JPH0122970B2 - - Google Patents

Info

Publication number
JPH0122970B2
JPH0122970B2 JP57071949A JP7194982A JPH0122970B2 JP H0122970 B2 JPH0122970 B2 JP H0122970B2 JP 57071949 A JP57071949 A JP 57071949A JP 7194982 A JP7194982 A JP 7194982A JP H0122970 B2 JPH0122970 B2 JP H0122970B2
Authority
JP
Japan
Prior art keywords
solution treatment
sintering
hours
ingot
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57071949A
Other languages
Japanese (ja)
Other versions
JPS58188104A (en
Inventor
Naoyuki Ishigaki
Hitoshi Yamamoto
Yutaka Matsura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP57071949A priority Critical patent/JPS58188104A/en
Publication of JPS58188104A publication Critical patent/JPS58188104A/en
Publication of JPH0122970B2 publication Critical patent/JPH0122970B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、R2M17系(Rは希土類元素、Mは
遷移金属元素)永久磁石の製造方法の改良に係
り、製造工程における合金溶解、鋳造後に、新た
に溶体化処理工程を導入し、その後粉砕、圧縮成
型焼結を行ない、さらに焼結後溶体化処理を行な
うことにより、永久磁石特性の向上、安定化を計
つた希土類コバルト系永久磁石の製造方法に関す
る。 R2M17系永久磁石合金は、極めて高い保磁力と
最大エネルギー積を有するすぐれた永久磁石とし
て電子工業界を中心に幅広く用いられている。し
かしながら、本系永久磁石合金のもつ磁石特性を
最大限に発揮させるためには、製造方法が最も重
要であり、各工程において厳格に管理して磁石を
製造しなければならない。 そこで、かかる製造方法を改良しR2M17系永久
磁石合金の磁石特性の向上、安定化を計る方法と
して、本願発明者は先に、特願昭57−8035号明細
書に合金溶解、鋳造後にインゴツト溶体化処理が
有効であること、または特願昭57−21819号明細
書に焼結工程における特殊焼結処理かつ焼結後溶
体化処理が有効であることを提案した。 しかし、上記の提案にかかる製造方法において
も以下の如き問題を有していた。 すなわち、前者のインゴツト溶体化処理のみを
施こす方法では、溶解インゴツト間で得られる磁
石特性にバラツキが大きい傾向にあり、大型イン
ゴツトの溶体化処理に際して同処理に長時間を要
し、溶体化処理後の急速冷却において極めて速い
冷却が必要であり、高温安定相であるTbCu7結晶
構造相を室温まで維持するのが難しく、得られる
磁石特性にバラツキを生じる問題があつた。 また、後者の焼結後の溶体化処理を施す方法で
は、R2M17系合金はインゴツトの溶解、鋳造時に
冷却条件あるいは組成で若干異なるが、R2M17
合金磁石特性に好ましくないいくつかの金属相を
含んでおり、すなわち、複数の包晶反応で凝固反
応が起るTh2Zn17結晶構造相、Fe―Coリツチな
初晶、CaCu5結晶構造相等を含み磁石特性を劣化
させており、これらの金属相は各々機械的強度、
磁気的性質が異なるために、本系磁石合金の製造
工程の粉砕、磁界中配向等において、磁石特性の
バラツキ、劣化の原因となり、焼結後の溶体化処
理を施しても磁石特性が十二分に回復できない傾
向にあつた。また、焼結後溶体化処理後の冷却速
度についても、極めて速い冷却速度を要し、工業
的量産の適用に困難があり、大型型状磁石につい
ては急速冷却が不可能な問題があつた。 この発明は、かかるR2M17系磁石合金の磁石特
性の向上・安定化を計るための改良を種々検討し
たもので、R2M17系永久磁石の製造方法におい
て、合金溶解・鋳造後に、まずインゴツトの溶体
化処理を行ない、さらに焼結工程の際に焼結後溶
体化処理を併用することにより、上記した先願発
明よりもさらに磁石特性の向上、安定化を達成し
たことを特徴とする。 すなわち、この発明は、 希土類元素Rと遷移金属元素MからなるR2M17
系永久磁石合金 (ただし、RはY,La,Ce,Pr,Nb,Smお
よびミツシユメタルの1種又は2種以上の組合
せ、 MはCuとCo,FeもしくはNiのうち1種又は2
種以上の組合せおよび上記Mの一部をMn,Zrの
各元素のうち1種以上の元素と置換した組合せ)
を、 溶解して鋳造し、1100〜1250℃、1〜10時間の
インゴツト溶体化処理を施し、金属組織的に
R2M17相単相となし、 これを粉砕後に圧縮成型して成型体となし、 次いで成型体を50〜350Torrの減圧アルゴンガ
ス雰囲気において1100〜1250℃の温度範囲で焼結
し、 さらに1100〜1200℃の温度範囲で焼結後溶体化
処理後に100℃/min以上の急速冷却を施し、時
効処理を行なうことを特徴とする希土類コバルト
系永久磁石の製造方法である。 この発明の製造方法の特徴の1つであるところ
の溶解・鋳造後のインゴツト溶体化処理とは、溶
解・鋳造後のインゴツトを非酸化性雰囲気中にお
いて1100〜1250℃の温度域で1〜10時間保持し、
その後液体窒素、水等の冷媒を用いて急速冷却す
るものである。 ここでインゴツト溶体化処理温度は合金組成に
よつて若干異なるものの1100〜1250℃に限定し
た。その理由は、1100℃未満では本R2M17系磁石
合金の優れた磁石特性を発揮するために不可欠で
あるところの高温安定相であるTbCu7結晶構造相
が完全に得られず、また組成の均質化が十分進行
せず、それ故得られる磁石特性は低く、1250℃を
越える溶体化処理温度においては合金が溶融して
溶液相を生じるため、合金組成の変動が大きく高
い磁石特性は得られないためである。TbCu7結晶
構造相単相となして組成の均質化を十分促進させ
ることにより優れた磁石特性を安定して得るため
には、溶体化処理温度は1150〜1210℃が最も望ま
しい。 次にインゴツト溶体化処理時間は、合金組成な
らびにインゴツト重量・インゴツト冷却条件で若
干異なるものの1〜10時間とした。一般に大型イ
ンゴツトに於ては、合金溶解・鋳造時に磁石特性
を劣化させる要因となるTh2Zn17結晶構造相やFe
―Corichな初晶を形成しやすい為、溶体化処理
時間は長く行なう必要がある。インゴツト溶体化
処理時間1時間未満ではTbCu17結晶構造相単相
が十分得られず、すぐれた磁石特性は望めない。
また、インゴツト溶体化処理時間が10時間を超え
ると、工業的に長時間を要するメリツトが少なく
Rの蒸発・酸化が除々に進行するため処理時間と
ともに得られる磁石特性は減少する。従つて1〜
10時間の処理時間とした。インゴツト組成の均質
化を計り、TbCu7結晶構造相単相を十分得て、か
つRの蒸発・酸化を極力防ぐためには、工業的な
インゴツト溶体化処理時間としては2〜8時間が
望ましい。 なお、この発明においてはインゴツト溶体化処
理に加えて焼結後溶体化処理を施すため、前記し
た特願昭57−8035号のインゴツト溶体処理時間1
〜20時間に比してインゴツト溶体化処理時間の短
縮が計られたことも改良点の1つである。 次に、この発明の製造方法のもう1つの優れた
特徴である減圧アルゴン雰囲気における焼結なら
びに焼結後溶体化処理について説明する。焼結
は、焼結後の密度を理論密度近くまで高めること
により磁石特性を向上させるために、50〜
350Torrの減圧したアルゴン雰囲気中で1100〜
1250℃の温度範囲で行なう。 ここで、アルゴンガス雰囲気圧力の限定理由
は、50Torrよりも圧力が低くなると、希土類コ
バルト系磁石合金の成分、とくに希土類成分の蒸
気圧は800℃以上で20〜30Torrと金属元素中でも
かなり高いため、希土類金属が優先的に雰囲気中
へ蒸発し、最終焼結体は所定組成から異なつた組
成となり、磁石特性の著しい劣化を生ずる。ま
た、350Torrよりも圧力が高い場合には十分な密
度の向上が認められず、最終的には優れた磁石特
性が得られないため、50〜350Torrとする。 また、焼結温度範囲を限定した理由は、希土類
コバルト系磁石合金に於て、その構成成分やその
構成成分の各成分割合などに依つてその最適な焼
結温度範囲は異なるが、1100℃未満の焼結温度で
は十分な焼結密度が得られず、また1250℃を越え
る焼結温度では合金が溶融してしまい良好な特性
