JPS61260610A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPS61260610A
JPS61260610A JP60103133A JP10313385A JPS61260610A JP S61260610 A JPS61260610 A JP S61260610A JP 60103133 A JP60103133 A JP 60103133A JP 10313385 A JP10313385 A JP 10313385A JP S61260610 A JPS61260610 A JP S61260610A
Authority
JP
Japan
Prior art keywords
energy product
present
alloy
aging treatment
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60103133A
Other languages
Japanese (ja)
Inventor
Norihiro Sano
佐野 紀洋
Moriyoshi Hata
畑 守中
Yoshio Inokoshi
良夫 猪越
Yutaka Koyama
児山 豊
Toshihiko Nagano
俊彦 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Electronic Components Ltd
Seiko Instruments Inc
Original Assignee
Seiko Electronic Components Ltd
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Electronic Components Ltd, Seiko Instruments Inc filed Critical Seiko Electronic Components Ltd
Priority to JP60103133A priority Critical patent/JPS61260610A/en
Publication of JPS61260610A publication Critical patent/JPS61260610A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the maximum energy product by a method wherein a multistage aging treatment is repeated a plurality of times in the process wherein the alloy, which is adjusted in such a manner that it is composed of R at 23.0-25.5wt%, Cu at 3.0-5.0wt%, Zr at 2.0-5.0wt% and Co for the remainder, is brought into the state of magnet. CONSTITUTION:A sintering process is applied to the material consisting of R (R is at least a kind of rare-earth element) at 23-25% in percentage by weight, Cu at 4.0-5.0%, Fe at 13-15%, Zr at 1.5-4.0%, and Co at the remaining percentage, and after said sintering process is finished, a multistage aging treatment is repeated twice or more at the temperature range of 400-850 deg.C. As a result, the magnet having high coercive force and a high energy product can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は希土類金属Rと00の金属間化合物、特にC”
 t ’ e ’fc含む2−17系永久磁石を改良す
る製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an intermetallic compound of rare earth metal R and 00, particularly C”
The present invention relates to a manufacturing method for improving 2-17 series permanent magnets including t'e'fc.

希土類コバルト研石は従来のアルニコ磁石やフェライト
磁石に比べはるかに大きな磁気エネルギー積を出すこと
から、その需要は急激に伸展している。この希土類コバ
ルト磁石は当初、材料費が高価であることからピックア
ップ、ウォッチ、クロック等の超小型製品に使用が限定
されていたが、今日に至っては各種産業及び民生用電気
、電子機器の基幹材料として重要な役割を示す様になっ
ている。具体的には音響関係をはじめとする電子機器の
小型化、高性能化、省エネルギー化のニースニより小型
モーター、小型スピーカー、ヘッドホン、ステップモー
ター、VOMなどへと応用分野を広げており、今後もO
A(オフィスオートメーション、M!(ホームエレクト
ロニクス〕、FA(ファクトリ−オートメーション〕、
自動車電装品、医療機器関係へと徐々に需要が拡大して
いくものと考えられる。
Rare earth cobalt grinding stones produce a much larger magnetic energy product than conventional alnico magnets and ferrite magnets, so demand for them is rapidly increasing. Initially, the use of rare earth cobalt magnets was limited to ultra-small products such as pickups, watches, and clocks due to high material costs, but today they are used as core materials for various industrial and consumer electrical and electronic devices. It appears to be playing an important role. Specifically, we are expanding the field of application to small motors, small speakers, headphones, step motors, VOM, etc. from the idea of miniaturizing, high performance, and energy saving electronic equipment including audio equipment, and will continue to do so in the future.
A (office automation), M! (home electronics), FA (factory automation),
Demand is expected to gradually expand to include automotive electrical components and medical equipment.

