JPWO2019187857A1 - Manufacturing method of RTB-based sintered magnet - Google Patents

Manufacturing method of RTB-based sintered magnet Download PDF

Info

Publication number
JPWO2019187857A1
JPWO2019187857A1 JP2020510452A JP2020510452A JPWO2019187857A1 JP WO2019187857 A1 JPWO2019187857 A1 JP WO2019187857A1 JP 2020510452 A JP2020510452 A JP 2020510452A JP 2020510452 A JP2020510452 A JP 2020510452A JP WO2019187857 A1 JPWO2019187857 A1 JP WO2019187857A1
Authority
JP
Japan
Prior art keywords
sintered magnet
based sintered
mass
magnet material
rtb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020510452A
Other languages
Japanese (ja)
Other versions
JP7248016B2 (en
Inventor
國吉 太
太 國吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JPWO2019187857A1 publication Critical patent/JPWO2019187857A1/en
Application granted granted Critical
Publication of JP7248016B2 publication Critical patent/JP7248016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

組成が異なる複数のR1−T−B系焼結磁石素材を準備用意する工程と、R2:65質量%以上97質量%以下、及びM:3質量%以上35質量%以下を含有し、アトマイズ法によって作製されたR2−M合金粉末を準備用意する工程と、前記複数のR1−T−B系焼結磁石素材の間に前記R2−M合金粉末を配置し、450℃以上1000℃以下の温度で前記複数のR1−T−B系焼結磁石素材を接合する工程と、を包含する、R−T−B系焼結磁石の製造方法。Atomizing method containing a step of preparing and preparing a plurality of R1-TB based sintered magnet materials having different compositions, R2: 65% by mass or more and 97% by mass or less, and M: 3% by mass or more and 35% by mass or less. The R2-M alloy powder is arranged between the step of preparing and preparing the R2-M alloy powder produced by the above and the plurality of R1-TB based sintered magnet materials, and the temperature is 450 ° C. or higher and 1000 ° C. or lower. A method for manufacturing an R-TB-based sintered magnet, which comprises a step of joining the plurality of R1-TB-based sintered magnet materials in the above.

Description

本発明はR−T−B系焼結磁石の製造方法に関する。 The present invention relates to a method for manufacturing an RTB-based sintered magnet.

R−T−B系焼結磁石(Rは希土類元素うちの少なくとも一種であり、Ndを必ず含む。TはFeまたはFeとCoであり、Bは硼素である)は永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに使用されている。 R-TB-based sintered magnets (R is at least one of the rare earth elements and always contains Nd. T is Fe or Fe and Co and B is boron) are the highest among permanent magnets. Known as a high-performance magnet, it is used in various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and home appliances.

R−T−B系焼結磁石は、主としてR214B化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。主相であるR214B化合物は高い飽和磁化と異方性磁界を持つ強磁性材料であり、R−T−B系焼結磁石の特性の根幹をなしている。The RTB-based sintered magnet is mainly composed of a main phase composed of an R 2 T 14 B compound and a grain boundary phase located at a grain boundary portion of the main phase. The main phase, R 2 T 14 B compound, is a ferromagnetic material with high saturation magnetization and anisotropic magnetic field, and forms the basis of the characteristics of R-TB based sintered magnets.

高温では、R−T−B系焼結磁石の保磁力HcJ(以下、単に「HcJ」という場合がある)が低下するため、不可逆熱減磁が起こる。そのため、特に電気自動車用モータに使用されるR−T−B系焼結磁石では、高いHcJを有することが要求されている。At high temperatures, the coercive force H cJ (hereinafter, may be simply referred to as “H cJ ”) of the RTB-based sintered magnet decreases, so that irreversible thermal demagnetization occurs. Therefore, the RTB -based sintered magnet used in the motor for electric vehicles is required to have a high H cJ.

R−T−B系焼結磁石において、R214B化合物中のRに含まれる軽希土類元素RL(例えば、NdやPr)の一部を重希土類元素RH(例えば、DyやTb)で置換すると、HcJが向上することが知られている。RHの置換量の増加に伴い、HcJは向上する。In the RTB-based sintered magnet, a part of the light rare earth element RL (for example, Nd or Pr) contained in R in the R 2 T 14 B compound is used as the heavy rare earth element RH (for example, Dy or Tb). Substitution is known to improve H cJ. H cJ improves as the amount of RH substitution increases.