を有する焼結磁石体とならない。 十分な焼結密度を得て、かつ過剰の融液相を形
成させずに優れた磁石特性を得るためには、焼結
温度としては1160〜1230℃が最も望ましい。 焼結後の溶体化処理は、焼結温度より若干低い
1100〜1200℃の温度範囲で減圧あるいは常圧のア
ルゴン雰囲気中で行ない焼結時に発生した融液相
と焼結した結晶相とを十分反応させ、組成的に均
質化し、TbCu7結晶構造相の単相となす。この溶
体化処理は焼結後室温まで冷却して、再び昇温し
溶体化処理する場合と、焼結後室温まで冷却する
ことなく、ひき続いて溶体化処理温度まで降温し
て溶体化処理しても、得られる磁石特性は同等で
ある。組成的に均質化し、TbCu7結晶構造単相と
なすことにより、優れた磁石特性を発揮させるた
めには焼結後溶体化処理温度は1150〜1190℃が最
も望ましい。 焼結後溶体化処理終了後は高温安定相であると
ころのTbCu7結晶構造相単相を室温まで維持する
ために急速冷却することが優れた磁石特性を得る
ために必要である。先願発明特願昭57−21319号
に於て、焼結後溶体化処理のみを施すときの冷却
速度は200℃/min以上を要していたが、インゴ
ツト溶体化処理ならびに焼結後溶体化処理をとも
に施すところの本発明においては、冷却速度は
100℃/min以上であれば、安定して優れた磁石
特性が得られる。 次いで、溶体化処理後は時効処理を施すことに
より希土類コバルト系永久磁石を得る。 またこの発明の製造方法の中で特に焼結工程に
おいて、以下に示す特別な昇温過程をとれば、さ
らに磁石特性の向上に効果がある。 室温から800℃以下までの昇温過程は、脱ガス
処理と同時に酸化防止のために1×10-2Torr以
下の真空雰囲気中、4〜20℃/minの速度でゆつ
くりと昇温を行なう。昇温速度の限定理由は、4
℃/min未満の昇温速度では、800℃までの昇温
に3時間以上を要し、真空雰囲気中といえどもそ
の間に成型体は酸化し、しかも工業的には余りに
も時間を要するためであり、また、20℃/minを
越える昇温速度の場合には、昇温が速すぎて前述
した成型体中の吸着・吸蔵ガスを十分除去し得な
くて、ひき続いて行なう減圧アルゴン雰囲気中焼
結による特性向上の効果を生じない。とくに、上
記昇温過程において、成型体中の吸着・吸蔵ガス
の約90%の多量スは200〜600℃の温度範囲で放出
されるため、この温度範囲での昇温速度は4〜10
℃/minとし、1×10-4〜1×10-5Torr高真空雰
囲気にして酸化を防止しながら脱ガス処理を有効
に行なうことが好ましい。 以下、本発明を実施例により説明する。 実施例 1 純度99.9%以上のSm26.0wt%、純度99.8%の
Co47.3wt%、Fe12.8wt%、Ni5.3wt%、および
Cu8.6wt%からなる合金を、アルゴン雰囲気区で
高周波溶解・鋳造した後、アルゴン雰囲気中で
1180℃、4時間インゴツト溶体化処理を施し、溶
体化処理後は液体窒素にて急速冷却した。 次いで、溶体化処理を施したインゴツトを鉄乳
鉢で粗粉砕した後、有機溶剤中でボール・ミルに
より平均粒度2〜10μmの微粉末とした。得られ
た微粉末を15KOeの磁界中でプレスし、圧縮成
型体と成した。 この圧縮成型体を200Torrのアルゴン雰囲気中
で1210℃、2時間焼結し、ひき続いて1190℃、2
時間の焼結後溶体化処理を施した後、150℃/
minの冷却速度で急速冷却した。さらに800℃、
4時間の時効処理を施し、この発明による永久磁
石を得た。 また比較例(1)として、1180℃、4時間のインゴ
ツト溶体化処理を施すことなく、上記実施例1と
同様の製造方法により永久磁石を得た。 また比較例(2)として、1190℃、2時間の焼結後
溶体化処理を施すことなく、上記実施例1と同様
の製造方法により永久磁石を得た。それぞれ得ら
れた磁石特性の結果をまとめて表1に示す。
This invention relates to an improvement in the manufacturing method of R 2 M 17 series (R is a rare earth element, M is a transition metal element) permanent magnet, and a new solution treatment process is introduced after alloy melting and casting in the manufacturing process. The present invention relates to a method for producing a rare earth cobalt permanent magnet, which is then subjected to pulverization, compression molding and sintering, and then a solution treatment after sintering, thereby improving and stabilizing the permanent magnet properties. R 2 M 17 series permanent magnet alloys are widely used mainly in the electronic industry as excellent permanent magnets with extremely high coercive force and maximum energy product. However, in order to maximize the magnetic properties of this permanent magnet alloy, the manufacturing method is most important, and each process must be strictly controlled to manufacture the magnet. Therefore, as a method for improving and stabilizing the magnetic properties of the R 2 M 17 series permanent magnet alloy by improving this manufacturing method, the inventor of the present application previously proposed a method for alloy melting and casting in Japanese Patent Application No. 57-8035. He later proposed that ingot solution treatment was effective, and in Japanese Patent Application No. 57-21819, that special sintering treatment in the sintering process and post-sintering solution treatment were effective. However, the manufacturing method proposed above also had the following problems. In other words, in the former method, which only performs solution treatment on ingots, there tends to be large variations in the magnetic properties obtained between the molten ingots, and when large ingots are solution treated, it takes a long time, and the solution treatment Extremely rapid cooling is required in the subsequent rapid cooling, and it is difficult to maintain the TbCu 7 crystal structure phase, which is a high-temperature stable phase, to room temperature, resulting in variations in the magnetic properties obtained. In addition, in the latter method of applying solution treatment after sintering, the R 2 M 17 alloy is slightly different in the cooling conditions or composition during melting and casting of the ingot, but there are some undesirable effects on the R 2 M 17 alloy magnet properties. It contains metal phases such as Th 2 Zn 17 crystal structure phase in which solidification occurs through multiple peritectic reactions, Fe-Co rich primary crystal, CaCu 5 crystal structure phase, etc., which deteriorates magnetic properties. These metallic phases have mechanical strength,
