JPH03198306A - Manufacture of rare earth cobalt magnet - Google Patents

Manufacture of rare earth cobalt magnet

Info

Publication number
JPH03198306A
JPH03198306A JP1339161A JP33916189A JPH03198306A JP H03198306 A JPH03198306 A JP H03198306A JP 1339161 A JP1339161 A JP 1339161A JP 33916189 A JP33916189 A JP 33916189A JP H03198306 A JPH03198306 A JP H03198306A
Authority
JP
Japan
Prior art keywords
cooling rate
solution treatment
magnetic
rare earth
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1339161A
Other languages
Japanese (ja)
Inventor
Takayoshi Sato
隆善 佐藤
Motoharu Shimizu
元治 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP1339161A priority Critical patent/JPH03198306A/en
Publication of JPH03198306A publication Critical patent/JPH03198306A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Abstract

PURPOSE:To see that it does not depend upon the cooling speed after solution treatment and also to settle the dispersion of magnetic properties within specific range so as to elevate production efficiency and make it suitable for large quantity processing by constituting a magnet out or Sm, Cu, Zr, Fe, O2, and Co for the rest, whose compositions are specified respectively. CONSTITUTION:A magnet is constituted of magnetic alloy of sch composition range that Sm is 24-26% by wt. percentage, Cu is 5-5.3%, Zr is 2.8-3.0%, Fe is 13-15%, O2 is 2000-3000ppm, and the rest is Co. By doing it this way, it does not depend upon the cooling temperature at the cooling speed of 0.4 deg.C/sec or more after completion of solution treatment of heat treatment after magnetic field formation and sintering of alloy powder, and the manufacture where magnetic property iHc dispersion range is + or -1000Oe becomes possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はSmとGoを主体とし、Co部をCu、 Fe
+ Zrで置換した5IIICO+?系の希土類コバル
ト磁石の製造方法に関するものである。
[Detailed description of the invention] [Industrial application field] The present invention mainly consists of Sm and Go, and the Co part is Cu, Fe.
+5IIICO+ substituted with Zr? The present invention relates to a method for manufacturing rare earth cobalt magnets.

〔従来の技術〕[Conventional technology]

SmzCo、7の組成に関しては特許公報昭55480
94で公知である。その組成範囲は重量百分比で24〜
28%のR(だだし希土類金属の少なくとも一種)、5
〜12%のCu、0.2〜5%のZr、55〜70.8
%のCo、前記Coを15%以下で置換したものである
。その製造方法はアーク溶解または高周波溶解でインゴ
ットを作成し、それを微粉砕して磁場中プレス後117
0〜1250″Cの温度で2時間焼結。その後1170
−1230°Cにし各組成に対応した溶体化処理を施し
、冷却後真空又は不活性ガス雰囲気で750〜900″
Cの温度より400°Cまで多段時効処理を行なって製
造している。
Regarding the composition of SmzCo, 7, see patent publication No. 55480.
It is known as 94. Its composition range is from 24 to 24% by weight.
28% R (at least one rare earth metal), 5
~12% Cu, 0.2-5% Zr, 55-70.8
% Co, the above-mentioned Co is replaced by 15% or less. The manufacturing method is to create an ingot by arc melting or high frequency melting, then pulverize it, press it in a magnetic field, and then press it into 117mm ingots.
Sinter for 2 hours at a temperature of 0-1250″C. Then 1170″C.
-1230°C and subjected to solution treatment corresponding to each composition, and after cooling in vacuum or inert gas atmosphere 750~900''
It is manufactured by performing multi-stage aging treatment from a temperature of 400°C to 400°C.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記の組成と製法において、溶体化処理後の冷却速度と
Incについて検討した結果、Sn+26.5wt%、
Cu12wt%、 Fe5evt%、Zr1.0wt%
、 C。
In the above composition and manufacturing method, as a result of examining the cooling rate and Inc after solution treatment, Sn+26.5wt%,
Cu12wt%, Fe5evt%, Zr1.0wt%
,C.

