JP2018056334A - Method for manufacturing r-t-b based sintered magnet - Google Patents

Method for manufacturing r-t-b based sintered magnet Download PDF

Info

Publication number
JP2018056334A
JP2018056334A JP2016190670A JP2016190670A JP2018056334A JP 2018056334 A JP2018056334 A JP 2018056334A JP 2016190670 A JP2016190670 A JP 2016190670A JP 2016190670 A JP2016190670 A JP 2016190670A JP 2018056334 A JP2018056334 A JP 2018056334A
Authority
JP
Japan
Prior art keywords
sintered magnet
rtb
based sintered
mass
granulated powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016190670A
Other languages
Japanese (ja)
Other versions
JP6617672B2 (en
Inventor
國吉 太
Futoshi Kuniyoshi
太 國吉
三野 修嗣
Nobutsugu Mino
修嗣 三野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2016190670A priority Critical patent/JP6617672B2/en
Publication of JP2018056334A publication Critical patent/JP2018056334A/en
Application granted granted Critical
Publication of JP6617672B2 publication Critical patent/JP6617672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To apply a layer of powder particles including a Pr-Ga alloy to a surface of an R-T-B based sintered magnet efficiently and uniformly without waste in order to increase Hby diffusing Pr and Ga into the R-T-B based sintered magnet.SOLUTION: A method for manufacturing an R-T-B based sintered magnet comprises: a step of preparing granulated powder into which powder of a Pr-Ga alloy is granulated together with a binder; a deposition step of heating at least a surface of an R-T-B based sintered magnet to deposit the granulated powder to the surface of the sintered magnet; and a diffusion step of performing a thermal treatment on the sintered magnet with the granulated powder deposited thereto at a temperature equal to or lower than a sintering temperature to diffuse Pr and Ga included in the granulated powder into the sintered magnet from the surface thereof.SELECTED DRAWING: Figure 1

Description

本開示は、R−T−B系焼結磁石(Rは希土類元素、TはFeまたはFeとCo)の製造方法に関する。   The present disclosure relates to a method for producing an R-T-B based sintered magnet (R is a rare earth element, and T is Fe or Fe and Co).

R−T−B系焼結磁石は永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに使用されている。   R-T-B system sintered magnets are known as the most powerful magnets among permanent magnets. Voice coil motors (VCM) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), industrial It is used in various motors such as equipment motors and home appliances.

R−T−B系焼結磁石は、主としてR214B化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。主相であるR214B化合物は高い飽和磁化と異方性磁界を持ち、R−T−B系焼結磁石の特性の根幹をなしている。 The RTB-based sintered magnet is composed of a main phase mainly composed of an R 2 T 14 B compound and a grain boundary phase located at the grain boundary portion of the main phase. The main phase R 2 T 14 B compound has a high saturation magnetization and an anisotropic magnetic field, and forms the basis of the characteristics of the R-T-B system sintered magnet.

高温では、R−T−B系焼結磁石の保磁力HcJ(以下、単に「HcJ」という場合がある)が低下するため、不可逆熱減磁が起こる。そのため、特に電気自動車用モータに使用されるR−T−B系焼結磁石では、高いHcJを有することが要求されている。 At high temperatures, the coercive force H cJ (hereinafter sometimes simply referred to as “H cJ ”) of the RTB -based sintered magnet decreases, and irreversible thermal demagnetization occurs. Therefore, an RTB -based sintered magnet used particularly for an electric vehicle motor is required to have a high H cJ .

R−T−B系焼結磁石において、R214B化合物中のRに含まれる軽希土類元素RL(例えば、NdやPr)の一部を重希土類元素RH(例えば、DyやTb)で置換すると、HcJが向上することが知られている。RHの置換量の増加に伴い、HcJは向上する。 In the RTB-based sintered magnet, a part of the light rare earth element RL (eg, Nd or Pr) contained in R in the R 2 T 14 B compound is heavy rare earth element RH (eg, Dy or Tb). Substitution is known to improve H cJ . As the substitution amount of RH increases, H cJ improves.

しかし、R214B化合物中のRLをRHで置換すると、R−T−B系焼結磁石のHcJが向上する一方、残留磁束密度Br(以下、単に「Br」という場合がある)が低下する。また、特にTb、DyなどのRHは、資源存在量が少ないうえ、産出地が限定されているなどの理由から、供給が安定しておらず、価格が大きく変動するなどの問題を有している。そのため、近年、RHをできるだけ使用することなく、HcJを向上させることが求められている。 However, when RL in the R 2 T 14 B compound is replaced with RH, the H cJ of the RTB -based sintered magnet is improved, while the residual magnetic flux density B r (hereinafter simply referred to as “B r ”). There is). In particular, RH such as Tb and Dy has problems such as the supply is not stable and the price fluctuates greatly due to the small amount of resources and the limited production area. Yes. Therefore, in recent years, it has been demanded to improve H cJ without using RH as much as possible.

一方、Brを低下させないように、より少ない重希土類元素RHによってR−T−B系焼結磁石のHcJを向上させることが検討されている。例えば、重希土類元素RHのフッ化物または酸化物や、各種の金属MまたはM合金をそれぞれ単独、または混合して焼結磁石の表面に存在させ、その状態で熱処理することにより、HcJ向上に寄与する重希土類元素RHを磁石内に拡散させることが提案されている。例えば、特許文献1は、R酸化物、Rフッ化物、R酸フッ化物の粉末をR−T−B系焼結磁石の表面に接触させて熱処理を行うことによりそれらを磁石内に拡散させる方法を開示している。 On the other hand, so as not to reduce the B r, to improve the H cJ of the R-T-B based sintered magnets have been studied with less heavy rare-earth element RH. For example, fluoride or oxide of heavy rare earth element RH, or various metals M or M alloys, either individually or mixed, are present on the surface of the sintered magnet, and heat treatment is performed in that state, thereby improving HcJ . It has been proposed to diffuse the contributing heavy rare earth element RH into the magnet. For example, Patent Document 1 discloses a method in which powders of R oxide, R fluoride, and R oxyfluoride are brought into contact with the surface of an R-T-B system sintered magnet and subjected to heat treatment to diffuse them into the magnet. Is disclosed.

国際公開第2006/043348号International Publication No. 2006/043348 国際公開第2016/133071号International Publication No. 2016/133071

特許文献1には、RH化合物の粉末を含む混合粉末を磁石表面の全体(磁石全面)に存在させて熱処理を行う方法が開示されている。この方法の具体例によると、上記粉末を水または有機溶媒に分散させたスラリーに磁石を浸漬して引き上げている(浸漬引上げ法)。浸漬引上げ法の場合、スラリーから引き上げられた磁石に対して熱風乾燥または自然乾燥が行われる。スラリーに磁石を浸漬する代わりに、スラリーを磁石にスプレー塗布することも開示されている(スプレー塗布法)。   Patent Document 1 discloses a method in which a mixed powder containing an RH compound powder is present on the entire magnet surface (the entire magnet surface) to perform heat treatment. According to a specific example of this method, a magnet is dipped in a slurry in which the above powder is dispersed in water or an organic solvent and pulled up (immersion pulling method). In the case of the immersion pulling method, hot air drying or natural drying is performed on the magnet pulled up from the slurry. Instead of immersing the magnet in the slurry, spraying the slurry onto the magnet is also disclosed (spray coating method).

これらの方法では、磁石全面にスラリーを塗布できる。このため、磁石全面から重希土類元素RHを磁石内に導入することが可能であり、熱処理後のHcJをより大きく向上させることができる。しかしながら、浸漬引上げ法では、どうしても重力によってスラリーが磁石下部に偏ってしまう。また、スプレー塗布法では、表面張力によって磁石端部の塗布厚さが厚くなる。いずれの方法もRH化合物を磁石表面に均一に存在させるのが困難である。 In these methods, slurry can be applied to the entire surface of the magnet. For this reason, the heavy rare earth element RH can be introduced into the magnet from the entire surface of the magnet, and the H cJ after the heat treatment can be greatly improved. However, in the immersion pulling method, the slurry is inevitably biased to the lower part of the magnet due to gravity. Further, in the spray coating method, the coating thickness at the end of the magnet increases due to surface tension. In either method, it is difficult to make the RH compound uniformly exist on the magnet surface.

粘度の低いスラリーを用いて塗布層を薄くすると、塗布層の厚さの不均一性をある程度改善することができる。しかし、スラリーの塗布量が少なくなるため、熱処理後のHcJを大きく向上させることができなくなってしまう。スラリーの塗布量を多くするために複数回の塗布を行うと、生産効率が非常に低下してしまう。特にスプレー塗布法を採用した場合、スプレー塗布装置の内壁面にもスラリーが塗布されてしまい、スラリーの利用歩留まりが低くなる。その結果、希少資源である重希土類元素RHを無駄に消費してしまうという問題がある。 When the coating layer is thinned using a slurry having a low viscosity, the unevenness of the coating layer thickness can be improved to some extent. However, since the amount of slurry applied is reduced, HcJ after the heat treatment cannot be greatly improved. If application is performed a plurality of times in order to increase the amount of slurry applied, the production efficiency will be greatly reduced. In particular, when the spray coating method is employed, the slurry is also applied to the inner wall surface of the spray coating apparatus, and the utilization yield of the slurry is lowered. As a result, there is a problem in that the heavy rare earth element RH, which is a rare resource, is wasted.