Due to the difference in magnetic properties, the manufacturing process of this magnet alloy, such as crushing and orientation in a magnetic field, causes variations in magnetic properties and deterioration, and even after solution treatment after sintering, the magnetic properties are There was a tendency to not be able to recover in minutes. Furthermore, regarding the cooling rate after the post-sintering solution treatment, an extremely fast cooling rate is required, making it difficult to apply it to industrial mass production, and there is a problem that rapid cooling is not possible for large-sized magnets. This invention is the result of various studies on improvements to improve and stabilize the magnetic properties of such R 2 M 17 series magnet alloys. The invention is characterized in that by first performing solution treatment on the ingot and then also using post-sintering solution treatment during the sintering process, the magnetic properties are further improved and stabilized than in the prior invention described above. do. That is, this invention provides R 2 M 17 consisting of a rare earth element R and a transition metal element M.
Permanent magnet alloy (where R is one or a combination of two or more of Y, La, Ce, Pr, Nb, Sm, and Mitsushi metal, M is one or two of Cu, Co, Fe, or Ni)
combinations of more than one species and combinations in which a part of the above M is replaced with one or more elements of each element of Mn and Zr)
is melted and cast, and subjected to ingot solution treatment at 1100 to 1250℃ for 1 to 10 hours to improve the metallographic structure.
The R 2 M 17 phase is made into a single phase, which is crushed and compression molded to form a molded body.The molded body is then sintered at a temperature range of 1100 to 1250℃ in a reduced pressure argon gas atmosphere of 50 to 350 Torr, and further This is a method for producing a rare earth cobalt permanent magnet, which is characterized by performing post-sintering solution treatment in a temperature range of ~1200°C, followed by rapid cooling at 100°C/min or more, and aging treatment. The ingot solution treatment after melting and casting, which is one of the features of the manufacturing method of this invention, is to heat the ingot after melting and casting in a non-oxidizing atmosphere in a temperature range of 1100 to 1250°C for 1 to 10 minutes. hold time,
After that, it is rapidly cooled using a refrigerant such as liquid nitrogen or water. Here, the ingot solution treatment temperature was limited to 1100 to 1250°C, although it varied slightly depending on the alloy composition. The reason for this is that at temperatures below 1100°C, the TbCu 7 crystal structure phase, which is a high-temperature stable phase that is essential for exhibiting the excellent magnetic properties of this R 2 M 17 magnet alloy, cannot be completely obtained, and the composition The homogenization of the alloy does not proceed sufficiently, and therefore the obtained magnetic properties are poor. At solution treatment temperatures exceeding 1250°C, the alloy melts and forms a solution phase, so the alloy composition fluctuates widely and high magnetic properties are not obtained. This is so that you will not be affected. In order to stably obtain excellent magnetic properties by forming a single TbCu 7 crystal structure phase and sufficiently promoting homogenization of the composition, the solution treatment temperature is most preferably 1150 to 1210°C. Next, the ingot solution treatment time was 1 to 10 hours, although it differed slightly depending on the alloy composition, ingot weight, and ingot cooling conditions. Generally, large ingots contain Th 2 Zn 17 crystal structure phase and Fe, which cause deterioration of magnetic properties during alloy melting and casting.