しかし、R214B化合物中のRLをRHで置換すると、R−T−B系焼結磁石のHcJが向上する一方、残留磁束密度Br(以下、単に「Br」という場合がある)が低下する。また、特にDy及びTbの重希土類元素は、資源存在量が少ないうえ、産出地が限定されているなどの理由から、供給が安定しておらず、価格が大きく変動するなどの問題を有している。そのため、近年、Dy及びTbの重希土類元素をできるだけ使用することなく、HcJを向上させることが求められている。However, substitution with RH to RL in R 2 T 14 B compound, while improving H cJ of the R-T-B-based sintered magnet, the remanence B r (hereinafter, simply referred to as "B r" is There is) decreases. In particular, Dy and Tb heavy rare earth elements have problems such as unstable supply and large price fluctuations due to the small amount of resources present and the limited production areas. ing. Therefore, in recent years, it has been required to improve H cJ without using heavy rare earth elements of Dy and Tb as much as possible.

特許文献1は、重希土類元素の使用量を抑えるために、HcJを高める必要がある部分に、Dyなどの重希土類元素の含有量が相対的に多い単位磁石を配置し、他の部分には重希土類元素の含有量が相対的に少ない単位磁石を配置して、これら複数の単位磁石を接合する技術を開示している。単位磁石の接合面は、重希土類元素を含有する金属粉末と有機物とを混合したペーストを介して接触した状態で加熱される。In Patent Document 1, a unit magnet having a relatively high content of heavy rare earth elements such as Dy is arranged in a portion where H cJ needs to be increased in order to suppress the amount of heavy rare earth elements used, and a unit magnet having a relatively high content of heavy rare earth elements is arranged in other portions. Discloses a technique for joining a plurality of unit magnets by arranging unit magnets having a relatively low content of heavy rare earth elements. The joint surface of the unit magnet is heated in a state of being in contact with each other through a paste in which a metal powder containing a heavy rare earth element and an organic substance are mixed.

特許文献2は、希土類元素と他の金属元素の合金粉末を介してR−T−B系希土類焼結磁石とケイ素鋼板などの異材種部材とを接合する技術を開示している。 Patent Document 2 discloses a technique for joining an RTB-based rare earth sintered magnet and a heterogeneous member such as a silicon steel plate via an alloy powder of a rare earth element and another metal element.

特開2015−73045号公報JP-A-2015-73045 特開平8−116633号公報Japanese Unexamined Patent Publication No. 8-116633

特許文献1に開示されている接合技術によれば、Dyなどの重希土類元素の含有量が相対的に多い単位磁石と重希土類元素の含有量が相対的に少ない単位磁石とを配置しているため、重希土類元素の使用量を低減することができる。しかし、単位磁石の接合面は、重希土類元素を含有する金属粉末と有機物とを混合したペーストを介して接触した状態で加熱することにより接合されている(すなわち、重希土類元素の拡散により接合させている)。 According to the joining technique disclosed in Patent Document 1, a unit magnet having a relatively high content of heavy rare earth elements such as Dy and a unit magnet having a relatively low content of heavy rare earth elements are arranged. Therefore, the amount of heavy rare earth elements used can be reduced. However, the bonding surfaces of the unit magnets are bonded by heating in contact with each other through a paste in which a metal powder containing a heavy rare earth element and an organic substance are mixed (that is, they are bonded by diffusion of the heavy rare earth element). ing).

近年、電気自動車用モータ等の用途において、Dy及びTbを使用しなくても高いHcJを有するR−T−B系焼結磁石が求められている。また、特許文献1及び2に開示されている接合技術は、R−T−B系希土類焼結磁石どうし、またはR−T−B系希土類焼結磁石と鉄系金属部材とを接合することが可能になる。しかし、本発明者による検討の結果、高速で回転することが必要なモータなどに用いられる場合、より高い接合強度を実現し得る新しい接合技術が必要であることがわかった。In recent years, in applications such as motors for electric vehicles, RTB-based sintered magnets having high H cJ without using Dy and Tb have been required. Further, the joining technique disclosed in Patent Documents 1 and 2 can join RTB-based rare earth sintered magnets or RTB-based rare earth sintered magnets and iron-based metal members. It will be possible. However, as a result of the study by the present inventor, it has been found that a new bonding technique capable of achieving higher bonding strength is required when used in a motor or the like that requires high-speed rotation.

本発明の様々な実施形態は、高い接合強度を実現しつつ、Dy及びTbを使用しなくても高いBrと高いHcJを有するR−T−B系焼結磁石の製造方法を提供する。Various embodiments of the present invention, while achieving a high bonding strength, to provide a method of manufacturing a R-T-B based sintered magnet having a high B r and high H cJ without using Dy and Tb ..