さらに、特許文献2には、RHを使用することなくHcJを向上させる方法として、R−T−B系焼結磁石の表面にPr−Ga合金の粉末を接触させて熱処理を行うことによりそれらを磁石内に拡散させる方法が開示されている。この方法によれば、RHを使用することなく、R−T−B系焼結磁石のHcJを向上させることができる。これらの粉末をR−T−B系焼結磁石表面に均一に存在させる方法については十分に確立されているとは言い難い。 Furthermore, in Patent Document 2, as a method for improving H cJ without using RH, those are performed by bringing a powder of Pr—Ga alloy into contact with the surface of the R—T—B system sintered magnet and performing a heat treatment. A method is disclosed for diffusing in a magnet. According to this method, H cJ of the RTB -based sintered magnet can be improved without using RH. It is difficult to say that a method for causing these powders to uniformly exist on the surface of the RTB-based sintered magnet is well established.

本開示は、R−T−B系焼結磁石にPrおよびGaを拡散させてHcJを向上させるためにPr−Ga合金を含む粉末粒子の層を磁石表面に形成するとき、これらの粉末粒子をR−T−B系焼結磁石の表面に均一に無駄なく効率的に塗布することができ、磁石表面からPrおよびGaを内部に拡散させてHcJを大きく向上させることができる新しい方法を提供する。 In the present disclosure, when a layer of powder particles containing a Pr—Ga alloy is formed on a magnet surface in order to diffuse Pr and Ga into an RTB -based sintered magnet to improve H cJ , these powder particles Can be applied uniformly and efficiently on the surface of an RTB -based sintered magnet, and Pr and Ga can be diffused from the magnet surface into the interior to greatly improve HcJ. provide.

本開示のR−T−B系焼結磁石の製造方法は、実施形態において、R−T−B系焼結磁石(Rは希土類元素、TはFeまたはFeとCo)を用意する工程と、Pr−Ga合金(PrがPr−Ga合金全体の65〜97質量%であり、Prの20質量%以下をNdで置換することができ、Prの30質量%以下をDy及び/又はTbで置換することができる。GaはPr−Ga合金全体の3質量%〜35質量%であり、Gaの50質量%以下をCuで置換することができる。不可避的不純物を含んでいても良い。)の粉末がバインダと共に造粒された造粒粉末を用意する工程と、前記R−T−B系焼結磁石の少なくとも表面を加熱し、加熱された前記R−T−B系焼結磁石の前記表面に前記造粒粉末を付着させる付着工程と、前記造粒粉末が付着したR−T−B系焼結磁石を、前記R−T−B系焼結磁石の焼結温度以下の温度で熱処理して、前記造粒粉末に含まれるPrおよびGaを前記R−T−B系焼結磁石の表面から内部に拡散する拡散工程とを含む。   In the embodiment, the manufacturing method of the RTB-based sintered magnet of the present disclosure includes a step of preparing an RTB-based sintered magnet (R is a rare earth element, T is Fe or Fe and Co), Pr—Ga alloy (Pr is 65 to 97 mass% of the entire Pr—Ga alloy, 20 mass% or less of Pr can be substituted with Nd, and 30 mass% or less of Pr is substituted with Dy and / or Tb. Ga is 3 mass% to 35 mass% of the entire Pr—Ga alloy, and 50 mass% or less of Ga can be substituted with Cu. Inevitable impurities may be included.) A step of preparing a granulated powder in which the powder is granulated together with a binder; and at least the surface of the RTB-based sintered magnet is heated, and the surface of the heated RTB-based sintered magnet Attaching the granulated powder to the surface, and attaching the granulated powder to The RTB-based sintered magnet was heat-treated at a temperature lower than the sintering temperature of the RTB-based sintered magnet, and Pr and Ga contained in the granulated powder were converted into the RT- A diffusion step of diffusing inward from the surface of the B-based sintered magnet.

ある実施形態において、前記付着工程は、前記R−T−B系焼結磁石の全面に対して、前記造粒粉末を付着させる工程である。   In one embodiment, the attaching step is a step of attaching the granulated powder to the entire surface of the RTB-based sintered magnet.

ある実施形態において、前記R−T−B系焼結磁石の全面に付着させた前記造粒粉末に含まれるGaの量は前記R−T−B系焼結磁石に対して0.10〜1.0質量%である。   In one embodiment, the amount of Ga contained in the granulated powder adhered to the entire surface of the RTB-based sintered magnet is 0.10 to 1 relative to the RTB-based sintered magnet. 0.0% by mass.

ある実施形態において、前記付着工程は、流動させた前記造粒粉末の中に、加熱された前記R−T−B系焼結磁石を浸漬させることによって、前記R−T−B系焼結磁石の全面に対して前記造粒粉末を付着させる工程である。   In one embodiment, the attaching step includes immersing the heated RTB-based sintered magnet in the fluidized granulated powder, thereby allowing the RTB-based sintered magnet to be immersed. This is a step of attaching the granulated powder to the entire surface.

ある実施形態では、前記付着工程において、前記R−T−B系焼結磁石に付着した前記造粒粉末の厚さが38μm以上300μm以下となるように前記R−T−B系焼結磁石の前記表面の温度および浸漬時間を調整する。   In one embodiment, in the attaching step, the RTB-based sintered magnet has a thickness of 38 μm or more and 300 μm or less so that the granulated powder attached to the RTB-based sintered magnet has a thickness of 38 μm or more and 300 μm or less. The surface temperature and immersion time are adjusted.

ある実施形態において、前記R−T−B系焼結磁石は、
R:27.5〜35.0質量%(Rは希土類元素うちの少なくとも一種であり、Ndを必ず含む)、
B:0.80〜0.99質量%、
Ga:0〜0.8質量%、
M:0〜2質量%(MはCu、Al、Nb、Zrの少なくとも一種)、
を含有し、
残部T(TはFe又はFeとCo)及び不可避的不純物からなり、かつ、[T]は質量%で示すTの含有量であり、[B]は質量%で示すBの含有量であるするとき、
[T]/55.85>14[B]/10.8
の不等式を満足する組成を有する。
In one embodiment, the RTB-based sintered magnet is
R: 27.5-35.0% by mass (R is at least one of rare earth elements, and necessarily contains Nd),
B: 0.80 to 0.99 mass%,
Ga: 0 to 0.8% by mass,
M: 0 to 2% by mass (M is at least one of Cu, Al, Nb and Zr),
Containing
The remainder T (T is Fe or Fe and Co) and inevitable impurities, and [T] is the content of T expressed in mass%, and [B] is the content of B expressed in mass%. When
[T] /55.85> 14 [B] /10.8
The composition satisfies the following inequality.

ある実施形態において、前記Pr−Ga合金のNd含有量は不可避的不純物含有量以下である。   In one embodiment, the Nd content of the Pr—Ga alloy is less than or equal to the inevitable impurity content.

ある実施形態において、前記熱処理工程は、真空または不活性ガス雰囲気中、600℃超950℃以下の温度で第一の熱処理を実施する工程と、前記第一の熱処理が実施されたR−T−B系焼結磁石に対して、真空または不活性ガス雰囲気中、前記第一の熱処理を実施する工程で実施した温度よりも低い温度でかつ、450℃以上750℃以下の温度で第二の熱処理を実施する工程と、を含む。   In one embodiment, the heat treatment step includes a step of performing a first heat treatment in a vacuum or an inert gas atmosphere at a temperature of greater than 600 ° C. and less than or equal to 950 ° C., and the RT- in which the first heat treatment is performed. The second heat treatment at a temperature lower than the temperature performed in the step of performing the first heat treatment in a vacuum or an inert gas atmosphere at a temperature of 450 ° C. or higher and 750 ° C. or lower with respect to the B-based sintered magnet. Carrying out the steps.

本開示の実施形態によれば、R−T−B系焼結磁石にPrおよびGaを拡散させてHcJを向上させるために、Pr−Ga合金を含む粉末粒子の層をR−T−B系焼結磁石の表面に均一に無駄なく効率的に塗布することができる。また、希少資源である重希土類元素RHを使用することなく、R−T−B系焼結磁石のHcJを向上させることが可能になる。 According to an embodiment of the present disclosure, a layer of powder particles containing a Pr—Ga alloy is added to an RTB to diffuse Pr and Ga into the RTB -based sintered magnet to improve H cJ. It can be uniformly and efficiently applied to the surface of the sintered system magnet. Moreover, it becomes possible to improve HcJ of a RTB system sintered magnet, without using the heavy rare earth element RH which is a rare resource.