-Since Corich primary crystals are likely to form, the solution treatment time must be long. If the ingot solution treatment time is less than 1 hour, a sufficient single phase of TbCu 17 crystal structure cannot be obtained, and excellent magnetic properties cannot be expected.
Furthermore, if the ingot solution treatment time exceeds 10 hours, there is no industrial advantage in that it requires a long time, and the evaporation and oxidation of R gradually progresses, so that the magnetic properties obtained decrease with the treatment time. Therefore 1~
The processing time was 10 hours. In order to homogenize the ingot composition, sufficiently obtain a single TbCu 7 crystal structure phase, and prevent evaporation and oxidation of R as much as possible, the industrial ingot solution treatment time is preferably 2 to 8 hours. In addition, in this invention, in addition to the ingot solution treatment, a post-sintering solution treatment is performed, so the ingot solution treatment time 1 of the above-mentioned Japanese Patent Application No. 8035/1983 is applied.
Another improvement is that the ingot solution treatment time was shortened compared to ~20 hours. Next, sintering in a reduced pressure argon atmosphere and post-sintering solution treatment, which are another excellent feature of the manufacturing method of the present invention, will be explained. Sintering is performed at a temperature of 50~
1100~ in a reduced pressure argon atmosphere of 350Torr
Perform in a temperature range of 1250℃. Here, the reason for limiting the argon gas atmosphere pressure is that when the pressure is lower than 50 Torr, the vapor pressure of the components of the rare earth cobalt magnet alloy, especially the rare earth components, is 20 to 30 Torr at 800°C or higher, which is quite high among metal elements. The rare earth metal preferentially evaporates into the atmosphere, and the final sintered body has a composition different from the predetermined composition, resulting in significant deterioration of magnetic properties. Further, if the pressure is higher than 350 Torr, sufficient improvement in density is not observed and ultimately excellent magnetic properties cannot be obtained, so the pressure is set at 50 to 350 Torr. In addition, the reason for limiting the sintering temperature range is that the optimum sintering temperature range for rare earth cobalt magnet alloys varies depending on the constituent components and the proportions of each component, but it is less than 1100℃. A sufficient sintered density cannot be obtained at a sintering temperature of 1250°C, and a sintered magnet body with good characteristics cannot be obtained because the alloy melts at a sintering temperature exceeding 1250°C. In order to obtain sufficient sintered density and excellent magnetic properties without forming an excessive melt phase, the most desirable sintering temperature is 1160 to 1230°C. Solution treatment after sintering is slightly lower than the sintering temperature
Sintering is carried out in an argon atmosphere under reduced pressure or normal pressure at a temperature range of 1100 to 1200°C to fully react the melt phase generated during sintering with the sintered crystal phase, homogenize the composition, and form the TbCu 7 crystal structure phase. Single phase. This solution treatment can be carried out either by cooling to room temperature after sintering and then raising the temperature again for solution treatment, or by cooling the temperature to the solution treatment temperature without cooling to room temperature after sintering. However, the obtained magnetic properties are the same. In order to exhibit excellent