本開示のR−T−B系焼結磁石の製造方法は、例示的な実施形態において、組成が異なる複数のR1−T−B系焼結磁石素材(R1は、Nd及びPrの少なくとも一方を含む希土類元素)を準備用意する工程と、R2:65質量%以上97質量%以下(R2は、Nd及びPrの少なくとも一方を含む希土類元素であり、R2全体に対するDy及びTbの合計含有量が50質量%以下である)、及びM:3質量%以上35質量%以下(Mは、Ga、Cu、In、Al、Sn及びCoからなる群から選択された少なくとも1つ)を含有し、アトマイズ法によって作製されたR2−M合金粉末を準備用意する工程と、前記複数のR1−T−B系焼結磁石素材の間に前記R2−M合金粉末を配置し、450℃以上1000℃以下の温度で前記複数のR1−T−B系焼結磁石素材を接合する工程とを包含する。 In the method for producing an RTB-based sintered magnet of the present disclosure, in an exemplary embodiment, a plurality of R1-TB-based sintered magnet materials having different compositions (R1 contains at least one of Nd and Pr). Rare earth element including) and R2: 65% by mass or more and 97% by mass or less (R2 is a rare earth element containing at least one of Nd and Pr, and the total content of Dy and Tb with respect to the whole R2 is 50. (M by mass% or less), and M: 3% by mass or more and 35% by mass or less (M is at least one selected from the group consisting of Ga, Cu, In, Al, Sn and Co), and the atomizing method. The R2-M alloy powder is arranged between the step of preparing and preparing the R2-M alloy powder produced by the above and the plurality of R1-TB-based sintered magnet materials, and the temperature is 450 ° C. or higher and 1000 ° C. or lower. Includes the step of joining the plurality of R1-TB based sintered magnet materials.

ある実施形態において、R2全体に対するDy及びTbの合計含有量が15質量%以下である。 In certain embodiments, the total content of Dy and Tb relative to R2 as a whole is 15% by weight or less.

ある実施形態において、R2はPrを必ず含み、MはGaを必ず含む。 In certain embodiments, R2 always contains Pr and M always contains Ga.

ある実施形態において、前記複数のR1−T−B系焼結磁石素材は、相対的に保磁力の高い第1のR1−T−B系焼結磁石素材と、相対的に保磁力の低い第2のR1−T−B系焼結磁石素材とを含んでいる。 In a certain embodiment, the plurality of R1-TB based sintered magnet materials are the first R1-TB based sintered magnet material having a relatively high coercive force and the first R1-TB based sintered magnet material having a relatively low coercive force. 2 R1-TB based sintered magnet material is included.

ある実施形態において、前記第1のR1−T−B系焼結磁石素材及び第2のR1−T−B系焼結磁石素材の少なくとも一方は、2mm以下の厚さを有している。 In a certain embodiment, at least one of the first R1-TB based sintered magnet material and the second R1-TB based sintered magnet material has a thickness of 2 mm or less.

ある実施形態において、前記第1のR1−T−B系焼結磁石素材及び第2のR1−T−B系焼結磁石素材の少なくとも一方は、1mm以下の厚さを有している。 In a certain embodiment, at least one of the first R1-TB based sintered magnet material and the second R1-TB based sintered magnet material has a thickness of 1 mm or less.

本開示の実施形態によると、アトマイズ法によって作製されたR2−M合金粉末の粉末を用いて接合を実行するため、高い接合強度を実現しつつ、Dy及びTbを使用しなくても、高いBr及びHcJを有するR−T−B系焼結磁石を製造することができる。According to the embodiment of the present disclosure, since the bonding is performed using the powder of the R2-M alloy powder produced by the atomization method, the bonding is performed with high bonding strength, and high B without using Dy and Tb. An RTB -based sintered magnet having r and H cJ can be produced.

R−T−B系焼結磁石の一部を拡大して模試的に示す断面図である。It is sectional drawing which shows the part of the RTB-based sintered magnet by enlarging and empirically. 図1Aの破線矩形領域内をさらに拡大して模式的に示す断面図である。It is sectional drawing which shows the inside of the broken line rectangular area of FIG. 1A by further enlarging. 従来の粉砕によって形成された合金粉末の模式的断面図である。It is a schematic cross-sectional view of the alloy powder formed by the conventional pulverization. 本開示の実施形態によるアトマイズ法によって形成された合金粉末の模式的断面図である。It is a schematic cross-sectional view of the alloy powder formed by the atomizing method according to the embodiment of this disclosure. 本開示の実施形態によるR1−T−B系焼結磁石素材の接合前の状態を模式的に示す斜視図である。It is a perspective view which shows typically the state before joining of the R1-TB system sintered magnet material by embodiment of this disclosure. 本開示の実施形態によるR1−T−B系焼結磁石素材の接合中の状態を模式的に示す斜視図である。It is a perspective view which shows typically the state during joining of the R1-TB system sintered magnet material by embodiment of this disclosure. 本開示の実施形態によるR−T−B系焼結磁石の製造方法における工程の例を示すフローチャートである。It is a flowchart which shows the example of the process in the manufacturing method of the RTB system sintered magnet by the embodiment of this disclosure.