流動浸漬法で用いられ得る処理容器の一例を示す斜視図である。It is a perspective view which shows an example of the processing container which can be used with a fluid immersion method. R−T−B系焼結磁石100上における造粒粉末の層厚を測定した位置を示す斜視図である。It is a perspective view which shows the position which measured the layer thickness of the granulated powder on the RTB type | system | group sintered magnet 100. FIG.

(1)R−T−B系焼結磁石母材の準備
Pr−Ga合金の拡散の対象とするR−T−B系焼結磁石母材を準備する。本明細書では、わかりやすさのため、Pr−Ga合金の拡散の対象とするR−T−B系焼結磁石をR−T−B系焼結磁石母材と厳密に称することがあるが、「R−T−B系焼結磁石」の用語はそのような「R−T−B系焼結磁石母材」を含むものとする。このR−T−B系焼結磁石母材は公知のものが使用できるが、以下の組成を有するものが好ましい。
希土類元素R:27.5〜35.0質量%
B(B(ボロン)の一部はC(カーボン)で置換されていてもよい):0.80〜0.99質量%
Ga:0〜0.8質量%、
添加元素M(Al、Cu、Zr、Nbからなる群から選択された少なくとも1種):0〜2質量%
T(Feを主とする遷移金属元素であって、Coを含んでもよい)および不可避不純物:残部
ただし、下記不等式(1)を満足する。
[T]/55.85>14[B]/10.8 (1)
([T]は質量%で示すTの含有量であり、[B]は質量%で示すBの含有量である)
(1) Preparation of R-T-B system sintered magnet base material An R-T-B system sintered magnet base material to be diffused of the Pr-Ga alloy is prepared. In this specification, for the sake of easy understanding, an RTB-based sintered magnet that is a target of diffusion of the Pr-Ga alloy may be strictly referred to as an RTB-based sintered magnet base material. The term “RTB-based sintered magnet” includes such an “RTB-based sintered magnet base material”. As the RTB-based sintered magnet base material, known materials can be used, but those having the following composition are preferable.
Rare earth element R: 27.5-35.0 mass%
B (a part of B (boron) may be substituted with C (carbon)): 0.80 to 0.99% by mass
Ga: 0 to 0.8% by mass,
Additive element M (at least one selected from the group consisting of Al, Cu, Zr, Nb): 0 to 2% by mass
T (which is a transition metal element mainly composed of Fe and may contain Co) and inevitable impurities: the balance However, the following inequality (1) is satisfied.
[T] /55.85> 14 [B] /10.8 (1)
([T] is the content of T expressed in mass%, and [B] is the content of B expressed in mass%)

ここで、希土類元素Rは、主として軽希土類元素RL(Nd、Prから選択される少なくとも1種の元素)であるが、重希土類元素を含有していてもよい。なお、重希土類元素を含有する場合は、DyおよびTbの少なくとも一方を含むことが好ましい。   Here, the rare earth element R is mainly a light rare earth element RL (at least one element selected from Nd and Pr), but may contain a heavy rare earth element. In addition, when a heavy rare earth element is contained, it is preferable that at least one of Dy and Tb is included.

また、Gaの含有量が0.8質量%を超えると、主相中にGaを含有することで主相の磁化が低下し、高いBrを得ることができない可能性がある。Gaの含有量は0.5質量%以下がより好ましい。 On the other hand, when the Ga content exceeds 0.8% by mass, the main phase magnetization may decrease due to the inclusion of Ga in the main phase, and high Br may not be obtained. As for Ga content, 0.5 mass% or less is more preferable.

上記組成のR−T−B系焼結磁石母材は、任意の製造方法によって製造される。R−T−B系焼結磁石母材は焼結上がりでもよいし、切削加工や研磨加工が施されていてもよい。   The RTB-based sintered magnet base material having the above composition is manufactured by an arbitrary manufacturing method. The RTB-based sintered magnet base material may be sintered, or may be subjected to cutting or polishing.

(2)造粒粉末の準備
[拡散剤]
造粒粉末は、Pr−Ga合金の粉末から形成される。Pr−Ga合金の粉末は、拡散剤として機能する。
(2) Preparation of granulated powder [Diffusion agent]
The granulated powder is formed from Pr—Ga alloy powder. The Pr—Ga alloy powder functions as a diffusing agent.

Pr−Ga合金は、PrがPr−Ga合金全体の65〜97質量%であり、Prの20質量%以下をNdで置換することができ、Prの30質量%以下をDy及び/又はTbで置換することができる。GaはPr−Ga合金全体の3質量%〜35質量%であり、Gaの50質量%以下をCuで置換することができる。不可避的不純物を含んでいても良い。なお、本開示における「Prの20%以下をNdで置換することができ」とは、Pr−Ga合金中のPrの含有量(質量%)を100%とし、そのうち20%をNdで置換できることを意味する。例えば、Pr−Ga合金中のPrが65質量%(Gaが35質量%)であれば、Ndを13質量%まで置換することができる。すなわち、Prが52質量%、Ndが13質量%となる。Dy、Tb、Cuの場合も同様である。Pr及びGaを上記範囲内としたPr−Ga合金を本開示の組成範囲のR−T−B系焼結磁石素材に対して後述する第一の熱処理を行うことにより、Gaを、粒界を通じて磁石内部の奥深くまで拡散させることができる。本開示は、Prを主成分とするGaを含む合金を用いることを特徴とする。Prは、Nd、Dy及び/又はTbと置換することができるが、それぞれの置換量が上記範囲を超えるとPrが少なすぎるため、高いBrと高いHcJを得ることができない。好ましくは、前記Pr−Ga合金のNd含有量は不可避的不純物含有量以下(1質量%以下)である。Gaは、50%以下をCuで置換することができるが、Cuの置換量が50%を超えるとHcJが低下する可能性がある。 In the Pr—Ga alloy, Pr is 65 to 97 mass% of the entire Pr—Ga alloy, and 20 mass% or less of Pr can be substituted with Nd, and 30 mass% or less of Pr is replaced with Dy and / or Tb. Can be replaced. Ga is 3 mass% to 35 mass% of the entire Pr—Ga alloy, and 50 mass% or less of Ga can be substituted with Cu. Inevitable impurities may be included. In this disclosure, “20% or less of Pr can be replaced with Nd” means that the Pr content (% by mass) in the Pr—Ga alloy is 100%, and that 20% can be replaced with Nd. Means. For example, if Pr in the Pr—Ga alloy is 65 mass% (Ga is 35 mass%), Nd can be substituted up to 13 mass%. That is, Pr is 52% by mass and Nd is 13% by mass. The same applies to Dy, Tb, and Cu. By performing the first heat treatment described later on the RTB-based sintered magnet material having the composition range of the present disclosure with the Pr—Ga alloy having Pr and Ga within the above range, Ga is allowed to pass through the grain boundary. It can be diffused deep inside the magnet. The present disclosure is characterized by using an alloy containing Ga containing Pr as a main component. Pr is, Nd, may be replaced with Dy and / or Tb, for each of the substitution amount is too small, Pr exceeds the above range, it is impossible to obtain a high B r and high H cJ. Preferably, the Nd content of the Pr—Ga alloy is unavoidable impurity content or less (1 mass% or less). Ga can replace 50% or less with Cu, but if the amount of substitution of Cu exceeds 50%, HcJ may decrease.

Pr−Ga合金粉末の作製方法は、特に限定されない。ロール急冷法によって合金薄帯を作製し、この合金薄帯を粉砕する方法で作製してもよいし、遠心アトマイズ法、回転電極法、ガスアトマイズ法、プラズマアトマイズ法などの公知のアトマイズ法で作製してもよい。Pr−Ga合金粉末の粒度は、例えば500μm以下であり、小さいものは10μm程度である。   The method for producing the Pr—Ga alloy powder is not particularly limited. An alloy ribbon may be prepared by a roll quenching method, and the alloy ribbon may be pulverized, or may be prepared by a known atomization method such as a centrifugal atomization method, a rotating electrode method, a gas atomization method, or a plasma atomization method. May be. The particle size of the Pr—Ga alloy powder is, for example, 500 μm or less, and the small one is about 10 μm.

発明者の検討によると、Prの代わりにNdを用いた場合はPrを用いた場合と比べて高いBrと高いHcJを得ることができない。これは、本開示の特定組成においては、PrがNdに比べて粒界相に拡散され易いからだと考えられる。言い換えると、PrはNdに比べて粒界相中への浸透力が大きいと考えられる。Ndは主相中にも浸透しやすいため、Nd−Ga合金を用いた場合はGaの一部が主相中にも拡散されると考えられる。Pr−Ga合金を用いた場合、合金段階や合金粉末の段階でGaを添加する場合に比べて、主相に拡散されるGaの量は少ないので、Brをほとんど低下させることなくHcJを向上させることができる。 According to the studies made by the inventors, it is impossible to obtain a high B r and high H cJ compared with the case of using the Pr in the case of using Nd instead of Pr. This is considered to be because in the specific composition of the present disclosure, Pr is more easily diffused into the grain boundary phase than Nd. In other words, it is considered that Pr has a larger penetration force into the grain boundary phase than Nd. Since Nd easily penetrates into the main phase, it is considered that a part of Ga is diffused into the main phase when an Nd—Ga alloy is used. When using the Pr-Ga alloy, as compared with the case of adding Ga in the stage of the alloy phase or alloy powder, the amount of Ga diffused into the main phase is low, the H cJ with little lowering the B r Can be improved.

