is because the magnetization becomes lower on the contrary. Also, 11oo~124 is 10~80℃ lower than the sintering temperature.
The reason why the solution treatment is performed at 0° C. is that such solution treatment improves the squareness.

また第1段目よりも高い温度で第2段目の時効処理を行
い、その温度から連続冷却するのは、それによってCu
が5重量%以下の場合でも高い保磁力を保たせることが
できるからである。
In addition, the second stage of aging treatment is performed at a higher temperature than the first stage, and continuous cooling is performed from that temperature.
This is because a high coercive force can be maintained even when the amount is 5% by weight or less.

[作用] このような特殊な熱処理条件を採用することによって、
R−Co−Fe−Cu−Nb系の合金磁石材料において
Cuを5重量%以下に少なくしても、永久磁石の保磁力
を実用性の範囲まで高めることができる。
[Effect] By adopting such special heat treatment conditions,
Even if the amount of Cu in the R-Co-Fe-Cu-Nb alloy magnet material is reduced to 5% by weight or less, the coercive force of the permanent magnet can be increased to a practical level.

[実施例1] (前工程) 必要とする合金を高周波溶解炉で溶解し、ショークラッ
シャーによって粗粉砕した後、シェドミルにより微粉砕
し、この微粉砕粉体を15koeの磁場中で形成圧3 
ton/cm”で圧縮成形した。
[Example 1] (Pre-process) The required alloy is melted in a high frequency melting furnace, coarsely pulverized by a show crusher, and then finely pulverized by a shed mill.
Compression molding was carried out at a pressure of 100,000 ton/cm.

(焼結体の組成) Sm=23.0重量%、Cu=3.6重量%。(Composition of sintered body) Sm=23.0% by weight, Cu=3.6% by weight.

Fe=15.6重量%、Nb=O〜7重量%。Fe=15.6% by weight, Nb=O~7% by weight.

残部をCoとする。The remainder is Co.

(熱処理) Nbの添加量に応じて1180〜1250℃で5時間の
焼結を行い、1100〜1240℃で5時間の溶体化処
理を行った。そして第1段時効を700℃で2時間行い
、第2段時効として900℃で3時間保持し、0.5℃
/分の冷却速度で400℃まで冷却した。Nbの添加量
(重量%)に対するbHcの測定結果を第1表に示す。
(Heat treatment) Sintering was performed at 1180 to 1250°C for 5 hours depending on the amount of Nb added, and solution treatment was performed at 1100 to 1240°C for 5 hours. Then, the first stage aging was performed at 700°C for 2 hours, the second stage aging was held at 900°C for 3 hours, and the temperature was 0.5°C.
The mixture was cooled to 400° C. at a cooling rate of /min. Table 1 shows the measurement results of bHc with respect to the amount of Nb added (wt%).

第1表 この表から分かるように、Nbが含まれていなかったり
Nbの含有量が多くなって7重量%にもなると、bHc
が大きく低下し、4π■−Hループの角形性が悪化して
いまう。
Table 1 As can be seen from this table, when Nb is not included or when the Nb content increases to 7% by weight, bHc
is greatly reduced, and the squareness of the 4π■-H loop deteriorates.

[実施例2] (前工程)・・・実施例1に同じ (焼結体の組成) Sm=23.0重量%、Cu=O〜6重量%。[Example 2] (Pre-process)...Same as Example 1 (Composition of sintered body) Sm=23.0% by weight, Cu=O~6% by weight.

Fe=15.6重量%、Nb=3重量%、残部をcoと
する。
Fe=15.6% by weight, Nb=3% by weight, and the balance is co.

(熱処理)・・・実施例1に同じ Cuの含有量の変化に対するb)(c、iHc。(Heat treatment)...Same as Example 1 b) (c, iHc) for changes in Cu content.

Br、(BH)maxの測定結果を第2表に示す。The measurement results of Br and (BH)max are shown in Table 2.

第2表 この第2表から本発明では高いエネルギー積が得られる
ことが分かる。
Table 2 It can be seen from Table 2 that a high energy product can be obtained in the present invention.