図1Aは、R−T−B系焼結磁石の一部を拡大して模式的に示す断面図であり、図1Bは図1Aの破線矩形領域内をさらに拡大して模式的に示す断面図である。図1Aには、一例として長さ5μmの矢印が大きさを示す基準の長さとして参考のために記載されている。図1A及び図1Bに示されるように、R−T−B系焼結磁石は、主としてR214B化合物からなる主相12と、主相12の粒界部分に位置する粒界相14とから構成されている。粒界相14は、図1Bに示されるように、2つのR214B化合物粒子(グレイン)が隣接する二粒子粒界相14aと、3つのR214B化合物粒子が隣接する粒界三重点14bとを含む。FIG. 1A is a cross-sectional view schematically showing an enlarged part of an RTB-based sintered magnet, and FIG. 1B is a cross-sectional view schematically showing the inside of the broken line rectangular region of FIG. 1A in an enlarged manner. Is. In FIG. 1A, as an example, an arrow having a length of 5 μm is shown for reference as a reference length indicating the size. As shown in FIGS. 1A and 1B, the RTB-based sintered magnet has a main phase 12 mainly composed of the R 2 T 14 B compound and a grain boundary phase 14 located at the grain boundary portion of the main phase 12. It is composed of and. The grain boundary phase 14, as shown in FIG. 1B, 2 two R 2 T 14 B compound particles (grains) and a second grain grain boundary phase 14a adjacent grain three R 2 T 14 B compound particles adjacent Including the boundary triple point 14b.

主相12であるR214B化合物は高い飽和磁化と異方性磁界を持つ強磁性材料である。したがって、R−T−B系焼結磁石では、主相12であるR214B化合物の存在比率を高めることによってBrを向上させることができる。R214B化合物の存在比率を高めるためには、原料合金中のR量、T量、B量を、R214B化合物の化学量論比(R量:T量:B量=2:14:1)に近づければよい。 The R 2 T 14 B compound, which is the main phase 12, is a ferromagnetic material having a high saturation magnetization and an anisotropic magnetic field. Therefore, in the R-T-B based sintered magnet, it is possible to improve the B r by increasing the existence ratio of R 2 T 14 B compound is the main phase 12. In order to increase the abundance ratio of the R 2 T 14 B compound, the R amount, T amount, and B amount in the raw material alloy are set to the stoichiometric ratio of the R 2 T 14 B compound (R amount: T amount: B amount = It should be close to 2:14: 1).

本発明者は、RとともにGa、Cu、In、Al、Sn及びCoからなる群から選択された少なくとも1つを粒界に拡散することにより、粒界相を改質してHcJを高めることが可能になることがわかった。このような粒界相の改質には、R1−T−B系焼結磁石素材(R1は、Nd及びPrの少なくとも一方を含む希土類元素)を準備して、R1−T−B系焼結磁石素材の表面から金属元素M(Ga、Cu、In、Al、Sn及びCoからなる群から選択された少なくとも1つ)を粒界に供給して粒界内を拡散させることが好ましい。このような金属元素Mの拡散は、65質量%以上97質量%以下のR2(Nd及びPrの少なくとも一方を含む希土類元素)と3質量%以上35質量%以下のMとの合金、すなわち、R2−M合金の粉末を用いて行うことができる。これにより、Dy及びTbを使用しなくても高いBrと高いHcJを有するR−T−B系焼結磁石を得ることができる。 The present inventor modifies the grain boundary phase and enhances H cJ by diffusing at least one selected from the group consisting of Ga, Cu, In, Al, Sn and Co together with R into the grain boundaries. Turned out to be possible. For such modification of the grain boundary phase, an R1-TB based sintered magnet material (R1 is a rare earth element containing at least one of Nd and Pr) is prepared, and R1-TB based sintered. It is preferable to supply the metal element M (at least one selected from the group consisting of Ga, Cu, In, Al, Sn and Co) from the surface of the magnet material to the grain boundaries to diffuse the inside of the grain boundaries. Such diffusion of the metal element M is an alloy of R2 (rare earth element containing at least one of Nd and Pr) of 65% by mass or more and 97% by mass or less and M of 3% by mass or more and 35% by mass or less, that is, R2. It can be carried out using a powder of −M alloy. Thus, it is possible to obtain the R-T-B based sintered magnet having a high B r and high H cJ without using Dy and Tb.