Pr−Ga合金の粉末をR−T−B系焼結磁石素材に付着させた状態で熱処理を行うことにより、Pr及びGaを主相にはほとんど拡散させずに粒界を通じて拡散させることができる。Prの存在が粒界拡散を促進する結果、磁石内部の奥深くまでPrとGaを拡散させることができる。これにより、RHの含有量を低減しつつ、高いBrと高いHcJを得ることができる。 By performing the heat treatment with the Pr—Ga alloy powder adhered to the R—T—B system sintered magnet material, it is possible to diffuse Pr and Ga through the grain boundary while hardly diffusing into the main phase. . As a result of the presence of Pr accelerating grain boundary diffusion, it is possible to diffuse Pr and Ga deep inside the magnet. Thus, while reducing the content of RH, it is possible to obtain a high B r and high H cJ.

[造粒]
これらの粉末は、混合または単独で、バインダと共に造粒される。バインダと共に造粒することによって、加熱したR−T−B系焼結磁石の表面に造粒粉を接触させるだけで容易に粉末粒子をR−T−B系焼結磁石表面に付着させることができる。複数種の粉末を混合して用いる場合は、バインダと共に造粒することによって混合割合が均一な造粒粉末を作製することができる。このため、これらの粉末を所望の混合割合で均一にR−T−B系焼結磁石表面に存在させやすくなる。また、RH化合物粉末などの粒度の小さい粉末を単独で用いる場合、造粒により、ある程度粒度を大きくしておくと、磁石表面に均一に効率よく付着させ易くなる。
[Granulation]
These powders are granulated with a binder, either mixed or alone. By granulating together with the binder, the powder particles can be easily attached to the surface of the RTB-based sintered magnet simply by bringing the granulated powder into contact with the surface of the heated RTB-based sintered magnet. it can. When a mixture of a plurality of types of powder is used, granulated powder having a uniform mixing ratio can be produced by granulating with a binder. For this reason, it becomes easy to make these powders uniformly exist on the surface of the RTB-based sintered magnet at a desired mixing ratio. In addition, when a powder having a small particle size such as an RH compound powder is used alone, if the particle size is increased to some extent by granulation, it becomes easy to adhere uniformly and efficiently to the magnet surface.

バインダは、熱可塑性を有し、乾燥、または混合した溶剤が除去されたときに粘着、凝集することなく、造粒粉末がさらさらと流動性を持てるものが好ましい。バインダの例としては、ポリエステル、PVA(ポリビニルアルコール)などがあげられる。適宜、水などの水系溶剤や、NMP(N−メチルピロリドン)などの有機溶剤を用いて混合してもよい。溶剤は、後述する造粒の過程で蒸発し除去される。   The binder preferably has thermoplasticity and allows the granulated powder to flow more smoothly without sticking or agglomerating when the dried or mixed solvent is removed. Examples of the binder include polyester and PVA (polyvinyl alcohol). You may mix suitably using water-based solvents, such as water, and organic solvents, such as NMP (N-methylpyrrolidone). The solvent is evaporated and removed in the granulation process described later.

粉末をバインダと共に造粒する方法はどのようなものであってもよい。造粒の方法には、例えば、転動造粒法、流動層造粒法、振動造粒法、高速気流中衝撃法(ハイブリダイゼーション)、粉末とバインダを混合してペーストやスラリーを作製し、その後固化・解砕する方法、などがあげられる。   Any method for granulating the powder together with the binder may be used. For granulation methods, for example, rolling granulation method, fluidized bed granulation method, vibration granulation method, high-speed air impact method (hybridization), powder and binder are mixed to produce a paste or slurry, The method of solidifying and crushing is mentioned afterwards.

造粒粉末の粒度は、500μm以下が好ましく、300μm以下がより好ましく、200μm以下が更に好ましい。造粒粉末の粒度が大きすぎると、粉末粒子の付着量を制御しにくくなる。造粒粉末に含まれる最も小さい粒子のサイズは10μm程度である。   The particle size of the granulated powder is preferably 500 μm or less, more preferably 300 μm or less, and even more preferably 200 μm or less. When the particle size of the granulated powder is too large, it becomes difficult to control the adhesion amount of the powder particles. The size of the smallest particle contained in the granulated powder is about 10 μm.

本開示の実施形態において、Pr−Ga合金粉末以外の粉末(第二の粉末)がR−T−B系焼結磁石の表面に存在することを必ずしも排除しないが、第二の粉末がPrおよびGaをR−T−B系焼結磁石の内部に拡散することを阻害しないように留意する必要がある。R−T−B系焼結磁石の表面に存在する粉末全体に占める「Pr−Ga合金」の粉末の質量比率は、70%以上であることが望ましい。   In the embodiment of the present disclosure, it is not necessarily excluded that a powder other than the Pr—Ga alloy powder (second powder) is present on the surface of the R—T—B system sintered magnet. Care must be taken not to inhibit the diffusion of Ga into the RTB-based sintered magnet. The mass ratio of the “Pr—Ga alloy” powder in the entire powder existing on the surface of the RTB-based sintered magnet is desirably 70% or more.

(3)付着工程
予備加熱した磁石を上述の造粒粉末に接触させる。この接触により、造粒粉末のバインダを磁石表面の熱によって溶融させて造粒粉末を磁石表面に付着させることができる。加熱された磁石は、その表面に接触した造粒粉末中のバインダを選択的に溶融するため、造粒粉末を構成する粉末粒子をR−T−B系焼結磁石の全面に均一に無駄なく効率的に付着させることができる。したがって、本開示の方法によれば、従来技術の浸漬法またはスプレー法のように、塗布膜の厚さが重力で偏ったり、表面張力で偏ったりすることがない。また、造粒粉末は予備加熱された磁石以外には付着しないので無駄が無い。さらに、予め造粒した粉末を用いるので1回の塗布作業で必要な量の粉末粒子を磁石表面に均一に付着させることができ、効率的である。
(3) Adhering step A preheated magnet is brought into contact with the granulated powder. This contact allows the granulated powder to adhere to the magnet surface by melting the binder of the granulated powder by the heat of the magnet surface. The heated magnet selectively melts the binder in the granulated powder in contact with the surface thereof, so that the powder particles constituting the granulated powder can be evenly distributed over the entire surface of the R-T-B system sintered magnet. It can be attached efficiently. Therefore, according to the method of the present disclosure, the thickness of the coating film is not biased by gravity or surface tension, unlike the dipping method or spraying method of the prior art. Further, since the granulated powder does not adhere to anything other than the preheated magnet, there is no waste. In addition, since a pre-granulated powder is used, a necessary amount of powder particles can be uniformly adhered to the magnet surface in a single coating operation, which is efficient.

以下、本開示の実施形態における付着工程をより詳細に説明する。   Hereinafter, the adhesion process in the embodiment of the present disclosure will be described in more detail.

(i) R−T−B系焼結磁石を予備加熱する。予備加熱の目的は、造粒粉末のバインダを磁石表面の熱によって溶融させてR−T−B系焼結磁石表面に付着させるためである。加熱温度の下限は造粒粉末に使用するバインダの溶融温度(溶融を開始して磁石表面に付着可能になる温度)以上であり、バインダにもよるが、具体的には100℃程度である。また加熱温度が高すぎると造粒粉末が多く付着しすぎて付着量のコントロールが困難になるので、加熱温度の上限は230℃であり、180℃が好ましく、150℃がより好ましい。   (I) Preheating the RTB-based sintered magnet. The purpose of the preheating is to melt the binder of the granulated powder by the heat of the magnet surface and adhere it to the surface of the RTB-based sintered magnet. The lower limit of the heating temperature is equal to or higher than the melting temperature of the binder used for the granulated powder (the temperature at which melting starts and becomes possible to adhere to the magnet surface), and is specifically about 100 ° C. although it depends on the binder. On the other hand, if the heating temperature is too high, too much granulated powder adheres and it becomes difficult to control the amount of adhesion, so the upper limit of the heating temperature is 230 ° C., preferably 180 ° C., more preferably 150 ° C.

(ii) 造粒粉末を付着させる。予備加熱したR−T−B系焼結磁石に造粒粉末を付着させる。付着させる方法はどのようなものでも良いが、例えば、造粒粉末を収容した処理容器内に予備加熱したR−T−B系焼結磁石を浸漬する方法、予備加熱したR−T−B系焼結磁石に造粒粉末を振り掛ける方法、などがあげられる。この際、造粒粉末を収容した処理容器に振動を与えたり、造粒粉末をエアーで流動させたりしてもよい。中でも、流動させた造粒粉末の中に予備加熱したR−T−B系焼結磁石を浸漬させる方法いわゆる流動浸漬法(fulidized bed coating process)が好ましい。   (Ii) Adhere the granulated powder. The granulated powder is adhered to the preheated RTB-based sintered magnet. Any method may be used, for example, a method in which a preheated RTB-based sintered magnet is immersed in a processing container containing granulated powder, or a preheated RTB system. For example, a method of sprinkling granulated powder on a sintered magnet. At this time, vibration may be applied to the processing container containing the granulated powder, or the granulated powder may be fluidized with air. Among them, a so-called fluidized bed coating process in which a preheated RTB-based sintered magnet is immersed in the fluidized granulated powder is preferable.