[実施例3] (前工程)・・・実施例1に同じ (焼結体の組成) Srn=23.0重量%、Co=54.7重量%、Fe
−15,6重量%、Cu=3.9重量%、Nb=2.8
重量%。
[Example 3] (Pre-process)...Same as Example 1 (composition of sintered body) Srn = 23.0% by weight, Co = 54.7% by weight, Fe
-15.6% by weight, Cu=3.9% by weight, Nb=2.8
weight%.

(熱処理) 1170〜1270℃で5時間の焼結を行い、溶体化処
理として焼結温度より20℃低めの温度で5時間保持し
、第1段時効として700℃で2時間保持し、第2段時
効として900℃で3時間保持し、その温度から0.5
℃/分の冷却速度で400℃まで冷却した。焼結温度に
対するbHc、iHc、Brおよび密度の測定結果を第
3表に示す。
(Heat treatment) Sintering was performed at 1170 to 1270°C for 5 hours, and as a solution treatment, it was held at a temperature 20°C lower than the sintering temperature for 5 hours, as a first stage aging, it was held at 700°C for 2 hours, and as a second stage aging, it was held at 700°C for 2 hours. Hold at 900℃ for 3 hours as stage aging, and from that temperature 0.5
It was cooled to 400°C at a cooling rate of °C/min. Table 3 shows the measurement results of bHc, iHc, Br and density with respect to sintering temperature.

(以下余白) 第3表 第3表より焼結温度を高くすると密度は高く、Brが向
上するが、1250℃を超えると焼結体の溶融のため磁
気特性全体が低下することが分かる。
(Left space below) Table 3 It can be seen from Table 3 that increasing the sintering temperature increases the density and improves Br, but when it exceeds 1250°C, the overall magnetic properties deteriorate due to melting of the sintered body.

[実施例4] (前工程)・・・実施例1に同じ (焼結体の組成)・・・実施例3に同じ(熱処理) 1250℃で5時間焼結し、1010〜1230℃で5
時間の溶体化処理を行った。第1段時効として700℃
で2時間保持し、第2段時効を900℃で3時間行った
。そして0.5℃/分の冷却速度で400℃まで冷却し
た。溶体化温度に対するbHcの測定結果を第4表に示
す。
[Example 4] (Pre-process)...Same as Example 1 (Composition of sintered body)...Same as Example 3 (Heat treatment) Sintered at 1250°C for 5 hours, sintered at 1010-1230°C for 5 hours.
A time solution treatment was performed. 700℃ as first stage aging
The sample was held at 900° C. for 2 hours, and second stage aging was performed at 900° C. for 3 hours. Then, it was cooled to 400°C at a cooling rate of 0.5°C/min. Table 4 shows the measurement results of bHc with respect to solution temperature.

第4表 適切な溶体化温度を加えることによりbHcが良くなる
ことが分かる。
Table 4 shows that bHc can be improved by adding an appropriate solution temperature.

[実施例5] (前工程)・・・実施例1に同じ (焼結体の組成)・・・実施例3に同じ(熱処理) 1250℃で5時間の焼結を行い、1230℃で5時間
の溶体化処理を行った。そして第1段時効として600
〜800℃で2時間保持し、第2段時効を900℃で3
時間行い冷却した。
[Example 5] (Pre-process)...Same as Example 1 (Composition of sintered body)...Same as Example 3 (Heat treatment) Sintering was performed at 1250°C for 5 hours, and sintering was performed at 1230°C for 5 hours. A time solution treatment was performed. And 600 as the first stage statute of limitations.
Hold at ~800℃ for 2 hours, and perform second stage aging at 900℃ for 3 hours.
Cooled for a while.

第1段時効の温度に対するbT(c、1)(cの測定結
果を第5表に示す。
Table 5 shows the measurement results of bT (c, 1) (c) with respect to the temperature of the first stage aging.

(以下余白) 第5表 適切な第1段時効温度によりbHcが良くなることが分
かる。
(Margin below) Table 5 It can be seen that bHc improves with an appropriate first stage aging temperature.