本発明者はさらに検討した結果、アトマイズ法によって作製されたR2−M合金粉末(R2−M合金のアトマイズ粉)をR1−T−B系焼結磁石素材の表面に塗布して拡散のための熱処理を行うとき、他の個体部材をR1−T−B系焼結磁石素材に接合させるための優れた融着剤として利用し得ることがわかった。すなわち、R2−M合金のアトマイズ粉は、二粒子粒界へ導入するための拡散源として機能するとともに、R1−T−B系焼結磁石どうしの表面を接合して均一に結合する粉末としても機能し得ることがわかった。これは、R2−M合金を粉砕して形成した粉末粒子に比べて、アトマイズ粉の粒子の形状及び大きさの分布が一様であることに起因する。その結果、接合面に巣が形成されにくくなり、接合強度が向上する。 As a result of further studies, the present inventor applies R2-M alloy powder (atomized powder of R2-M alloy) produced by the atomizing method to the surface of the R1-TB alloy sintered magnet material for diffusion. It has been found that when the heat treatment is performed, it can be used as an excellent welding agent for joining other solid members to the R1-TB based sintered magnet material. That is, the atomized powder of the R2-M alloy functions as a diffusion source for introducing into the two-particle boundary, and also as a powder that joins the surfaces of the R1-TB-based sintered magnets and uniformly bonds them. It turns out that it can work. This is because the shape and size distribution of the atomized powder particles is more uniform than that of the powder particles formed by pulverizing the R2-M alloy. As a result, nests are less likely to be formed on the joint surface, and the joint strength is improved.

図2は、従来の粉砕(例えばインゴット法やストリップキャステキング法により原料合金を作製した後、粉砕したもの)によって形成された合金粉末50の模式的断面図である。合金粉末は2個の固体部材20の間に配置されており、部材20の対向する表面(接合される面)20Sが作る空隙内に位置している。図2からわかるように、個々の粉末粒子50Pの形状及びサイズがばらばらである。合金粉末50は、合金を粉砕することによって作製されているため、粒子50Pには扁平な部分、鋭角状の凸部、複雑な破断面などが存在する。 FIG. 2 is a schematic cross-sectional view of an alloy powder 50 formed by conventional pulverization (for example, a raw material alloy produced by an ingot method or a strip casting method and then pulverized). The alloy powder is arranged between the two solid members 20 and is located in the void created by the opposing surfaces (bonded surfaces) 20S of the members 20. As can be seen from FIG. 2, the shapes and sizes of the individual powder particles 50P are different. Since the alloy powder 50 is produced by crushing an alloy, the particles 50P have flat portions, acute-angled convex portions, complicated fracture surfaces, and the like.

一方、図3は、本開示の実施形態によるアトマイズ法によって形成されたR2−M合金粉末30の模式的断面図である。図3に示されるように、アトマイズ法によって形成されたR2−M合金粉末30を構成する個々の粒子30Pは、球状である。このような球状の粉末粒子30Pは、対向する固体部材20の表面(接合される面)20Sの間に配置し、固体部材20の表面20Sを近接させると、対向する表面20Sが作る空隙を均一に埋めるように再配列し得る。このため、接合時に不要な巣を形成することなく、接合面20Sの密着度を高めることが可能になる。 On the other hand, FIG. 3 is a schematic cross-sectional view of the R2-M alloy powder 30 formed by the atomizing method according to the embodiment of the present disclosure. As shown in FIG. 3, the individual particles 30P constituting the R2-M alloy powder 30 formed by the atomization method are spherical. Such spherical powder particles 30P are arranged between the surfaces (bonded surfaces) 20S of the facing solid members 20, and when the surfaces 20S of the solid members 20 are brought close to each other, the voids formed by the facing surfaces 20S are uniform. Can be rearranged to fill in. Therefore, it is possible to increase the degree of adhesion of the joint surface 20S without forming unnecessary nests at the time of joining.