〔発明の概要〕[Summary of the invention]

本発明は、重量百分比でお〜25%R(Rは希土類元素
の少くとも一種ンと、4.0〜5.0チのOuと、13
〜15%のF#と、1.5〜4.0%のZfと、残部が
実質的にCoからなる焼結型永久礎石を製造するに際し
、焼結後850’C〜400℃の間において多段時効処
理を2回以上繰り返すことにより、高い保磁力、高エネ
ルギー積の磁石を得ようとするものである。
The present invention comprises O~25% R (R is at least one rare earth element, 4.0 to 5.0 Ou, 13% by weight)
When producing a sintered permanent cornerstone consisting of ~15% F#, 1.5~4.0% Zf, and the balance substantially Co, at between 850'C and 400°C after sintering. By repeating multi-stage aging treatment two or more times, it is attempted to obtain a magnet with high coercive force and high energy product.

〔従来の技術〕[Conventional technology]

希土類(R)とコバルトの金属間化合物が永久磁石とし
て好適であることが知られ、最初に永久磁石として用い
られたのはROQ、であり、5fiOQ、がその代異例
であった。その後より高いエネルギー積を持つものとし
て層目されたのが、コバルトに対して只の割合が少ない
S fn@ O01q系化合物である。このR1001
7系合金の磁石化は、Cu’に添加し合金中に析出相を
発生させて保磁力を得る方法によって行なわれてきた。
It is known that an intermetallic compound of rare earth (R) and cobalt is suitable as a permanent magnet, and the first permanent magnet used was ROQ, and 5fiOQ was the most unusual. Subsequently, S fn@O01q-based compounds, which have a small proportion of cobalt, were classified as having a higher energy product. This R1001
Magnetization of 7-series alloys has been carried out by adding Cu' to generate a precipitated phase in the alloy to obtain coercive force.

しかし非磁性のO%’6入れることは飽和磁化の低下を
招く為、F#を導入して飽和磁化の上昇が試みられてき
た。しかし過度のF#量増加は飽和磁化の増力口はある
ものの保磁力を低下させてしまうという問題があった。
However, since adding nonmagnetic O%'6 causes a decrease in saturation magnetization, attempts have been made to increase saturation magnetization by introducing F#. However, there is a problem in that an excessive increase in the amount of F# decreases the coercive force, although it increases the saturation magnetization.

7.添加による保磁力低下を改善する方法として2τ等
の第五元素の添加が試みられ、その代表組成としてS惧
25.5Wtチ−F615wt%−Ou8wt%−Zr
l  、8Wt %−○O残部が良く知られている。し
かしこの組成はあMGO以上の高い最大エネルギー積が
得られるものの、保母カニHoが高々70000−程度
しか得られない。この為低パーミ了ンスの動作点では使
用することが難しく、材料形状に制約を受け、需要拡大
の大きな障害となっている。又材料的見地からみれば更
に高い磁気特性(例えば(B H)saw ) f持つ
磁石の開発が切望されている。
7. Addition of a fifth element such as 2τ has been attempted as a method to improve the decrease in coercive force caused by addition, and a typical composition thereof is S25.5Wt-F615wt%-Ou8wt%-Zr.
1, 8 Wt%-○O remainder is well known. However, with this composition, although a higher maximum energy product than A MGO can be obtained, the carrier crab Ho can only obtain a maximum energy product of about 70,000. For this reason, it is difficult to use at operating points with low permeability, and the shape of the material is restricted, which is a major obstacle to expanding demand. Furthermore, from a material standpoint, there is a strong desire to develop a magnet with even higher magnetic properties (for example, (B H) saw ) f.

この様な点を改良すべくなされたものが特開昭56−1
56785である。すなわち重量百分比で冴〜28Wt
チのR(Rij:希土類金属)と、1〜5wt%のOw
と、1〜35wt%のF6と0.6〜6.OWtチのM
 (MはN6.Zr、’1’(、■fおよびVの一種以
上)と22〜78.5wt%の00からなる合金を粉砕
、磁場成形、焼結、溶体化そして時効処理することによ
って作製する方法である。
JP-A-56-1 was developed to improve these points.
It is 56785. In other words, the weight percentage is ~28Wt
R (Rij: rare earth metal) and 1 to 5 wt% Ow
and 1 to 35 wt% F6 and 0.6 to 6. OWt Chi's M
(M is produced by crushing, magnetic field forming, sintering, solution treatment, and aging treatment of an alloy consisting of N6.Zr, '1' (, f and one or more of This is the way to do it.