[実施例6] (前工程)・・・実施例1に同じ (焼結体の組成)・・・実施例3に同じ(熱処理) 1250℃で5時間の焼結を行い、1230℃で5時間
の溶体化処理を行った。そして第1段時効として700
℃で0.5〜8時間保持し、第2段時効を900℃で3
時間行い、0.5℃/分の冷却速度で400℃まで冷却
した。第1段時効の保持時間に対するbHc、iHcの
測定結果を第6表に示す。
[Example 6] (Pre-process)...Same as Example 1 (Composition of sintered body)...Same as Example 3 (Heat treatment) Sintering was performed at 1250°C for 5 hours, and sintering was performed at 1230°C for 5 hours. A time solution treatment was performed. and 700 as the first stage statute of limitations.
℃ for 0.5 to 8 hours, and second stage aging at 900℃ for 3 hours.
The mixture was cooled to 400°C at a cooling rate of 0.5°C/min. Table 6 shows the measurement results of bHc and iHc with respect to the holding time of the first stage aging.

第6表 第1段時効時間を1時間以上、好ましくは2時間以上加
えないとbHcがよくならないことが分かる。
It can be seen that bHc does not improve unless the first stage aging time in Table 6 is added for 1 hour or more, preferably 2 hours or more.

[実施例7] (前工程)・・・実施例1に同じ (焼結体の組成)・・・実施例3に同じ(熱処理) 1250℃で5時間の焼結を行い、1230℃で5時間
の溶体化処理を行った。そして第1段時効として700
℃で2時間保持し、第2段時効を850〜950℃で2
時間行い、0. 5℃/分の冷却速度で400℃まで冷
却した。第2段時効の温度に対するbHc、iHcの測
定結果を第7表に示す。
[Example 7] (Pre-process)...Same as Example 1 (Composition of sintered body)...Same as Example 3 (Heat treatment) Sintering was performed at 1250°C for 5 hours, and sintering was performed at 1230°C for 5 hours. A time solution treatment was performed. and 700 as the first stage statute of limitations.
℃ for 2 hours, and second stage aging at 850-950℃ for 2 hours.
time, 0. It was cooled to 400°C at a cooling rate of 5°C/min. Table 7 shows the measurement results of bHc and iHc with respect to the temperature of the second stage aging.

第7表 第2段時効の温度を上げるとiHcがでるが、しかし適
切な温度を加えないとbHcが悪くなることが分かる。
It can be seen that iHc increases when the temperature of the second stage aging in Table 7 is increased, but bHc deteriorates unless an appropriate temperature is applied.

[実施例8] (前工程)・・・実施例1に同じ (焼結体の組成)・・・実施例3と同じ(熱処理) 1250℃で5時間の焼結を行い、1230℃で5時間
の溶体化処理を行った。そして第1段時効として700
℃で2時間保持し、第2段時効を900℃で2時間行い
、0.2〜b/分の冷却速度で400℃まで冷却した。
[Example 8] (Pre-process)...Same as Example 1 (Composition of sintered body)...Same as Example 3 (Heat treatment) Sintering was performed at 1250°C for 5 hours, and sintering was performed at 1230°C for 5 hours. A time solution treatment was performed. and 700 as the first stage statute of limitations.
℃ for 2 hours, second stage aging was performed at 900℃ for 2 hours, and cooled to 400℃ at a cooling rate of 0.2 to b/min.

冷却速度に対するbHc、iHcの測定結果を第8表に
示す。
Table 8 shows the measurement results of bHc and iHc with respect to the cooling rate.

第8表 第8表より冷却速度を遅くするとiHcは増加するが、
しかし適切な冷却速度をとらないとbHcが悪くなる。
Table 8 From Table 8, iHc increases when the cooling rate is slowed, but
However, if an appropriate cooling rate is not taken, bHc will deteriorate.