balにおいては第1図のAに示すような結果で冷却速
度4.5℃/sec以上の速い速度で冷却しないと目的
のIHCが得られないことが明らかとなった。このA組
成において冷却速度が速い場合大型製品はクラックが発
生してしまう。また遅い場合はIHCが低下してしまう
In the case of bal, the results shown in A in FIG. 1 indicate that the desired IHC cannot be obtained unless cooling is performed at a cooling rate of 4.5° C./sec or higher. If the cooling rate is fast in this A composition, cracks will occur in large products. Moreover, if it is slow, IHC will decrease.

またS+++25.5wt%、Cu4.5wt%、Fe
14wt%。
Also, S+++25.5wt%, Cu4.5wt%, Fe
14wt%.

Zr2.8wt%、残Coの組成では、図中のBに示す
ように冷却速度0.7℃/secで最大値を示す結果で
あ°る。
With a composition of 2.8 wt % Zr and residual Co, the maximum value was obtained at a cooling rate of 0.7° C./sec, as shown in B in the figure.

Bに示す組成において、冷却速度が速い場合Aの組成と
同様な問題が発生する。
In the composition shown in B, when the cooling rate is fast, the same problem as in the composition A occurs.

遅い場合は、肌がピークを示す速度が現われIHcバラ
ツキが大となる。
If it is slow, the skin will reach a peak speed and the IHc variation will become large.

このA、Bタイプの組成で製品を製造する場合、lHc
特性の目標を得るのと安定した。Hゎを得るには冷却速
度を4.5°(/secと速くする必要があった。
When manufacturing products with these A and B type compositions, lHc
Stable with getting the characteristic goals. In order to obtain H, it was necessary to increase the cooling rate to 4.5°/sec.

最近の希土類磁石の製造設備は生産効率向上のため大型
化し、−度に多量に処理するようになって来ている。そ
のため溶体化処理後の冷却速度は0.4〜7.5℃/s
ecに炉内でバラツキを生じている。このために冷却速
度に依存せずlHcが安定する条件が必要となり、従っ
て、本発明の目的は冷却速度0.4℃/sec以上の速
度に依存せずIHC±10000eを得る製造方法を提
供することである。
Recently, rare earth magnet manufacturing equipment has become larger in order to improve production efficiency, and it has become possible to process large quantities at a time. Therefore, the cooling rate after solution treatment is 0.4-7.5℃/s
There are variations in ec within the furnace. For this reason, a condition is required in which IHc is stable regardless of the cooling rate.Therefore, the object of the present invention is to provide a manufacturing method that obtains IHC±10,000e without depending on the cooling rate of 0.4°C/sec or more. That's true.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は811124〜26wt%、 Cu5.O〜5
.3wt%。
The present invention contains 811124 to 26 wt%, Cu5. O~5
.. 3wt%.

Zr2.9〜3.0wt%、 Fel 3〜14wt%
、残Coよりなる磁石材の溶体化処理後の冷却速度0.
4〜7.5’C/secでIHCのバラツキ範囲が±1
0000eが得られることを特徴とする希土類コバルト
磁石の製造方法である。第2図に溶体化処理後の冷却速
度とCu量におけるEHcの変化を示した。
Zr2.9~3.0wt%, Fel 3~14wt%
, the cooling rate after solution treatment of the magnet material made of residual Co is 0.
IHC variation range is ±1 at 4 to 7.5'C/sec
This is a method for producing a rare earth cobalt magnet characterized by obtaining 0000e. FIG. 2 shows the change in EHc depending on the cooling rate and Cu content after solution treatment.