〔発明が解決しようとする問題〕[Problem that the invention seeks to solve]

特開昭56−15785に記載された磁石の代表的組成
は5m25wt%−Ou4wt%−7g20wt%−Z
r2.2wt%−O6残部であるが高い保磁力が得られ
るものの製造条件の僅かが変動により、目的とする高エ
ネルギー積が得られない。この原因は保磁カニHOi上
昇させるべく、時効処理を行うが、850℃付近での等
温長時間処理を実施することにより、残留磁束密度Br
と減磁曲線の角型性を著しく低下させる為である。
The typical composition of the magnet described in JP-A-56-15785 is 5m25wt%-Ou4wt%-7g20wt%-Z
Although a high coercive force can be obtained with the remainder of r2.2wt%-O6, the desired high energy product cannot be obtained due to slight variations in manufacturing conditions. The reason for this is that aging treatment is performed to increase the coercivity crab HOi, but by performing isothermal long-term treatment at around 850°C,
This is because the squareness of the demagnetization curve is significantly reduced.

本発明は、この様な実状に鑑みなされたものでアラて、
O躯、F#、及びZrf含むR,OO,。
The present invention was made in view of the above circumstances, and
R, OO, including O-body, F#, and Zrf.

系の特性を改良することを主たる目的とする。The main purpose is to improve the properties of the system.

〔問題点を解決しようとする為の手段〕本発明者らは上
記問題を解決すべく鋭意研究を行ったところswbとF
#を従来の代表組成より少くすると同時に保磁力を改善
する為の時効処理方法を工夫することを要旨とするもの
である。
[Means for solving the problem] The inventors conducted intensive research to solve the above problem, and found that swb and F
The gist of this is to devise an aging treatment method to reduce # than the conventional typical composition and at the same time improve coercive force.

すなわち永久磁石となる最終組成が1LZ3.0〜25
.0wt%、Cu8 、O〜5 、OWE%、2r2 
、0〜5 、01Ft%、残部Coからなる様に調整さ
れた合金を磁石化する過程において、多段−ζ 。
In other words, the final composition of the permanent magnet is 1LZ3.0~25
.. 0wt%, Cu8, O~5, OWE%, 2r2
, 0 to 5,01 Ft%, with the balance being Co.

時効処理を複数回くり返えすことによりBr及び減磁曲
線の角型性を低下させることな(,1−5基磁石並みの
保磁カニHQt−得ると同時に高い最大エネルギー積を
容易に製造する方法を見い出したことに基づくものであ
る。
By repeating the aging treatment multiple times, it is possible to easily produce a high maximum energy product without reducing the squareness of the Br and demagnetization curve (obtaining a coercive crab HQt equivalent to that of a 1-5 magnet) and at the same time easily producing a high maximum energy product. It is based on finding a method.

次に実施例により本発明の詳細な説明する。Next, the present invention will be explained in detail with reference to Examples.

〔実施例1〕 最終組成が第1表に示す礎石となる様にq!!原料を調
整し、高周波溶解炉でインボッ)1作製した。NOl、
及びNo2は従来合金組成であり、NO8は本発明を代
表とする組成である。各インゴットは平均粒径8ミクロ
ンの粉末した後、10KOeの磁界を印加し、粉末を配
向させながら圧縮成形する。この後、真空中1170〜
b 1時間で焼結し、次いで1150℃〜1190℃×2時
間の溶体化処理を施こした。更に各試料次の条件で多段
時効処理を行った。
[Example 1] q! so that the final composition becomes the cornerstone shown in Table 1! ! The raw materials were adjusted and an ingot (1) was produced using a high frequency melting furnace. NOl,
and No. 2 are conventional alloy compositions, and No. 8 is a composition representative of the present invention. Each ingot is powdered with an average particle size of 8 microns, and then compression molded by applying a magnetic field of 10 KOe to orient the powder. After this, 1170 ~ in vacuum
b Sintering was performed for 1 hour, and then solution treatment was performed at 1150°C to 1190°C for 2 hours. Furthermore, each sample was subjected to multi-stage aging treatment under the following conditions.