[実施例9] (前工程)・・・実施例1と同じ (焼結体の組成) Sm=O〜25.0重量%、Ce=0〜25゜0重量%
(但しSm+Ce=25.0重量%)。
[Example 9] (Pre-process)... Same as Example 1 (composition of sintered body) Sm = O ~ 25.0% by weight, Ce = 0 ~ 25°0% by weight
(However, Sm+Ce=25.0% by weight).

Co=53.4重量%、Fe=15.2重量%。Co=53.4% by weight, Fe=15.2% by weight.

Cu=3.6重量%、Nb=2.8重量%。Cu=3.6% by weight, Nb=2.8% by weight.

(熱処理) Ceの添加量に応じて1160〜1250℃で5時間の
焼結を行い、1130−1240℃で5時間の溶体化処
理を行った。そして第1段時効として600℃で3時間
保持し、第2段時効を800℃で4時間行い、0.5℃
/分で400℃まで冷却した。SmとCeの割合に対す
るbHc、1)(c、Brの測定結果を第9表に示す。
(Heat treatment) Sintering was performed at 1160-1250°C for 5 hours depending on the amount of Ce added, and solution treatment was performed at 1130-1240°C for 5 hours. Then, the first stage aging was held at 600°C for 3 hours, the second stage aging was performed at 800°C for 4 hours, and the temperature was 0.5°C.
/min to 400°C. Table 9 shows the measurement results of bHc, 1) (c, and Br) with respect to the ratio of Sm and Ce.

第9表 第9表より、Smの一部を(、eで置換しても実用範囲
の特性が得られ、結果としてSm以外の希土類において
も本発明を通用できることが分かる。
From Table 9, it can be seen that even if a part of Sm is replaced with (, e), characteristics within a practical range can be obtained, and as a result, the present invention can be applied to rare earths other than Sm.

[発明の効果] 本発明は上記のように焼結後に溶体化処理を行い、先ず
第1段時効を行い、次にその第1段時効よりも高い温度
で第2段時効を行ってから連続的に所定温度まで冷却す
る熱処理工程を採用したことによって、Cuの量を5重
量%以下に低くしても従来技術と同程度の永久磁石に必
要な保磁力を発現させることができ、しかもCuが低い
分だけ残留磁化が低くならず、高いエネルギー積を発生
させることができる優れた効果が生じる。
[Effect of the invention] As described above, the present invention performs solution treatment after sintering, first performs first stage aging, then performs second stage aging at a higher temperature than the first stage aging, and then continuously By adopting a heat treatment process in which the amount of Cu is lowered to 5% by weight or less, it is possible to develop the coercive force required for a permanent magnet equivalent to that of the conventional technology. Since the residual magnetization is low, the residual magnetization does not decrease and a high energy product can be generated.

Claims (1)

【特許請求の範囲】[Claims] 1、22〜28重量%のR(但しRはYを含む希土類元
素の1種もしくは2種以上)、23重量%以下のFe、
0.1〜5重量%のCu、0.1〜6重量%のNb、残
部がCoからなる組成の合金を、1180〜1250℃
で焼結し、1100〜1240℃で且つ焼結温度より1
0〜80℃低い温度で溶体化処理を行い、第1段時効と
して400〜900℃で1時間以上等温処理し、第2段
時効として第1段時効よりも高温の700〜1000℃
で等温処理し、引き続いて毎分0.2〜10℃の冷却速
度で連続的に300〜600℃まで冷却することを特徴
とする永久磁石材料の製造方法。
1, 22 to 28% by weight of R (wherein R is one or more rare earth elements including Y), 23% by weight or less of Fe,
An alloy having a composition of 0.1 to 5 wt% Cu, 0.1 to 6 wt% Nb, and the balance Co was heated at 1180 to 1250°C.
sintered at 1100-1240℃ and 1
Solution treatment is performed at a temperature 0 to 80°C lower, first stage aging is isothermal treatment at 400 to 900°C for 1 hour or more, and second stage aging is 700 to 1000°C, which is higher than the first stage aging.
1. A method for producing a permanent magnet material, which comprises isothermally treating the material at a temperature of 300° C. and subsequently cooling it continuously to 300° C. to 600° C. at a cooling rate of 0.2° C. to 10° C. per minute.
JP61302625A 1986-12-18 1986-12-18 Manufacture of permanent magnet material Granted JPS63157844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61302625A JPS63157844A (en) 1986-12-18 1986-12-18 Manufacture of permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61302625A JPS63157844A (en) 1986-12-18 1986-12-18 Manufacture of permanent magnet material