magnetic properties by homogenizing the composition and forming a single-phase TbCu 7 crystal structure, the most desirable temperature for the post-sintering solution treatment is 1150 to 1190°C. After the post-sintering solution treatment is completed, rapid cooling is required to maintain the TbCu 7 crystal structure single phase, which is a high-temperature stable phase, to room temperature in order to obtain excellent magnetic properties. In the prior invention patent application No. 57-21319, the cooling rate was required to be 200°C/min or more when only the solution treatment was performed after sintering, but the cooling rate was not less than 200°C/min. In the present invention, where both treatments are performed, the cooling rate is
At 100°C/min or higher, stable and excellent magnetic properties can be obtained. Next, after the solution treatment, an aging treatment is performed to obtain a rare earth cobalt permanent magnet. Further, in the manufacturing method of the present invention, especially in the sintering step, if the following special temperature raising process is used, it is effective to further improve the magnetic properties. During the temperature raising process from room temperature to 800℃ or less, the temperature is slowly raised at a rate of 4 to 20℃/min in a vacuum atmosphere of 1×10 -2 Torr or less to prevent oxidation while degassing. . The reason for limiting the heating rate is 4.
At a temperature increase rate of less than ℃/min, it takes more than 3 hours to raise the temperature to 800℃, and the molded product oxidizes during that time even in a vacuum atmosphere, which is too time-consuming for industrial purposes. In addition, if the heating rate exceeds 20℃/min, the temperature rising is too fast and the adsorbed/occluded gas in the molded body cannot be removed sufficiently, so the subsequent heating in a reduced pressure argon atmosphere is necessary. No effect of property improvement due to sintering. In particular, in the above heating process, a large amount of gas, which accounts for approximately 90% of the adsorbed/occluded gas in the molded body, is released in the temperature range of 200 to 600°C, so the heating rate in this temperature range is 4 to 10°C.
It is preferable to carry out the degassing treatment effectively while preventing oxidation in a high vacuum atmosphere of 1×10 −4 to 1×10 −5 Torr at a temperature of 1×10 −4 to 1×10 −5 Torr. The present invention will be explained below using examples. Example 1 Sm26.0wt% with purity of 99.9% or more, purity of 99.8%
Co47.3wt%, Fe12.8wt%, Ni5.3wt%, and
After high-frequency melting and casting of an alloy consisting of 8.6wt% Cu in an argon atmosphere,
The ingot was subjected to solution treatment at 1180°C for 4 hours, and after the solution treatment, it was rapidly cooled with liquid nitrogen. Next, the solution-treated ingot was coarsely ground in an iron mortar, and then ground into fine powder with an average particle size of 2 to 10 μm using a ball mill in an organic solvent. The obtained fine powder was pressed in a magnetic field of 15 KOe to form a compression molded body. This compression molded body was sintered at 1210℃ for 2 hours in an argon atmosphere of 200Torr, and then at 1190℃ for 2 hours.
After solution treatment after sintering for an hour, 150℃/
Rapid cooling was performed at a cooling rate of min. Furthermore, 800℃,
A permanent magnet according to the present invention was obtained by aging for 4 hours. Further, as a comparative example (1), a permanent magnet was obtained by the same manufacturing method as in Example 1 above, without performing ingot solution treatment at 1180° C. for 4 hours. Further, as Comparative Example (2), a permanent magnet was obtained by the same manufacturing method as in Example 1 above without performing post-sintering solution treatment at 1190° C. for 2 hours. Table 1 summarizes the results of the magnet characteristics obtained.