No1は850℃×1時間、700℃×1時間、600
℃×2時間、500℃×8時間、及び400℃×6時間
とした。No2は850’Cx50時間、700℃×1
時間、600℃×2時間、500℃×8時間及び400
℃×5時間である。いづれも公知の時効方法でおる。
No. 1 is 850℃ x 1 hour, 700℃ x 1 hour, 600℃
℃×2 hours, 500℃×8 hours, and 400℃×6 hours. No.2 is 850'C x 50 hours, 700℃ x 1
time, 600℃ x 2 hours, 500℃ x 8 hours and 400℃
℃×5 hours. All of them are determined by a known aging method.

本発明合金のNo8はNolと同様の多段時効処理を複
数回、くり返えして行った。この様にして得られた出方
の磁気特性を第1表に示す。
Inventive alloy No. 8 was subjected to the same multi-stage aging treatment as No. 1 repeatedly several times. Table 1 shows the magnetic properties of the product thus obtained.

衣−1 第2異の結果から従来合金Nolは最大エネルギー積は
(BH) TluoLw 27MGOが得られるも00
保磁カニHOは7KO$と低い。又従来合金1J O2
は11KO#の保磁カニHOが得られるが、最大エネル
ギー積は(BH)呪2X25 、 f3 MGOとNO
Iに比べて劣る。これは長時間初段時効によって工HC
は高められるもののBrの低下と減磁曲線の角型性低下
を招くことによるものである。これに比べ本発明合金は
工HOが高くかつ最大エネルギー積も高いものを容易に
得ることができる。特に焼結後、多段時効を複数回くり
返えすことにより工HCの増大が著しく、例えば時効を
5日くり返えすと23 K O$の工10で(BE)r
NoLZは32 MGO’i越え 、本発明の効果が大
きいことが判る。
Clothes-1 From the results of the second variation, the maximum energy product of the conventional alloy Nol is (BH) TluoLw 27MGO can be obtained but 00
Holding Crab HO is as low as 7KO$. Also, conventional alloy 1J O2
obtains a coercive crab HO of 11KO#, but the maximum energy product is (BH) curse 2X25, f3 MGO and NO
Inferior to I. This is due to the long initial aging process.
This is due to a decrease in Br and a decrease in the squareness of the demagnetization curve, although this increases. In comparison, the alloy of the present invention can easily have a high HO and a high maximum energy product. In particular, after sintering, repeating multi-stage aging several times significantly increases the HC.For example, if aging is repeated for 5 days, (BE)r
NoLZ exceeds 32 MGO'i, which shows that the effect of the present invention is large.

〔実施例2〕 最終組成が表2に示される様に調整された6種類の合金
を実施例1で記述したと同じ条件で粉砕、成形、焼結、
溶体化処理を施した。そして時効処理は本発明合金N0
J3の合金と同じパターンとし、くり返えし数は8回と
した。時効処理後磁気特性を測定した結果を表2に示す
[Example 2] Six types of alloys whose final compositions were adjusted as shown in Table 2 were crushed, formed, sintered, and molded under the same conditions as described in Example 1.
Solution treatment was performed. And the aging treatment is the present invention alloy N0
The same pattern as the J3 alloy was used, and the number of repetitions was 8 times. Table 2 shows the results of measuring the magnetic properties after aging treatment.

衣−2 表−2で明らかの様に本発明合金におけるamの適正範
囲は上限が26Wtチであり、下限は23wt%である
。限定理由は沢でも判るようにこの範囲金はずれると工
Heの低下又は減磁曲線の角型性低下を招き結果的に従
来合金No l 、NO2に比べ低い最大エネルギー積
しか得られなくなることによるものである。
Cloth-2 As is clear from Table-2, the upper limit of the appropriate am range for the alloy of the present invention is 26 Wt%, and the lower limit is 23 wt%. The reason for this limitation is that, as is clear from Sawa, if the metal falls out of this range, the helical value decreases or the squareness of the demagnetization curve decreases, resulting in a lower maximum energy product than the conventional alloys No. 1 and NO2. It is.