以下、流動浸漬法を本開示における付着工程に応用する例について説明する。流動浸漬法は、従来、粉体塗装の分野で広く行われている方法であり、流動させた熱可塑性の粉体塗料の中に加熱した被塗物を浸漬し被塗物表面の熱によって塗料を融着させる方法である。この例では従来の流動浸漬法を磁石に応用するために、熱可塑性の粉体塗料の代わりに、上述のように拡散剤のPr−Ga合金を熱可塑性のバインダで造粒して用いる。   Hereinafter, an example in which the fluid immersion method is applied to the adhesion process in the present disclosure will be described. The fluid dipping method is a method widely used in the field of powder coating, and a heated coating is immersed in a fluidized thermoplastic powder coating, and the paint is heated by the heat of the surface of the coating. This is a method of fusing. In this example, in order to apply the conventional fluidized dipping method to a magnet, instead of the thermoplastic powder coating material, a diffusing agent Pr—Ga alloy is granulated with a thermoplastic binder as described above.

造粒粉末を流動させる方法はどのような方法でも良い。例えば、1つの具体例として、下部に多孔質の隔壁を設けた容器を用いる方法を説明する。この例では、容器内に造粒粉末を入れ、隔壁の下部から大気または不活性ガスなどの気体を圧力をかけて容器内に注入し、その圧力または気流で隔壁上方の造粒粉末を浮かせて流動させることができる。本開示の方法では、造粒粉末が粉体塗料に比べて重いので、前記気体の流量は粉体塗装の場合に比べて多くする必要がある。   Any method may be used for flowing the granulated powder. For example, as one specific example, a method of using a container provided with a porous partition wall at the bottom will be described. In this example, the granulated powder is put into a container, a gas such as air or inert gas is injected into the container from the lower part of the partition wall, and the granulated powder above the partition wall is floated by the pressure or air flow. It can be made to flow. In the method of the present disclosure, since the granulated powder is heavier than the powder coating, it is necessary to increase the flow rate of the gas as compared with the powder coating.

容器の内部で流動する造粒粉末にR−T−B系焼結磁石を浸漬する時間は、予備加熱の温度にも依存するが、例えば0.5〜10.0秒程度である。この方法では、予備加熱温度と浸漬時間を調整することによって付着量を制御できる。ある所望の付着量を実現したいとき、予備加熱温度を高くすれば浸漬時間を短くできるが、あまり高すぎると浸漬時間の制御がしにくくなる。また予備加熱温度が低すぎると浸漬時間が長くなりすぎて効率が悪くなる。なお、付着量は、同じ浸漬時間でも単位体積当たりの比表面積が大きい磁石ほど多くなる傾向にある。磁石形状に応じて、所望の付着量を付着させたいときの予備加熱温度と浸漬時間を実験によって求めることができる。   The time for immersing the RTB-based sintered magnet in the granulated powder flowing inside the container is, for example, about 0.5 to 10.0 seconds, although it depends on the temperature of the preheating. In this method, the adhesion amount can be controlled by adjusting the preheating temperature and the immersion time. When it is desired to achieve a desired amount of adhesion, the immersion time can be shortened by increasing the preheating temperature, but if it is too high, it becomes difficult to control the immersion time. On the other hand, if the preheating temperature is too low, the immersion time becomes too long and the efficiency is deteriorated. The adhesion amount tends to increase as the magnet has a larger specific surface area per unit volume even with the same immersion time. Depending on the magnet shape, the preheating temperature and the immersion time when a desired amount of adhesion is desired can be determined by experiment.

上記方法によれば、従来技術の浸漬法またはスプレー法のように、塗布膜の厚さが重力で偏ったり、表面張力で偏ったりすることがない。更に、予備加熱温度、浸漬時間を調整することによって、造粒粉末の付着量、ひいてはGaの付着量を制御することが可能となる。R−T−B系焼結磁石に付着した造粒粉末の厚さが38μm以上350μm以下となるように前記R−T−B系焼結磁石の前記表面の温度および浸漬時間を調整することが好ましい。   According to the above method, the thickness of the coating film is not biased by gravity or surface tension, unlike the conventional dipping method or spraying method. Furthermore, by adjusting the preheating temperature and the dipping time, it is possible to control the amount of the granulated powder attached, and thus the amount of Ga attached. Adjusting the temperature and immersion time of the surface of the RTB-based sintered magnet so that the thickness of the granulated powder adhering to the RTB-based sintered magnet is not less than 38 μm and not more than 350 μm. preferable.

Gaの付着量は造粒粉末をR−T−B系焼結磁石の全面に付着させた場合、R−T−B系焼結磁石の0.10〜1.0質量%であることが好ましい。R−T−B系焼結磁石に拡散させるPr−Ga合金のR−T−B系焼結磁石に対する質量比率がゼロから増加するにつれてHcJの増加幅は大きくなる。しかし、別途行った実験から、熱処理条件など、Ga量以外の条件が同じ場合、Ga量を1.0質量%よりも増加させてもHcJの増加幅は大きくならないことがわかった。すなわち、Ga量がR−T−B系焼結磁石の0.10〜1.0質量%となる量のPr−Ga合金をR−T−B系焼結磁石の表面の全体に付着させたとき、最も効率よくHcJを向上させることができる。 The adhesion amount of Ga is preferably 0.10 to 1.0% by mass of the R-T-B system sintered magnet when the granulated powder is applied to the entire surface of the R-T-B system sintered magnet. . As the mass ratio of the Pr—Ga alloy diffused into the RTB -based sintered magnet to the RTB -based sintered magnet increases from zero, the increase in H cJ increases. However, from experiments conducted separately, it was found that when the conditions other than the Ga amount such as the heat treatment conditions are the same, the increase in H cJ does not increase even if the Ga amount is increased beyond 1.0 mass%. That is, a Pr—Ga alloy having an amount of Ga of 0.10 to 1.0% by mass of the RTB-based sintered magnet was adhered to the entire surface of the RTB-based sintered magnet. Sometimes, H cJ can be improved most efficiently.

(iii) 後加熱工程を行ってもよい。加熱温度は150〜200℃が好ましい。この時、バインダが溶融固着することによって造粒粉末がより固着されるので、好ましい。   (Iii) A post-heating step may be performed. The heating temperature is preferably 150 to 200 ° C. At this time, the granulated powder is more firmly fixed by melting and fixing the binder, which is preferable.

(4)拡散熱処理
上記の付着工程後、造粒粉末が付着したR−T−B系焼結磁石を、前記R−T−B系焼結磁石の焼結温度以下の温度に熱処理して、前記造粒粉末に含まれるPrおよびGaを前記R−T−B系焼結磁石の表面から内部に拡散する拡散工程を行う。
(4) Diffusion heat treatment After the above adhesion step, the RTB-based sintered magnet with the granulated powder adhered is heat-treated to a temperature equal to or lower than the sintering temperature of the RTB-based sintered magnet, A diffusion step of diffusing Pr and Ga contained in the granulated powder from the surface of the RTB-based sintered magnet to the inside is performed.

熱処理は、以下の第一の熱処理と第二の熱処理を実施することが好ましい。   The heat treatment is preferably performed by the following first heat treatment and second heat treatment.

(第一の熱処理を実施する工程)
上記の組成を有するPr−Ga合金の粉末層が付着したR−T−B系焼結磁石素材を、真空又は不活性ガス雰囲気中、600℃超950℃以下の温度で熱処理をする。本明細書において、この熱処理を第一の熱処理という。これにより、Pr−Ga合金からPrやGaを含む液相が生成し、その液相がR−T−B系焼結磁石素材中の粒界を経由して焼結素材表面から内部に拡散導入される。これにより、Prと共にGaを、粒界を通じてR−T−B系焼結磁石素材の奥深くまで拡散させることができる。第一の熱処理温度が600℃以下であると、PrやGaを含む液相量が少なすぎて高いHcJを得ることが出来ない可能性があり、950℃を超えるとHcJが低下する可能性がある。また、好ましくは、第一の熱処理(600℃超940℃以下)が実施されたR−T−B系焼結磁石素材を前記第一の熱処理を実施した温度から5℃/分以上の冷却速度で300℃まで冷却した方が好ましい。より高いHcJを得ることができる。さらに好ましくは、300℃までの冷却速度は15℃/分以上である。
(Step of performing the first heat treatment)
The RTB-based sintered magnet material to which the Pr—Ga alloy powder layer having the above composition is attached is heat-treated at a temperature of more than 600 ° C. and not more than 950 ° C. in a vacuum or an inert gas atmosphere. In this specification, this heat treatment is referred to as a first heat treatment. As a result, a liquid phase containing Pr and Ga is generated from the Pr—Ga alloy, and the liquid phase is diffused and introduced from the surface of the sintered material through the grain boundary in the RTB-based sintered magnet material. Is done. Thereby, Ga together with Pr can be diffused deep into the RTB-based sintered magnet material through the grain boundary. If the first heat treatment temperature is 600 ° C. or less, the amount of liquid phase containing Pr or Ga may be too small to obtain high H cJ, and if it exceeds 950 ° C., H cJ may be reduced. There is sex. Preferably, the RTB-based sintered magnet material subjected to the first heat treatment (over 600 ° C. and 940 ° C. or less) is cooled at a rate of 5 ° C./min or more from the temperature at which the first heat treatment is performed. It is preferable to cool to 300 ° C. Higher H cJ can be obtained. More preferably, the cooling rate to 300 ° C is 15 ° C / min or more.