【表】 実施例 2 純度99.9%以上のSm24.0wt%、Y1.8wt%、純
度99.8%以上のCo43.6wt%、Fe16.2wt%、
Ni6.3wt%、Cu7.6wt%、Zr0.5wt%からなる合金
を、アルゴン雰囲気中で高周波溶解・鋳造して得
られたインゴツトに、1170℃、5時間の溶体化処
理を施し、処理後液体窒素中に急速冷却した。こ
の合金を鉄乳鉢で粗粉砕後ジエツト・ミルにより
2〜10μmの微粉末とした。 この微粉末を15KOeの磁界中でプレスし、圧
縮成型体と成した。この圧縮成型体を5×
10-4Torrの真空雰囲気中におて、室温から800℃
まで10℃/minの速度で昇温した後、200Torrの
減圧アルゴン雰囲気中に於て、1200℃、2時間焼
結し、ひき続いて1185℃、3時間の焼結後溶体化
処理を施した後、160℃/minの冷却速度で急速
冷却した。 さらに、800℃×2時間、700℃×4時間、600
℃×8時間、500℃×16時間の多段時効処理を施
し、この発明による永久磁石を得た。 また比較例(1)として、1170℃、5時間のインゴ
ツト溶体化処理を施すことなく上記実施例2と同
様の製造方法により永久磁石を得た。 また比較例(2)として1185℃、3時間の焼結後溶
体化処理を施すことなく上記実施例2と同様の製
造方法により永久磁石を得た。それぞれ得られた
磁石特性の結果をまとめて表2に示す。
[Table] Example 2 Sm24.0wt%, Y1.8wt% with a purity of 99.9% or higher, Co43.6wt%, Fe16.2wt% with a purity of 99.8% or higher,
An ingot obtained by high-frequency melting and casting of an alloy consisting of 6.3 wt% Ni, 7.6 wt% Cu, and 0.5 wt% Zr in an argon atmosphere was subjected to solution treatment at 1170°C for 5 hours. Rapidly cooled in nitrogen. This alloy was coarsely ground in an iron mortar and then made into a fine powder of 2 to 10 μm in size using a jet mill. This fine powder was pressed in a magnetic field of 15 KOe to form a compression molded body. This compression molded body is
From room temperature to 800℃ in a vacuum atmosphere of 10 -4 Torr
After increasing the temperature at a rate of 10°C/min to 200 Torr, sintering was performed at 1200°C for 2 hours in a reduced pressure argon atmosphere of 200 Torr, followed by post-sintering solution treatment at 1185°C for 3 hours. Afterwards, it was rapidly cooled at a cooling rate of 160°C/min. Furthermore, 800℃ x 2 hours, 700℃ x 4 hours, 600℃
A multi-stage aging treatment of 8 hours at 500°C and 16 hours at 500°C was performed to obtain a permanent magnet according to the present invention. Further, as a comparative example (1), a permanent magnet was obtained by the same manufacturing method as in Example 2 above without performing ingot solution treatment at 1170° C. for 5 hours. Further, as Comparative Example (2), a permanent magnet was obtained by the same manufacturing method as in Example 2 above without performing post-sintering solution treatment at 1185° C. for 3 hours. Table 2 summarizes the results of the magnet characteristics obtained.