組成において高Cu量5.6ivt%以上では高いIH
cを得、かつ、■。は溶体化処理後の冷却速度に対して
も安定化方向に行く、しかしBr (残留磁束密度)が
低下してしまう。低いCu量5wt%未満ではBrは高
いが、lHcが溶体化処理後の冷却速度0、7℃/se
c近傍でI)lcのピークが発生し、冷却速度でIHc
のバラツキが生じるため製造上問題となる。本発明の組
成Cu量5〜5.3wt%で溶体化処理後の冷却速度0
.4℃/sec以上の速度に依存せずIL±10000
eに制御できることを見出した。次に実施例をあげて本
発明を説明する。
If the composition has a high Cu content of 5.6 ivt% or more, high IH
Obtain c, and ■. The cooling rate after solution treatment tends to stabilize, but Br (residual magnetic flux density) decreases. When the Cu amount is low, less than 5 wt%, Br is high, but the cooling rate after solution treatment is 0.7℃/se.
A peak of I)lc occurs near c, and IHc occurs at the cooling rate.
This causes a problem in manufacturing. The composition of the present invention has a Cu content of 5 to 5.3 wt% and a cooling rate of 0 after solution treatment.
.. IL±10000 independent of speeds over 4℃/sec
We found that it is possible to control e. Next, the present invention will be explained with reference to Examples.

〔実施例〕〔Example〕

5m25.2wt%、Cu5.1ivt%、Pe13.
8i1t%、 Zr2.95wt%、残Coからなる組
成インゴットを作成し、粗粉砕、振動式ミルで微粉砕し
た。その時の粒度4.5μ、0!は2800ppm+で
あった。これを磁場中プレスし、成形体を1210℃、
2時間H2中で焼結した。その後1180℃で4時間溶
体化処理を施し、冷却速度を0.4〜7.5℃/sec
と変化させ冷却した。その試料を一段目800°Cで2
時間、二段目790°Cで6時間の2段時効を施した。
5m25.2wt%, Cu5.1ivt%, Pe13.
An ingot having a composition of 8i1t%, Zr2.95wt%, and residual Co was prepared, and was coarsely ground and then finely ground with a vibrating mill. The particle size at that time was 4.5μ, 0! was 2800 ppm+. This was pressed in a magnetic field to form a molded body at 1210°C.
Sintered in H2 for 2 hours. After that, solution treatment was performed at 1180℃ for 4 hours, and the cooling rate was set at 0.4 to 7.5℃/sec.
and cooled. The sample was heated to 800°C in the first stage for 2
Two-stage aging was performed at 790°C for 6 hours in the second stage.

磁気特性の評価結果を第1図中のCのカーブで示した。The evaluation results of the magnetic properties are shown by curve C in FIG.

IHCバラツキが11000±10000eが得られた
An IHC variation of 11000±10000e was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば溶体化処理後の冷却速度0.4℃/se
c以上の速度に依存せず、II(cが±100008の
バラツキに入り、生産製造中の磁気特性の安定化が達成
できる。
According to the present invention, the cooling rate after solution treatment is 0.4°C/se.
It does not depend on speeds higher than c, and II (c has a variation of ±100008), and stabilization of magnetic properties during production can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は溶体化処理後の冷却速度と磁気特性の関係を示
す(Aは公知組成と製法、BはCu量を4.4wt%の
場合、Cは本発明の組成範囲の場合)図、 第2図は溶体化処理後の冷却速度とCu量変化と1■。 について示す図である。
Figure 1 shows the relationship between the cooling rate and magnetic properties after solution treatment (A is a known composition and manufacturing method, B is a case where the Cu amount is 4.4 wt%, and C is a case where the composition range of the present invention is used). Figure 2 shows the cooling rate and change in Cu amount after solution treatment. FIG.