図4は、本開示の実施形態によるR1−T−B系焼結磁石素材の接合前の状態を模式的に示す斜視図である。図示されている例において、R1−T−B系焼結磁石素材22、24、26が積層される。下端に位置する第1のR1−T−B系焼結磁石素材22と、中央に位置する第2のR1−T−B系焼結磁石素材24との間には、アトマイズ法によって形成されたR2−M合金粉末30の層が形成されている。また中央に位置する第2のR1−T−B系焼結磁石素材24と、上端に位置する第3のR1−T−B系焼結磁石素材26との間にも、同様に、アトマイズ法によって形成されたR2−M合金粉末30の層が形成されている。図4の例において、R2−M合金粉末30は、第1のR1−T−B系焼結磁石素材22の上面、及び第2のR1−T−B系焼結磁石素材24の上面に塗布されている。しかし、アトマイズ法によって形成されたR2−M合金粉末30は、第2のR1−T−B系焼結磁石素材24の底面及び/または第3のR1−T−B系焼結磁石素材26の底面に塗布されていてもよく、第2のR1−T−B系焼結磁石素材の表面全体や第1及び第3のR1−T−B系焼結磁石の表面全体に塗布されていてもよい。 FIG. 4 is a perspective view schematically showing a state before joining the R1-TB based sintered magnet material according to the embodiment of the present disclosure. In the illustrated example, the R1-TB based sintered magnet materials 22, 24, and 26 are laminated. A first R1-TB based sintered magnet material 22 located at the lower end and a second R1-TB based sintered magnet material 24 located at the center were formed by an atomizing method. A layer of R2-M alloy powder 30 is formed. Similarly, the atomizing method is also applied between the second R1-TB based sintered magnet material 24 located at the center and the third R1-TB based sintered magnet material 26 located at the upper end. A layer of R2-M alloy powder 30 formed by is formed. In the example of FIG. 4, the R2-M alloy powder 30 is applied to the upper surface of the first R1-TB based sintered magnet material 22 and the upper surface of the second R1-TB based sintered magnet material 24. Has been done. However, the R2-M alloy powder 30 formed by the atomizing method is the bottom surface of the second R1-TB based sintered magnet material 24 and / or the third R1-TB based sintered magnet material 26. It may be applied to the bottom surface, or may be applied to the entire surface of the second R1-TB based sintered magnet material or the entire surface of the first and third R1-TB based sintered magnets. Good.

図5は、本開示の実施形態によるR1−T−B系焼結磁石素材の接合中の状態を模式的に示す斜視図である。図5に示される状態において、第1のR1−T−B系焼結磁石素材22と第2のR1−T−B系焼結磁石素材24はR2−M合金粉末30を挟んで近接する。第2のR1−T−B系焼結磁石素材24と第3のR1−T−B系焼結磁石素材26とは、R2−M合金粉末30を挟んで近接する。 FIG. 5 is a perspective view schematically showing a state during joining of the R1-TB based sintered magnet material according to the embodiment of the present disclosure. In the state shown in FIG. 5, the first R1-TB-based sintered magnet material 22 and the second R1-TB-based sintered magnet material 24 are close to each other with the R2-M alloy powder 30 interposed therebetween. The second R1-TB-based sintered magnet material 24 and the third R1-TB-based sintered magnet material 26 are close to each other with the R2-M alloy powder 30 interposed therebetween.

ある態様において、積層方向に加圧されてもよい。図5に示される状態で熱処理を行うことにより、R2−M合金粉末が溶融し、第1のR1−T−B系焼結磁石素材22と第2のR1−T−B系焼結磁石素材24とが接合するとともに、第2のR1−T−B系焼結磁石素材24と第3のR1−T−B系焼結磁石素材2とが接合する。こうして、これらの磁石素材が一体化したR−T−B系焼結磁石が作製される。 In some embodiments, pressure may be applied in the stacking direction. By performing the heat treatment in the state shown in FIG. 5, the R2-M alloy powder is melted, and the first R1-TB-based sintered magnet material 22 and the second R1-TB-based sintered magnet material 22 are used. The 24 is joined, and the second R1-TB-based sintered magnet material 24 and the third R1-TB-based sintered magnet material 2 are joined. In this way, an RTB-based sintered magnet in which these magnet materials are integrated is produced.

この接合工程において、R2−M合金粉末30に含まれていた希土類元素R2及び金属元素MがR1−T−B系焼結磁石素材22、23、24の接合面から粒界を介して内部に拡散する。アトマイズ法によって作製されたR2−M合金粉末30は、拡散源としてのみならず、優れた接合助剤としても機能して接合強度の向上に寄与する。 In this joining step, the rare earth element R2 and the metal element M contained in the R2-M alloy powder 30 enter the inside from the joining surface of the R1-TB based sintered magnet materials 22, 23, 24 via grain boundaries. Spread. The R2-M alloy powder 30 produced by the atomizing method functions not only as a diffusion source but also as an excellent bonding aid and contributes to the improvement of bonding strength.