〔実施例8〕 本発明合金ν(おいて適正なF、量を決定すべく、最終
組成が表8に示される様に調整した合金59一 種を作製し、実施例2と同様の製法及び処理を施こした
後、それぞれ磁気特性を測定した。
[Example 8] In order to determine the appropriate amount of F in the present invention alloy ν, an alloy 59 whose final composition was adjusted as shown in Table 8 was prepared, and the same manufacturing method and treatment as in Example 2 were carried out. After applying this, the magnetic properties of each were measured.

表  8 表8で明らかの様に本発明合金N o 1.1 、 N
 o 12、 N o 13は前記従来合金に比べ保磁
カニHOが高くかつ、最大エネルギー積が高く、発明の
効果が顕著であることが判る。しかしF−量が13チ以
下及び16wt%以上では保磁カニHOが低くなる他、
減磁曲線の角型性が著しく悪くなり、最大エネルギー積
の低下がはなはだしい。従来合金より優れた特性を推持
させるという観点からみれば、そ−]〇− の範囲は13wt%〜15 、 OW t Toに限定
される。
Table 8 As is clear from Table 8, the present invention alloy N o 1.1, N
It can be seen that O 12 and N O 13 have higher coercivity HO and higher maximum energy product than the conventional alloys, and the effect of the invention is remarkable. However, when the F content is less than 13 and more than 16 wt%, the coercive crab HO becomes low, and
The squareness of the demagnetization curve deteriorates significantly, and the maximum energy product decreases significantly. From the viewpoint of maintaining properties superior to conventional alloys, the range of OW t To is limited to 13 wt % to 15 wt %.

〔実施例4〕 実施例2,8で本発明合金における適正aS量と?6量
が求められたので、適正C1L量を把握する為、最終組
成が表4に示す組成になる様に調整した合金5種金作製
した。試料作製方法は実施例2.8と同様とした。得ら
れた磁気特性t−94に示す。
[Example 4] What is the appropriate amount of aS in the alloy of the present invention in Examples 2 and 8? 6 amounts were determined, and in order to determine the appropriate amount of C1L, five types of alloys were prepared whose final compositions were adjusted to have the compositions shown in Table 4. The sample preparation method was the same as in Example 2.8. The obtained magnetic properties are shown in t-94.

表4で明らかの様にN o 、 16 、17 、18
の本発明合金はいづれも保母カニH5が10KOsを越
えると同時に最大エネルギー積も30MGO,11を越
え、本発明合金の効果が顕著であることが判る。しかし
O1L量が2Wtになると工HOの低下が大きく、減磁
曲線の角型性が低下する為、最大エネルギー積は従来合
金の代表組成よりも劣ってしまう。また014量が6w
t%になるとBTの低下及び減磁曲線の角型性低下の影
響で最大エネルギー積は6゜5 MGO−に落ちてしま
う。したがってOu量範囲は8゜O〜5.0wt%に限
定される。以上の実施例からS?l’L、F#、Ouの
範囲が求められたが、2τの含有量についていえば、1
.5wt%以下では工H○が低(,4,OWtチ以上で
はBf低下が著しく、本発明の効果を発揮することがで
きないことによるものである。
As is clear from Table 4, N o , 16 , 17 , 18
In all of the alloys of the present invention, the carrier crab H5 exceeds 10 KOs and the maximum energy product also exceeds 30 MGO,11, indicating that the effects of the alloys of the present invention are remarkable. However, when the amount of O1L becomes 2 Wt, the decrease in HO is large and the squareness of the demagnetization curve decreases, so the maximum energy product is inferior to that of the typical composition of conventional alloys. Also, the amount of 014 is 6w
At t%, the maximum energy product drops to 6°5 MGO- due to the effects of a decrease in BT and a decrease in the squareness of the demagnetization curve. Therefore, the O content range is limited to 8°O to 5.0wt%. From the above examples, S? The ranges of l'L, F#, and Ou were determined, but regarding the content of 2τ, 1
.. This is because when the weight is less than 5 wt%, the Bf decreases significantly (at 4,4 wt% or more, the Bf decreases significantly, and the effects of the present invention cannot be exhibited).