Claims (1)

【特許請求の範囲】[Claims] 重量百分比で24〜26%Sm,5〜5.3%Cu,2
.8〜3.0%Zr,13〜15%Fe,O_2200
0〜3000ppm,残Coの組成範囲を有する磁石合
金粉を磁場中成形、焼結後熱処理工程の溶体化処理完了
後の冷却速度0.4℃/sec以上の冷却速度に依存せ
ず、磁気特性_IH_cバラツキ範囲±10000eで
製造することを特徴とする希土類コバルト磁石の製造方
法。
Weight percentage: 24-26% Sm, 5-5.3% Cu, 2
.. 8-3.0% Zr, 13-15% Fe, O_2200
Magnet alloy powder having a composition range of 0 to 3000 ppm and residual Co is formed in a magnetic field, and the cooling rate after completion of the solution treatment in the post-sintering heat treatment process is 0.4°C/sec or more, and the magnetic properties are independent of the cooling rate. A method for producing a rare earth cobalt magnet, characterized in that it is produced within a _IH_c variation range of ±10,000e.
JP1339161A 1989-12-27 1989-12-27 Manufacture of rare earth cobalt magnet Pending JPH03198306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1339161A JPH03198306A (en) 1989-12-27 1989-12-27 Manufacture of rare earth cobalt magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1339161A JPH03198306A (en) 1989-12-27 1989-12-27 Manufacture of rare earth cobalt magnet

Publications (1)

Publication Number Publication Date
JPH03198306A true JPH03198306A (en) 1991-08-29

Family

ID=18324820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1339161A Pending JPH03198306A (en) 1989-12-27 1989-12-27 Manufacture of rare earth cobalt magnet

Country Status (1)

Country Link
JP (1) JPH03198306A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482573A (en) * 1991-10-16 1996-01-09 Kabushiki Kaisha Toshiba Magnetic material
EP1187147A3 (en) * 2000-09-08 2003-10-01 Shin-Etsu Chemical Co., Ltd. Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
WO2015037037A1 (en) * 2013-09-13 2015-03-19 株式会社 東芝 Permanent magnet,as well as motor and electrical power generator using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482573A (en) * 1991-10-16 1996-01-09 Kabushiki Kaisha Toshiba Magnetic material
EP1187147A3 (en) * 2000-09-08 2003-10-01 Shin-Etsu Chemical Co., Ltd. Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
EP1626418A3 (en) * 2000-09-08 2007-11-07 Shin-Etsu Chemical Co., Ltd. Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
WO2015037037A1 (en) * 2013-09-13 2015-03-19 株式会社 東芝 Permanent magnet,as well as motor and electrical power generator using same

Similar Documents

Publication Publication Date Title
US4171978A (en) Iron/chromium/cobalt-base spinodal decomposition-type magnetic (hard or semi-hard) alloy
JPS586778B2 (en) Anisotropic permanent magnet alloy and its manufacturing method
JPH03198306A (en) Manufacture of rare earth cobalt magnet
JPH0354805A (en) Rare-earth permanent magnet and manufacture thereof
JPS63149362A (en) Manufacture of permanent magnet material
JPH08181009A (en) Permanent magnet and its manufacturing method
JPS6262503A (en) Permanent magnet
JPH0627308B2 (en) Method of manufacturing permanent magnet material
JP2001107226A (en) Co SERIES TARGET AND ITS PRODUCTION METHOD
JPS5952822A (en) Manufacture of permanent magnet
JPS6181604A (en) Preparation of rare earth magnet
JPS61208807A (en) Permanent magnet
JPS63157844A (en) Manufacture of permanent magnet material
JPS5848606A (en) Production of permanent magnet of rare earths
JP3138927B2 (en) Rare earth magnet manufacturing method
JPS594107A (en) Manufacture of rare earth and cobalt group magnetic material
JPS6134241B2 (en)
JPH0568841B2 (en)
JPS6085502A (en) Permanent magnet
JPS63157845A (en) Manufacture of permanent magnet material
JPH0122970B2 (en)
JPH0516162B2 (en)
JPS58108711A (en) Manufacture of rare earth permanent magnet
JPS59154004A (en) Manufacture of permanent magnet
JPH0517804A (en) Production of sintered magnetic material of iron-cobalt system