【表】 実施例 3 純度99.9%以上のSm25.3wt%、Y1.0wt%、純
度99.8%以上のCo43.8wt%、Fe16.1wt%、
Ni4.8wt%、Cu7.7wt%、Mn0.3wt%、Zr1.0wt%
からなる合金を、アルゴン雰囲気中で高周波溶
解・鋳造して得らたインゴツトに、1195℃、3時
間の溶体化処理を施し、処理後液体窒素中に急速
冷却した。この合金を鉄乳鉢で粗粉砕後、ジエツ
ト・ミルにより2〜10μmの微粉末とした。 この微粉末を15KOeの磁界中でプレスし、圧
縮成形体と成した。この圧宿成形体を5×
10-4Torrの真空雰囲気中において、室温から800
℃まで10℃/minの速度で昇温した後、180Torr
の減圧アルゴン雰囲気中に於て、1205℃、2時間
焼結し、ひき続いて、1190℃、3時間の焼結後溶
体化処理を施した後、150℃/minの冷却速度で
急速冷却した。さらに800℃×4時間、700℃×8
時間、600℃×16時間、500℃×32時間の多段時効
処理を施し、この発明による永久磁石を得た。 また比較例(1)として、1195℃、3時間のインゴ
ツト溶体化処理を施すことなく、上記実施例3と
同様の製造方法により永久磁石を得た。 また比較例(2)として、1190℃、3時間の焼結後
溶体化処理を施すことなく、上記実施例(3)と同様
の製造方法により永久磁石を得た。それぞれ得ら
れた磁石特性の結果をまとめて表3に示す。
[Table] Example 3 Sm25.3wt%, Y1.0wt% with a purity of 99.9% or more, Co43.8wt%, Fe16.1wt% with a purity of 99.8% or more,
Ni4.8wt%, Cu7.7wt%, Mn0.3wt%, Zr1.0wt%
An ingot obtained by high-frequency melting and casting in an argon atmosphere was subjected to solution treatment at 1195°C for 3 hours, and after the treatment was rapidly cooled in liquid nitrogen. This alloy was coarsely ground in an iron mortar and then made into a fine powder of 2 to 10 μm in size using a jet mill. This fine powder was pressed in a magnetic field of 15 KOe to form a compression molded body. 5×
800°C from room temperature in a vacuum atmosphere of 10 -4 Torr.
After heating at a rate of 10℃/min to 180Torr
Sintered at 1205℃ for 2 hours in a reduced pressure argon atmosphere, followed by post-sintering solution treatment at 1190℃ for 3 hours, and then rapidly cooled at a cooling rate of 150℃/min. . Furthermore, 800℃×4 hours, 700℃×8
A permanent magnet according to the present invention was obtained by performing multi-stage aging treatment at 600°C for 16 hours and at 500°C for 32 hours. Further, as Comparative Example (1), a permanent magnet was obtained by the same manufacturing method as in Example 3 without performing ingot solution treatment at 1195° C. for 3 hours. As Comparative Example (2), a permanent magnet was obtained by the same manufacturing method as in Example (3) above, without performing post-sintering solution treatment at 1190° C. for 3 hours. Table 3 summarizes the results of the magnet characteristics obtained.