(第二の熱処理を実施する工程)
第一の熱処理が実施されたR−T−B系焼結磁石素材に対して、真空又は不活性ガス雰囲気中、前記第一の熱処理を実施する工程で実施した温度よりも低い温度で且つ、450℃以上750℃以下の温度で熱処理を行う。本明細書において、この熱処理を第二の熱処理という。第二の熱処理を行うことにより、粒界相にR−T−Ga相が生成され、高いHcJを得ることができる。第二の熱処理が第一の熱処理よりも高い温度であったり、第二の熱処理の温度が450℃未満及び750℃を超える場合は、R−T−Ga相の生成量が少なすぎて高いHcJを得ることができない。
(Step of performing the second heat treatment)
With respect to the RTB-based sintered magnet material subjected to the first heat treatment, in a vacuum or an inert gas atmosphere, the temperature is lower than the temperature performed in the step of performing the first heat treatment, and Heat treatment is performed at a temperature of 450 ° C. or higher and 750 ° C. or lower. In this specification, this heat treatment is referred to as a second heat treatment. By performing the second heat treatment, an RT-Ga phase is generated in the grain boundary phase, and high H cJ can be obtained. When the second heat treatment is at a higher temperature than the first heat treatment, or when the temperature of the second heat treatment is less than 450 ° C. or more than 750 ° C., the amount of R—T—Ga phase produced is too small and high H Can't get cJ .

(実験例1)
まず公知の方法で、組成比Nd=30.0、B=0.89、Al=0.1、Cu=0.1、Co=1.1、残部Fe(質量%)のR−T−B系焼結磁石を作製した。これを機械加工することにより、大きさが厚さ4.5mm×幅15mm×長さ26mmのR−T−B系焼結磁石母材を得た。
(Experimental example 1)
First, by a known method, the composition ratio Nd = 30.0, B = 0.89, Al = 0.1, Cu = 0.1, Co = 1.1, and the balance Fe (mass%) RTB A system sintered magnet was produced. By machining this, an RTB-based sintered magnet base material having a size of 4.5 mm thick × 15 mm wide × 26 mm long was obtained.

次に、Pr−Ga合金粉末をバインダで造粒して造粒粉末を作製した。組成比Pr=89、Ga=11となるように各元素の原料を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られた合金を、乳鉢を用いてアルゴン雰囲気中で粉砕した。粉砕したPr−Ga合金粉末を篩で分級して粒度106μm以下とした。バインダとしてポリエステル、溶媒としてNMP(N−メチルピロリドン)を用い、Pr−Ga合金粉末:ポリエステル:NMP=90:5:5(質量比)で混合したペーストを作製した。このペーストを熱風乾燥して溶媒を蒸発させた後、Ar雰囲気中で粉砕し、篩で分級して106μm以下の造粒粉末とした。   Next, the Pr—Ga alloy powder was granulated with a binder to produce a granulated powder. The raw materials of the respective elements were weighed so that the composition ratios were Pr = 89 and Ga = 11, and the raw materials were dissolved, and a ribbon or flake-like alloy was obtained by a single roll super rapid cooling method (melt spinning method). The obtained alloy was pulverized in an argon atmosphere using a mortar. The pulverized Pr—Ga alloy powder was classified with a sieve to a particle size of 106 μm or less. Using polyester as the binder and NMP (N-methylpyrrolidone) as the solvent, a paste was prepared by mixing with Pr—Ga alloy powder: polyester: NMP = 90: 5: 5 (mass ratio). This paste was dried with hot air to evaporate the solvent, and then pulverized in an Ar atmosphere and classified with a sieve to obtain a granulated powder of 106 μm or less.

次に、流動浸漬法で使用するため、図1に模式的に示す構成を備える処理容器20を用意した。この処理容器は、上方が解放された概略的に円筒形状を持ち、底部に多孔質の隔壁30を有している。実験で使用した処理容器20の内径は78mm、高さは200mmであり、隔壁30の平均気孔径は15μm、空孔率40%であった。この処理容器20の内部に造粒粉末を深さ50mm程度まで入れた。多孔質隔壁30の下方から大気を処理容器20の内部に20リットル/minの流量で注入することによって造粒粉末を流動させた。流動する粉末の高さは約70mmであった。乾燥炉内で110℃に予備加熱したR−T−B系焼結磁石母材100を不図示のクランプ治具で固定し、流動する造粒粉末内に1秒浸漬させて引き上げ、R−T−B系焼結磁石母材100に造粒粉末を付着させた。なお、治具は磁石の4.5×26mmの面の両側2点接触で固定し、4.5mm×15mmの最も面積の狭い面を上下面として浸漬した。造粒粉末が付着した磁石を150℃で15分間後加熱して造粒粉末を固着させた。   Next, a processing container 20 having a configuration schematically shown in FIG. 1 was prepared for use in the fluid immersion method. This processing container has a generally cylindrical shape with the upper part opened, and has a porous partition wall 30 at the bottom. The treatment container 20 used in the experiment had an inner diameter of 78 mm and a height of 200 mm, and the partition wall 30 had an average pore diameter of 15 μm and a porosity of 40%. The granulated powder was put into the processing vessel 20 to a depth of about 50 mm. The granulated powder was caused to flow by injecting air into the processing vessel 20 from below the porous partition wall 30 at a flow rate of 20 liters / min. The height of the flowing powder was about 70 mm. An RTB-based sintered magnet base material 100 preheated to 110 ° C. in a drying furnace is fixed with a clamping jig (not shown), immersed in a flowing granulated powder for 1 second, and pulled up. The granulated powder was adhered to the B-based sintered magnet base material 100. The jig was fixed by two-point contact on both sides of the 4.5 × 26 mm surface of the magnet, and the surface with the narrowest area of 4.5 mm × 15 mm was immersed as the upper and lower surfaces. The magnet to which the granulated powder was adhered was post-heated at 150 ° C. for 15 minutes to fix the granulated powder.

造粒粉末が固着したR−T−B系焼結磁石母材100の4.9mm方向の厚さを測定した。1つのR−T−B系焼結磁石母材につき3カ所、図2の測定位置1、2、3について測定した(N=各5)。浸漬時において測定位置1は上側、測定位置3は下側にあった。造粒粉末が付着する前のR−T−B系焼結磁石母材より増加した値の1/2の値(片面の増加分の値)を表1に示す。3カ所ともほぼ同じ値であり、測定箇所による厚さのバラツキはほとんどなかった。   The thickness in the 4.9 mm direction of the RTB-based sintered magnet base material 100 to which the granulated powder was fixed was measured. Measurements were made at three measurement positions 1, 2, and 3 in FIG. 2 for each RTB-based sintered magnet base material (N = 5 for each). At the time of immersion, measurement position 1 was on the upper side and measurement position 3 was on the lower side. Table 1 shows half the value (value of increase on one side) of the value increased from the RTB-based sintered magnet base material before the granulated powder adheres. All three locations had almost the same value, and there was almost no variation in thickness depending on the measurement location.