なお、Pr−Ga合金などのR2−M合金は、延性が高く一般に粉砕性が悪い。このため、粉砕に長時間を要し、量産性に問題がある。本開示の実施形態では、R2−M合金のアトマイズ粉を使用することにより、粉砕を行うことなく粉末粒子(例えば200μm以下の粒径を有する粒子)を得ることが可能となる。 R2-M alloys such as Pr-Ga alloys have high ductility and generally have poor grindability. Therefore, it takes a long time to grind, and there is a problem in mass productivity. In the embodiment of the present disclosure, by using the atomized powder of the R2-M alloy, powder particles (for example, particles having a particle size of 200 μm or less) can be obtained without pulverization.

本開示によるR−T−B系焼結磁石の製造方法は、図6に例示されるように、複数のR1−T−B系焼結磁石素材を準備する工程S10と、アトマイズ法により作製されたR2−M合金粉末を準備する工程S20とを含む。複数のR1−T−B系焼結磁石素材を準備する工程S10とアトマイズ法により作製されたR2−M合金粉末を準備する工程S20との順序は任意であり、それぞれ、異なる場所で製造されたR1−T−B系焼結磁石素材とR2−M合金アトマイズ粉を用いてもよい。 As illustrated in FIG. 6, the method for producing an RTB-based sintered magnet according to the present disclosure is produced by a step S10 for preparing a plurality of R1-TB-based sintered magnet materials and an atomizing method. The step S20 for preparing the R2-M alloy powder is included. The order of the step S10 for preparing a plurality of R1-TB-based sintered magnet materials and the step S20 for preparing the R2-M alloy powder produced by the atomization method is arbitrary, and each is manufactured at a different place. R1-TB based sintered magnet material and R2-M alloy atomized powder may be used.

さらに本開示によるR−T−B系焼結磁石の製造方法は、複数のR1−T−B系焼結磁石素材の間にR2−M合金粉末を配置する工程S30と、複数のR1−T−B系焼結磁石素材を接合する工程S40とを含む。 Further, the method for manufacturing the RTB-based sintered magnet according to the present disclosure includes a step S30 of arranging the R2-M alloy powder between the plurality of R1-TB-based sintered magnet materials and a plurality of R1-T. Includes step S40 for joining the −B-based sintered magnet material.

以下、本開示のR−T−B系焼結磁石の製造方法の実施形態をより詳細に説明する。 Hereinafter, embodiments of the method for manufacturing the RTB-based sintered magnet of the present disclosure will be described in more detail.

1.R1−T−B系焼結磁石素材を準備する工程
まず、複数のR1−T−B系焼結磁石素材を準備する。R1−T−B系焼結磁石素材は、公知の任意のR−T−B系焼結磁石であってもよい。本実施形態で使用可能なR1−T−B系焼結磁石素材の典型例は、以下の組成を有する。
希土類元素R1:27.5〜35.0質量%
B(B(ボロン)の一部はC(カーボン)で置換されていてもよい):0.80〜0.99質量%
Ga:0〜0.8質量%
添加金属元素M(Al、Cu、Zr、Nbからなる群から選択された少なくとも1種):0〜2質量%
T(Feを主とする遷移金属元素であって、Coを含んでもよい)及び不可避不純物:残部
1. 1. Step of Preparing R1-TB-based Sintered Magnet Material First, a plurality of R1-TB-based sintered magnet materials are prepared. The R1-TB-based sintered magnet material may be any known R-TB-based sintered magnet. A typical example of the R1-TB based sintered magnet material that can be used in this embodiment has the following composition.
Rare earth element R1: 27.5 to 35.0% by mass
B (a part of B (boron) may be replaced with C (carbon)): 0.80 to 0.99% by mass
Ga: 0 to 0.8% by mass
Additive metal element M (at least one selected from the group consisting of Al, Cu, Zr, Nb): 0 to 2% by mass
T (a transition metal element mainly containing Fe, which may contain Co) and unavoidable impurities: balance

また、好ましくは、下記不等式(1)を満足する。
[T]/55.85>14[B]/10.8 (1)
ここで、[T]は質量%で示すTの含有量であり、[B]は質量%で示すBの含有量である。
Further, preferably, the following inequality (1) is satisfied.
[T] /55.85> 14 [B] /10.8 (1)
Here, [T] is the content of T represented by mass%, and [B] is the content of B represented by mass%.

この不等式を満足するということは、Bの含有量がR214B化合物の化学量論組成比よりも少ない、すなわち、主相(R214B化合物)形成に使われるT量に対して相対的にB量が少ないことを意味している。The fact that satisfies this inequality, the content of B is less than the stoichiometric ratio of the R 2 T 14 B compound, i.e., the main phase (R 2 T 14 B compound) T amount used for formation to This means that the amount of B is relatively small.