【表】 以上の実施例に示す如く、この発明の特徴たる
溶解・鋳造後のインゴツト溶体化処理ならびに焼
結後の溶体化処理を併用するところの希土類コバ
ルト系永久磁石の製造方法は、密度ならびに磁石
特性の向上にきわめて有効であることが明らかで
ある。
[Table] As shown in the above examples, the manufacturing method of rare earth cobalt permanent magnets, which uses both the ingot solution treatment after melting and casting and the solution treatment after sintering, which are the characteristics of this invention, It is clear that this method is extremely effective in improving magnetic properties.

Claims (1)

【特許請求の範囲】 1 希土類元素Rと遷移金属元素Mからなる
R2M17系永久磁石合金 (ただし、RはY,La,Ce,Pr,Nb,Smお
よびミツシユメタルの1種又は2種以上の組合
せ、 MはCuとCo,FeもしくはNiのうち1種又は2
種以上の組合せおよび上記Mの一部をMn,Zrの
各元素のうち1種以上の元素と置換した組合せ)
を、 溶解して鋳造し、1100〜1250℃、1〜10時間の
インゴツト溶体化処理を施し、金属組織的に
R2M17相単相となし、 これを粉砕後に圧縮成型して成型体となし、 次いで成型体を50〜350Torrの減圧アルゴンガ
ス雰囲気において1100〜1250℃の温度範囲で焼結
し、 さらに1100〜1200℃の温度範囲で焼結後溶体化
処理後に100℃/min以上の急速冷却を施し、時
効処理を行なうことを特徴とする希土類コバルト
系永久磁石の製造方法。
[Claims] 1 Consisting of rare earth element R and transition metal element M
R 2 M 17 series permanent magnet alloy (However, R is one or a combination of two or more of Y, La, Ce, Pr, Nb, Sm and Mitsushi metal, M is one or more of Cu, Co, Fe or Ni 2
combinations of more than one species and combinations in which a part of the above M is replaced with one or more elements of each element of Mn and Zr)
is melted and cast, and subjected to ingot solution treatment at 1100 to 1250℃ for 1 to 10 hours to improve the metallographic structure.
The R 2 M 17 phase is made into a single phase, which is crushed and compression molded to form a molded body.The molded body is then sintered at a temperature range of 1100 to 1250℃ in a reduced pressure argon gas atmosphere of 50 to 350 Torr, and further A method for producing a rare earth cobalt permanent magnet, which comprises performing post-sintering solution treatment in a temperature range of ~1200°C, followed by rapid cooling at 100°C/min or more, and aging treatment.
JP57071949A 1982-04-27 1982-04-27 Preparation of rare-earth element cobalt family permanent magnet Granted JPS58188104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57071949A JPS58188104A (en) 1982-04-27 1982-04-27 Preparation of rare-earth element cobalt family permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57071949A JPS58188104A (en) 1982-04-27 1982-04-27 Preparation of rare-earth element cobalt family permanent magnet

Publications (2)

Publication Number Publication Date
JPS58188104A JPS58188104A (en) 1983-11-02
JPH0122970B2 true JPH0122970B2 (en) 1989-04-28

Family

ID=13475240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57071949A Granted JPS58188104A (en) 1982-04-27 1982-04-27 Preparation of rare-earth element cobalt family permanent magnet

Country Status (1)

Country Link
JP (1) JPS58188104A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10943716B2 (en) 2015-09-15 2021-03-09 Kabushiki Kaisha Toshiba Permanent magnet and rotary electrical machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4680357B2 (en) * 2000-09-08 2011-05-11 株式会社三徳 Rare earth permanent magnet manufacturing method
JP4574820B2 (en) * 2000-09-08 2010-11-04 株式会社三徳 Method for producing magnet powder for rare earth bonded magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10943716B2 (en) 2015-09-15 2021-03-09 Kabushiki Kaisha Toshiba Permanent magnet and rotary electrical machine

Also Published As

Publication number Publication date
JPS58188104A (en) 1983-11-02

Similar Documents

Publication Publication Date Title
JPH06340902A (en) Production of sintered rare earth base permanent magnet
EP1263003B1 (en) Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith
JPH0122970B2 (en)
JPS639733B2 (en)
JPH0146574B2 (en)
JP2770248B2 (en) Manufacturing method of rare earth cobalt magnet
JP3097387B2 (en) Manufacturing method of rare earth magnet material powder
JPH0568841B2 (en)
JPS6233402A (en) Manufacture of rare-earth magnet
JPH06163226A (en) Method of manufacturing rare earth element magnet
JPS629658B2 (en)
JP3227613B2 (en) Manufacturing method of powder for rare earth sintered magnet
JPS6119084B2 (en)
JPH06310316A (en) Rare earth-fe-c-n intermetallic compound magnetic material powder and its manufacture
JPH0796694B2 (en) Method of manufacturing permanent magnet material
JP3138927B2 (en) Rare earth magnet manufacturing method
JPH0247534B2 (en)
JPS6238841B2 (en)
JPS6334606B2 (en)
JPS6140738B2 (en)
JPH06224015A (en) Manufacture of rare earth-fe-n intermetallic compound magnetic material particle and magnetic material powder of rare earth-fe-n intermetallic compound produced by same
JPS5848607A (en) Production of rare earth cobalt magnet
JPH06108190A (en) Rare earth permanent magnet alloy
JPH04246103A (en) Production of r2co17 type bond magnet powder
JPH056831A (en) Manufacture of rare-earth cobalt magnet with excellent heat-resistant property