Figure 2018056334
Figure 2018056334

(実験例2)
実験例1と同じR−T−B系焼結磁石母材と、造粒粉末を用意した。実験例1と同じ処理容器を用い、予備加熱温度と浸漬時間を表2の各値にしたこと以外は実験例1と同じ方法でR−T−B系焼結磁石母材に造粒粉末を付着させた。後加熱工程は行わなかった。磁石の重量増加から求めた造粒粉末の付着量およびそれから計算したGa付着量を表2に示す。表2のGa付着量は、R−T−B系焼結磁石母材の全体質量に対する磁石表面に存在するGaの質量比率である。このGa付着量は、R−T−B系焼結磁石母材の全面に付着した造粒粉末の質量と、造粒粉末中のGa濃度とから求められた。R−T−B系焼結磁石母材の予備加熱温度が高いほど、また、浸漬時間が長いほど付着量を増加させることができ、予備加熱温度と浸漬時間を調整することによってGa付着量を制御できることがわかった。また、Ga量をR−T−B系焼結磁石母材の0.10〜1.0質量%とするには予備加熱温度を80〜120℃、浸漬時間が1〜10秒で調整できることがわかった。
(Experimental example 2)
The same RTB-based sintered magnet base material as in Experimental Example 1 and granulated powder were prepared. Using the same processing vessel as in Experimental Example 1, the granulated powder was applied to the RTB-based sintered magnet base material in the same manner as in Experimental Example 1, except that the preheating temperature and the immersion time were changed to the values shown in Table 2. Attached. No post-heating step was performed. Table 2 shows the adhesion amount of the granulated powder obtained from the increase in the weight of the magnet and the Ga adhesion amount calculated therefrom. The adhesion amount of Ga in Table 2 is the mass ratio of Ga present on the magnet surface to the total mass of the R-T-B system sintered magnet base material. This Ga adhesion amount was calculated | required from the mass of the granulated powder adhering to the whole surface of the RTB system sintered magnet base material, and Ga density | concentration in granulated powder. The higher the preheating temperature of the RTB-based sintered magnet base material and the longer the immersion time, the more the adhesion amount can be increased. By adjusting the preheating temperature and the immersion time, the Ga adhesion amount can be increased. It turns out that it can be controlled. Moreover, in order to make Ga amount into 0.10-1.0 mass% of a R-T-B type | system | group sintered magnet base material, preheating temperature can be adjusted at 80-120 degreeC, and immersion time can be adjusted for 1 to 10 seconds. all right.

Figure 2018056334
Figure 2018056334

(実験例3)
表3に示す組成を有する、大きさが7.4mm×7.4mm×7.4mmのR−T−B系焼結磁石母材を用意した。表4に示すPr−Ga合金と、バインダとしてのポリエステルと、溶媒としてのNMPとを用いて実験例1と同じ方法で造粒粉末を作製した。作製した造粒粉末を実験例1と同じ方法で表5に示す組み合わせで実験例1と同じR−T−B系焼結磁石母材に付着させた。ただし、予備加熱温度と浸漬時間を調整し、付着した造粒粉末の層厚が100μm以上300μm以下となるように制御し、その結果として、Ga付着量が0.2〜0.7mass%となるようにした。
(Experimental example 3)
An RTB-based sintered magnet base material having a composition shown in Table 3 and having a size of 7.4 mm × 7.4 mm × 7.4 mm was prepared. A granulated powder was produced in the same manner as in Experimental Example 1 using a Pr—Ga alloy shown in Table 4, polyester as a binder, and NMP as a solvent. The produced granulated powder was adhered to the same RTB-based sintered magnet base material as in Experimental Example 1 in the same manner as in Experimental Example 1 in the combinations shown in Table 5. However, the preheating temperature and the immersion time are adjusted, and the layer thickness of the adhered granulated powder is controlled to be 100 μm or more and 300 μm or less, and as a result, the amount of Ga adhesion becomes 0.2 to 0.7 mass%. I did it.

さらに、これらを表5に示す熱処理温度、時間だけ熱処理した。熱処理後のR−T−B系焼結磁石に対して、表面研削盤を用いて各サンプルの全面を0.2mmずつ切削加工し、7.0mm×7.0mm×7.0mmの立方体を切り出した後、磁気特性を測定した。測定した磁気特性の値を表5に示す。これらすべてのR−T−B系焼結磁石についてBr≧1.30T、HCJ≧1490kA/mの高い磁気特性がえられており、Brをほとんど低下させることなく、HCJがそれぞれ160kA/m以上向上していることが確認された。 Furthermore, these were heat-treated for the heat treatment temperature and time shown in Table 5. The entire surface of each sample is cut by 0.2 mm using a surface grinder on the R-T-B sintered magnet after heat treatment, and a 7.0 mm × 7.0 mm × 7.0 mm cube is cut out. After that, the magnetic properties were measured. Table 5 shows the measured magnetic property values. All these RTB-based sintered magnets have high magnetic properties of B r ≧ 1.30 T and H CJ ≧ 1490 kA / m, and H CJ is 160 kA for each without substantially reducing B r. / M or more was confirmed.

Figure 2018056334
Figure 2018056334

Figure 2018056334
Figure 2018056334

Figure 2018056334
Figure 2018056334

本開示の実施形態は、より少ないPr−Ga合金によってR−T−B系焼結磁石のHcJを向上させることができるため、高いHcJが求められる希土類焼結磁石の製造に使用され得る。 Embodiments of the present disclosure can be used for the production of rare earth sintered magnets that require high H cJ because less HrJ can improve the H cJ of RTB -based sintered magnets with fewer Pr—Ga alloys. .

20 処理容器
30 多孔質隔壁
100 R−T−B系焼結磁石母材
20 processing vessel 30 porous partition wall 100 RTB-based sintered magnet base material

Claims (8)

R−T−B系焼結磁石(Rは希土類元素、TはFeまたはFeとCo)を用意する工程と、
Pr−Ga合金(PrがPr−Ga合金全体の65〜97質量%であり、Prの20質量%以下をNdで置換することができ、Prの30質量%以下をDy及び/又はTbで置換することができる。GaはPr−Ga合金全体の3質量%〜35質量%であり、Gaの50質量%以下をCuで置換することができる。不可避的不純物を含んでいても良い。)の粉末がバインダと共に造粒された造粒粉末を用意する工程と、
前記R−T−B系焼結磁石の少なくとも表面を加熱し、加熱された前記R−T−B系焼結磁石の前記表面に前記造粒粉末を付着させる付着工程と、
前記造粒粉末が付着したR−T−B系焼結磁石を、前記R−T−B系焼結磁石の焼結温度以下の温度で熱処理して、前記造粒粉末に含まれるPrおよびGaを前記R−T−B系焼結磁石の表面から内部に拡散する拡散工程と、
を含む、R−T−B系焼結磁石の製造方法。
A step of preparing an R-T-B sintered magnet (R is a rare earth element, T is Fe or Fe and Co);
Pr—Ga alloy (Pr is 65 to 97 mass% of the entire Pr—Ga alloy, 20 mass% or less of Pr can be substituted with Nd, and 30 mass% or less of Pr is substituted with Dy and / or Tb. Ga is 3 mass% to 35 mass% of the entire Pr—Ga alloy, and 50 mass% or less of Ga can be substituted with Cu. Inevitable impurities may be included.) Preparing a granulated powder in which the powder is granulated with a binder;
An adhesion step of heating at least the surface of the RTB-based sintered magnet and attaching the granulated powder to the surface of the heated RTB-based sintered magnet;
The RTB-based sintered magnet to which the granulated powder is adhered is heat-treated at a temperature not higher than the sintering temperature of the RTB-based sintered magnet, and Pr and Ga contained in the granulated powder. A diffusion step of diffusing from the surface of the RTB-based sintered magnet to the inside;
The manufacturing method of the RTB type | system | group sintered magnet containing this.
前記付着工程は、前記R−T−B系焼結磁石の全面に対して、前記造粒粉末を付着させる工程である、請求項1に記載のR−T−B系焼結磁石の製造方法。   The method for producing an RTB-based sintered magnet according to claim 1, wherein the attaching step is a step of attaching the granulated powder to the entire surface of the RTB-based sintered magnet. . 前記R−T−B系焼結磁石の全面に付着させた前記造粒粉末に含まれるGaの量は前記R−T−B系焼結磁石に対して0.10〜1.0質量%である、請求項2に記載のR−T−B系焼結磁石の製造方法。   The amount of Ga contained in the granulated powder adhered to the entire surface of the RTB-based sintered magnet is 0.10 to 1.0 mass% with respect to the RTB-based sintered magnet. The manufacturing method of the RTB type | system | group sintered magnet of Claim 2 which exists. 前記付着工程は、流動させた前記造粒粉末の中に、加熱された前記R−T−B系焼結磁石を浸漬させることによって、前記R−T−B系焼結磁石の全面に対して前記造粒粉末を付着させる工程である、請求項2または3に記載のR−T−B系焼結磁石の製造方法。   The adhering step is performed by immersing the heated RTB-based sintered magnet in the fluidized granulated powder, so that the entire surface of the RTB-based sintered magnet is immersed. The manufacturing method of the RTB type | system | group sintered magnet of Claim 2 or 3 which is the process of making the said granulated powder adhere. 前記付着工程において、前記R−T−B系焼結磁石に付着した前記造粒粉末の厚さが38μm以上300μm以下となるように前記R−T−B系焼結磁石の前記表面の温度および浸漬時間を調整する、請求項4に記載のR−T−B系焼結磁石の製造方法。   In the adhering step, the temperature of the surface of the RTB-based sintered magnet and the thickness of the granulated powder adhering to the RTB-based sintered magnet are 38 μm to 300 μm. The manufacturing method of the RTB type | system | group sintered magnet of Claim 4 which adjusts immersion time. 前記R−T−B系焼結磁石は、
R:27.5〜35.0質量%(Rは希土類元素うちの少なくとも一種であり、Ndを必ず含む)、
B:0.80〜0.99質量%、
Ga:0〜0.8質量%、
M:0〜2質量%(MはCu、Al、Nb、Zrの少なくとも一種)、
を含有し、
残部T(TはFe又はFeとCo)及び不可避的不純物からなり、かつ、[T]は質量%で示すTの含有量であり、[B]は質量%で示すBの含有量であるするとき、
[T]/55.85>14[B]/10.8
の不等式を満足する組成を有する、請求項1から5のいずれかに記載のR−T−B系焼結磁石の製造方法。
The RTB-based sintered magnet is
R: 27.5-35.0% by mass (R is at least one of rare earth elements, and necessarily contains Nd),
B: 0.80 to 0.99 mass%,
Ga: 0 to 0.8% by mass,
M: 0 to 2% by mass (M is at least one of Cu, Al, Nb and Zr),
Containing
The remainder T (T is Fe or Fe and Co) and inevitable impurities, and [T] is the content of T expressed in mass%, and [B] is the content of B expressed in mass%. When
[T] /55.85> 14 [B] /10.8
The manufacturing method of the RTB type | system | group sintered magnet in any one of Claim 1 to 5 which has a composition which satisfies inequality of these.
前記Pr−Ga合金のNd含有量は不可避的不純物含有量以下である、請求項1から6のいずれかに記載のR−T−B系焼結磁石の製造方法。   The manufacturing method of the RTB system sintered magnet according to any one of claims 1 to 6 whose Nd content of said Pr-Ga alloy is below inevitable impurity content. 前記熱処理工程は、真空または不活性ガス雰囲気中、600℃超950℃以下の温度で第一の熱処理を実施する工程と、前記第一の熱処理が実施されたR−T−B系焼結磁石に対して、真空または不活性ガス雰囲気中、前記第一の熱処理を実施する工程で実施した温度よりも低い温度でかつ、450℃以上750℃以下の温度で第二の熱処理を実施する工程と、を含む、請求項1から7のいずれかに記載のR−T−B系焼結磁石の製造方法。   The heat treatment step includes a step of performing a first heat treatment in a vacuum or an inert gas atmosphere at a temperature of more than 600 ° C. and not more than 950 ° C., and an RTB-based sintered magnet on which the first heat treatment has been performed. In contrast, a step of performing the second heat treatment at a temperature lower than the temperature performed in the step of performing the first heat treatment in a vacuum or an inert gas atmosphere and a temperature of 450 ° C. or higher and 750 ° C. or lower; The manufacturing method of the RTB type | system | group sintered magnet in any one of Claim 1 to 7 containing these.
JP2016190670A 2016-09-29 2016-09-29 Method for producing RTB-based sintered magnet Active JP6617672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016190670A JP6617672B2 (en) 2016-09-29 2016-09-29 Method for producing RTB-based sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016190670A JP6617672B2 (en) 2016-09-29 2016-09-29 Method for producing RTB-based sintered magnet