〔発明の効果〕〔Effect of the invention〕

従来の高保磁力型2−17系砒石は、それまでの2−1
7系欠点であった保母力が低い点は改良されたものの、
B?lり低下あるいは減磁曲線の角型性を著しくそこな
うと同時に安定製造が困難で実用上大きな障害となって
いた。本発明は組成を種々実験、検討を加えた結果従来
合金よりもS、及びF#の含有量を減することが特性向
上に効果的であることが見い出された。更に多段時効処
理をくり返すことによってBT、及び減磁曲線の角型性
を低下させず1−5系並みの保磁カニ■○を得ると同時
に1高いエネルギー積を実現させることに基づくもので
ある。
The conventional high coercive force type 2-17 arsenite is
Although the low holding power, which was a drawback of the 7 series, has been improved,
B? This significantly impairs the squareness of the demagnetization curve and makes stable production difficult, posing a major practical obstacle. As a result of various experiments and studies on the composition of the present invention, it has been found that reducing the S and F# contents compared to conventional alloys is effective in improving properties. Furthermore, by repeating multi-stage aging treatment, it is possible to obtain a coercivity crab (○) comparable to that of the 1-5 series without reducing the BT and the squareness of the demagnetization curve, and at the same time achieve a 1-higher energy product. be.

この様にして作られた本発明出面は、2−17系磁石の
欠点であったパーミアンスの低い動作点でも、材料形状
の制約を受けることが無くなった他、温度特性も良好と
なり、これまで温度が加わる様な通信機器用としても使
用が可能となった。各種産業及び民生用電気、電子機器
の高精度化及び軽薄短小化が切望される今日において本
発明の工業的価値は極めて大きい。
The exposed surface of the present invention made in this way is not limited by the material shape even at the operating point where the permeance is low, which was a drawback of the 2-17 series magnet, and also has good temperature characteristics. It has also become possible to use it for communication devices that require The industrial value of the present invention is extremely great in today's world, when electrical and electronic equipment for various industries and consumer use is desired to have higher precision, be lighter, thinner, and smaller.

以上、本発明を実施例に基づき説明したが、実施例及び
記載の態様は、本発明をこれらに限定するものではない
。実施例ではRとして8ty4i代表例にあげたが、本
発明の効果はこの組成に限定されるものではない。すな
わち従来合金でも試みられていると同様に8悟の一部i
0$、Nd、P。
Although the present invention has been described above based on Examples, the present invention is not limited to the Examples and described aspects. In the examples, 8ty4i was used as a representative example of R, but the effects of the present invention are not limited to this composition. In other words, similar to what has been attempted with conventional alloys, a part of 8
0$, Nd, P.

、等のR(希土類元素〕としても同様の効果をも+11
゜ たらすものである。
, the same effect can be obtained by using R (rare earth elements) such as +11
゜It is something that brings.

以上that's all

Claims (1)

【特許請求の範囲】[Claims]  重量百分比で23〜25%R(Rは希土類元素の少く
とも一種)と、4.0〜5.0%の0μと、13〜15
%のF_6と、1.5〜4.0%のZrと、残部が実質
的にCoからなる焼結型永久磁石を製造するに際し、焼
結後850℃〜400℃の間において多段時効処理を2
回以上繰り返えすことを特徴とする永久磁石の製造方法
23 to 25% R (R is at least one rare earth element), 4.0 to 5.0% 0μ, and 13 to 15% by weight
When manufacturing a sintered permanent magnet consisting of % F_6, 1.5 to 4.0% Zr, and the balance substantially Co, multi-stage aging treatment is performed between 850°C and 400°C after sintering. 2
A method for manufacturing a permanent magnet, characterized by repeating the process more than once.
JP60103133A 1985-05-15 1985-05-15 Manufacture of permanent magnet Pending JPS61260610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60103133A JPS61260610A (en) 1985-05-15 1985-05-15 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60103133A JPS61260610A (en) 1985-05-15 1985-05-15 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPS61260610A true JPS61260610A (en) 1986-11-18

Family

ID=14346036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60103133A Pending JPS61260610A (en) 1985-05-15 1985-05-15 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPS61260610A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294401A (en) * 1989-05-09 1990-12-05 Fuji Elelctrochem Co Ltd Production of magnet powder
JPH04239705A (en) * 1991-01-23 1992-08-27 Seiko Electronic Components Ltd Manufacture of permanent magnet
JPH06108190A (en) * 1992-09-25 1994-04-19 Shin Etsu Chem Co Ltd Rare earth permanent magnet alloy