Publications (2)

Publication Number Publication Date
JPS63157844A true JPS63157844A (en) 1988-06-30
JPH0328503B2 JPH0328503B2 (en) 1991-04-19

Family

ID=17911234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61302625A Granted JPS63157844A (en) 1986-12-18 1986-12-18 Manufacture of permanent magnet material

Country Status (1)

Country Link
JP (1) JPS63157844A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037041A1 (en) * 2013-09-13 2015-03-19 株式会社 東芝 Permanent magnet, motor, and power generator
WO2017046826A1 (en) * 2015-09-15 2017-03-23 株式会社 東芝 Permanent magnet and dynamo electric machine
US20210343457A1 (en) * 2017-09-15 2021-11-04 Kabushiki Kaisha Toshiba Permanent magnet, rotary electrical machine, and vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037041A1 (en) * 2013-09-13 2015-03-19 株式会社 東芝 Permanent magnet, motor, and power generator
US9502165B2 (en) 2013-09-13 2016-11-22 Kabushiki Kaisha Toshiba Permanent magnet, motor, and generator
WO2017046826A1 (en) * 2015-09-15 2017-03-23 株式会社 東芝 Permanent magnet and dynamo electric machine
CN107430916A (en) * 2015-09-15 2017-12-01 株式会社东芝 Permanent magnet and electric rotating machine
CN107430916B (en) * 2015-09-15 2019-10-25 株式会社东芝 Permanent magnet and rotating electric machine
US10943716B2 (en) 2015-09-15 2021-03-09 Kabushiki Kaisha Toshiba Permanent magnet and rotary electrical machine
US20210343457A1 (en) * 2017-09-15 2021-11-04 Kabushiki Kaisha Toshiba Permanent magnet, rotary electrical machine, and vehicle
US11676747B2 (en) * 2017-09-15 2023-06-13 Kabushiki Kaisha Toshiba Permanent magnet, rotary electrical machine, and vehicle

Also Published As

Publication number Publication date
JPH0328503B2 (en) 1991-04-19

Similar Documents

Publication Publication Date Title
US4135953A (en) Permanent magnet and method of making it
JPH06212327A (en) Rare earth permanent magnet alloy
JPH01219143A (en) Sintered permanent magnet material and its production
JPH10106875A (en) Manufacturing method of rare-earth magnet
JPH0354805A (en) Rare-earth permanent magnet and manufacture thereof
JPS63157844A (en) Manufacture of permanent magnet material
JPS6262503A (en) Permanent magnet
JPS5952822A (en) Manufacture of permanent magnet
JPS63157845A (en) Manufacture of permanent magnet material
JPH0146574B2 (en)
JPS5852019B2 (en) Rare earth cobalt permanent magnet alloy
JPS594107A (en) Manufacture of rare earth and cobalt group magnetic material
JPS6077961A (en) Permanent magnet material and its manufacture
JPS61260610A (en) Manufacture of permanent magnet
JPH0227425B2 (en)
JPH03198306A (en) Manufacture of rare earth cobalt magnet
JP2677498B2 (en) Method for manufacturing iron-rare earth-nitrogen permanent magnet material
JPS596350A (en) Rare earth element cobalt material for magnet and preparation thereof
JPS5874005A (en) Permanent magnet
JPS62291902A (en) Manufacture of permanent magnet
JP3138927B2 (en) Rare earth magnet manufacturing method
JPS5848606A (en) Production of permanent magnet of rare earths
JPS6134241B2 (en)
JPH0298101A (en) Permanent magnet
JPS60182104A (en) Permanent magnet material and manufacture thereof