Publications (2)

Publication Number Publication Date
JP2018056334A true JP2018056334A (en) 2018-04-05
JP6617672B2 JP6617672B2 (en) 2019-12-11

Family

ID=61833167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016190670A Active JP6617672B2 (en) 2016-09-29 2016-09-29 Method for producing RTB-based sintered magnet

Country Status (1)

Country Link
JP (1) JP6617672B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019169697A (en) * 2018-03-22 2019-10-03 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet
CN110534277A (en) * 2019-08-15 2019-12-03 宁波爱维森材料研发科技有限公司 A kind of alloy and its preparation method and application for rare-earth permanent magnet
WO2021098224A1 (en) * 2019-11-21 2021-05-27 厦门钨业股份有限公司 Neodymium-iron-boron magnet material, raw material composition, preparation method therefor and use thereof
WO2021098223A1 (en) * 2019-11-21 2021-05-27 厦门钨业股份有限公司 Neodymium-iron-boron magnet material, raw material composition, preparation method therefor and use thereof
WO2021098225A1 (en) * 2019-11-21 2021-05-27 厦门钨业股份有限公司 Neodymium-iron-boron magnet material, raw material composition, preparation method therefor and use thereof
JP7476601B2 (en) 2019-09-24 2024-05-01 株式会社プロテリアル Manufacturing method of RTB based sintered magnet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462369A (en) * 1987-09-01 1989-03-08 Somar Corp Epoxy polymer composition for powder coating
JP2007123748A (en) * 2005-10-31 2007-05-17 Aisin Seiki Co Ltd Corrosion-resistant magnet and method of manufacturing same
WO2008032426A1 (en) * 2006-09-15 2008-03-20 Intermetallics Co., Ltd. PROCESS FOR PRODUCING SINTERED NdFeB MAGNET
JP2009302236A (en) * 2008-06-12 2009-12-24 Hitachi Chem Co Ltd Film for processing rare-earth magnet and rare-earth magnet using the same
JP2014086529A (en) * 2012-10-23 2014-05-12 Toyota Motor Corp Rare-earth sintered magnet and manufacturing method therefor
WO2016133071A1 (en) * 2015-02-18 2016-08-25 日立金属株式会社 Method for producing r-t-b system sintered magnet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462369A (en) * 1987-09-01 1989-03-08 Somar Corp Epoxy polymer composition for powder coating
JP2007123748A (en) * 2005-10-31 2007-05-17 Aisin Seiki Co Ltd Corrosion-resistant magnet and method of manufacturing same
WO2008032426A1 (en) * 2006-09-15 2008-03-20 Intermetallics Co., Ltd. PROCESS FOR PRODUCING SINTERED NdFeB MAGNET
JP2009302236A (en) * 2008-06-12 2009-12-24 Hitachi Chem Co Ltd Film for processing rare-earth magnet and rare-earth magnet using the same
JP2014086529A (en) * 2012-10-23 2014-05-12 Toyota Motor Corp Rare-earth sintered magnet and manufacturing method therefor
WO2016133071A1 (en) * 2015-02-18 2016-08-25 日立金属株式会社 Method for producing r-t-b system sintered magnet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019169697A (en) * 2018-03-22 2019-10-03 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet
JP7155813B2 (en) 2018-03-22 2022-10-19 日立金属株式会社 Method for producing RTB based sintered magnet
CN110534277A (en) * 2019-08-15 2019-12-03 宁波爱维森材料研发科技有限公司 A kind of alloy and its preparation method and application for rare-earth permanent magnet
JP7476601B2 (en) 2019-09-24 2024-05-01 株式会社プロテリアル Manufacturing method of RTB based sintered magnet
WO2021098224A1 (en) * 2019-11-21 2021-05-27 厦门钨业股份有限公司 Neodymium-iron-boron magnet material, raw material composition, preparation method therefor and use thereof
WO2021098223A1 (en) * 2019-11-21 2021-05-27 厦门钨业股份有限公司 Neodymium-iron-boron magnet material, raw material composition, preparation method therefor and use thereof
WO2021098225A1 (en) * 2019-11-21 2021-05-27 厦门钨业股份有限公司 Neodymium-iron-boron magnet material, raw material composition, preparation method therefor and use thereof

Also Published As

Publication number Publication date
JP6617672B2 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
JP6617672B2 (en) Method for producing RTB-based sintered magnet
JP6443584B2 (en) Method for producing RTB-based sintered magnet
JP6725028B2 (en) Method for manufacturing RTB-based sintered magnet
JP5363314B2 (en) NdFeB-based sintered magnet manufacturing method
KR101534717B1 (en) Process for preparing rare earth magnets
JP5328161B2 (en) Manufacturing method of NdFeB sintered magnet and NdFeB sintered magnet
WO2012099186A1 (en) Method of producing r-t-b sintered magnet
JP2016129217A (en) Rare earth permanent magnet and method for manufacturing the same
JP5209349B2 (en) Manufacturing method of NdFeB sintered magnet
CN107492429A (en) A kind of high temperature resistant neodymium iron boron magnetic body and preparation method thereof
JP5643355B2 (en) Manufacturing method of NdFeB sintered magnet
WO2017018252A1 (en) Method for producing rare earth sintered magnet
JP6840353B2 (en) Manufacturing method of RTB-based sintered magnet
JP6946905B2 (en) Diffusion source
KR20180068272A (en) Method for producing rare earth permanent magnet
JP6939337B2 (en) Manufacturing method of RTB-based sintered magnet
JP6623995B2 (en) Method for producing RTB based sintered magnet
JP2012204823A (en) Method for producing rare earth sintered magnet
JP2019062155A (en) Method for manufacturing r-t-b-based sintered magnet
JP7000776B2 (en) Manufacturing method of RTB-based sintered magnet
JP6760169B2 (en) Manufacturing method of RTB-based sintered magnet
JP2019062152A (en) Diffusion source
JP2020107888A (en) Method for manufacturing r-t-b based sintered magnet
JP6922616B2 (en) Diffusion source
JPWO2019187857A1 (en) Manufacturing method of RTB-based sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191028

R150 Certificate of patent or registration of utility model

Ref document number: 6617672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350