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947215A (en) * 1972-09-08 1974-05-07
JPS56156734A (en) * 1980-04-30 1981-12-03 Tdk Corp Permanent magnet alloy and its manufacture
JPS596350A (en) * 1982-06-30 1984-01-13 Tohoku Metal Ind Ltd Rare earth element cobalt material for magnet and preparation thereof
JPS61114506A (en) * 1984-11-09 1986-06-02 Hitachi Metals Ltd Manufacture of rare-earth permanent magnet
JPS61135102A (en) * 1984-12-06 1986-06-23 Hitachi Metals Ltd Manufacture of rare earth metal permanent magnet
JPS61136631A (en) * 1984-12-06 1986-06-24 Hitachi Metals Ltd Aging treatment of permanent magnet alloy
JPS61210162A (en) * 1985-03-13 1986-09-18 Hitachi Metals Ltd Aging treatment for permanent magnet alloy
JPS61210161A (en) * 1985-03-13 1986-09-18 Hitachi Metals Ltd Aging treatment for permanent magnet alloy

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947215A (en) * 1972-09-08 1974-05-07
JPS56156734A (en) * 1980-04-30 1981-12-03 Tdk Corp Permanent magnet alloy and its manufacture
JPS596350A (en) * 1982-06-30 1984-01-13 Tohoku Metal Ind Ltd Rare earth element cobalt material for magnet and preparation thereof
JPS61114506A (en) * 1984-11-09 1986-06-02 Hitachi Metals Ltd Manufacture of rare-earth permanent magnet
JPS61135102A (en) * 1984-12-06 1986-06-23 Hitachi Metals Ltd Manufacture of rare earth metal permanent magnet
JPS61136631A (en) * 1984-12-06 1986-06-24 Hitachi Metals Ltd Aging treatment of permanent magnet alloy
JPS61210162A (en) * 1985-03-13 1986-09-18 Hitachi Metals Ltd Aging treatment for permanent magnet alloy
JPS61210161A (en) * 1985-03-13 1986-09-18 Hitachi Metals Ltd Aging treatment for permanent magnet alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294401A (en) * 1989-05-09 1990-12-05 Fuji Elelctrochem Co Ltd Production of magnet powder
JPH04239705A (en) * 1991-01-23 1992-08-27 Seiko Electronic Components Ltd Manufacture of permanent magnet
JPH06108190A (en) * 1992-09-25 1994-04-19 Shin Etsu Chem Co Ltd Rare earth permanent magnet alloy

Similar Documents

Publication Publication Date Title
JPH01219143A (en) Sintered permanent magnet material and its production
JPH0569907B2 (en)
JPS61260610A (en) Manufacture of permanent magnet
JPH0354805A (en) Rare-earth permanent magnet and manufacture thereof
JPH0328502B2 (en)
JPS5952822A (en) Manufacture of permanent magnet
JPH0146575B2 (en)
JPH0146574B2 (en)
JPH0152469B2 (en)
JPS60211032A (en) Sm2co17 alloy suitable for use as permanent magnet
JPS63157844A (en) Manufacture of permanent magnet material
JPS60224757A (en) Permanent magnet alloy
JPH02259038A (en) Rare earth magnetic alloy
JPS61114506A (en) Manufacture of rare-earth permanent magnet
JPH0645832B2 (en) Rare earth magnet manufacturing method
JPH01184244A (en) Permanent magnetic material and its manufacture
JPS61119651A (en) Rare earth element-iron type permanent magnet
JPS6134241B2 (en)
JPH0362775B2 (en)
JPS63157845A (en) Manufacture of permanent magnet material
JPH05198412A (en) Rare-earth permanent magnet having high breaking strength and magnetic characteristics and its manufacture
JPS62291902A (en) Manufacture of permanent magnet
JPH02173246A (en) Permanent magnet alloy and its production
JPH04209505A (en) Manufacture of rare-earth iron magnet
JPH0516162B2 (en)