式(1)を満足したR1−T−B系焼結磁石素材に対してR2−M合金粉末を拡散させることで、Dy及びTbを使用しなくてもより高いBrとHcJを得ることができる。By diffusing R2-M alloy powder against R1-T-B based sintered magnet material satisfying the formula (1), that without using Dy and Tb to obtain a higher B r and H cJ Can be done.

なお、希土類元素R1は、主として軽希土類元素RL(Nd、Prから選択される少なくとも1種の元素)であるが、Dy及びTb等の重希土類元素を含有していてもよい。ただし、Dy及びTb等の重希土類元素の使用量は、R1−T−B系焼結磁石素材全体の2%以下が好ましく、もっとも好ましくは、R1−T−B系焼結磁石素材は、Dy及びTb等の重希土類元素を含有しない(不可避的不純物を含む)。 The rare earth element R1 is mainly a light rare earth element RL (at least one element selected from Nd and Pr), but may contain a heavy rare earth element such as Dy and Tb. However, the amount of heavy rare earth elements such as Dy and Tb used is preferably 2% or less of the total amount of the R1-TB based sintered magnet material, and most preferably the R1-TB based sintered magnet material is Dy. And does not contain heavy rare earth elements such as Tb (including unavoidable impurities).

本開示の実施形態では、図4に示される例において、第1のR1−T−B系焼結磁石素材22及び第3のR1−T−B系焼結磁石素材26の一方または両方の組成は、第2のR1−T−B系焼結磁石素材24の組成と異なる。接合する複数のR1−T−B系焼結磁石素材のうち、少なくとも1個のR1−T−B系焼結磁石素材は、他のR1−T−B系焼結磁石素材に比べて高い保磁力HcJを達成するように、重希土類元素として、少量のDy及びTbの少なくとも一方を含んでもよい。例えば、1個のR1−T−B系焼結磁石の一部が高い保磁力HcJを示すことが要求される場合、一部のR1−T−B系焼結磁石素材に対して選択的に重希土類元素を添加してもよい。ただし、Dy及びTbはできるだけ使用しない方が好ましいため、Dy及びTbの合計含有量はR1−T−B系焼結磁石全体の5%以下が好ましく、1%以下がさらに好ましく、もっとも好ましくはDy及びTbを含有しない。 上記組成のR1−T−B系焼結磁石素材は、公知の任意の製造方法によって製造され得る。R1−T−B系焼結磁石素材は焼結上がりでもよいし、切削加工や研磨加工が施されていてもよい。In the embodiment of the present disclosure, in the example shown in FIG. 4, the composition of one or both of the first R1-TB-based sintered magnet material 22 and the third R1-TB-based sintered magnet material 26. Is different from the composition of the second R1-TB based sintered magnet material 24. Of the plurality of R1-TB-based sintered magnet materials to be joined, at least one R1-TB-based sintered magnet material has a higher retention rate than other R1-TB-based sintered magnet materials. A small amount of at least one of Dy and Tb may be contained as a heavy rare earth element so as to achieve a magnetic force H cJ. For example, when a part of one R1-TB based sintered magnet is required to exhibit a high coercive force H cJ, it is selective for some R1-TB based sintered magnet materials. May be added with heavy rare earth elements. However, since it is preferable not to use Dy and Tb as much as possible, the total content of Dy and Tb is preferably 5% or less, more preferably 1% or less, and most preferably Dy of the entire R1-TB based sintered magnet. And Tb are not contained. The R1-TB based sintered magnet material having the above composition can be produced by any known production method. The R1-TB based sintered magnet material may be sintered, or may be cut or polished.

図4に示される例において、第1及び第3のR1−T−B系焼結磁石素材22、26は、第2のR1−T−B系焼結磁石素材24よりも薄く作製され得る。例えば、第1及び第3のR1−T−B系焼結磁石素材22、26の厚さは2mm以下(または1mm以下)であり、第2のR1−T−B系焼結磁石素材24の厚さは2mm超(または1mm以上)であり得る。 In the example shown in FIG. 4, the first and third R1-TB based sintered magnet materials 22 and 26 can be made thinner than the second R1-TB based sintered magnet material 24. For example, the thickness of the first and third R1-TB based sintered magnet materials 22 and 26 is 2 mm or less (or 1 mm or less), and the thickness of the second R1-TB based sintered magnet material 24 is The thickness can be greater than 2 mm (or greater than or equal to 1 mm).

2.アトマイズ法により作製されたR2−M合金粉末を準備する工程
(R2) R2は、Nd及びPrの少なくとも一方を含む希土類元素であり、R2全体に対するDy及びTbの合計含有量が50質量%以下である。例えば、R2がR2−M合金全体の80質量%の場合は、Dy及びTbの合計含有量は、40質量%以下となる。好ましくは、R2全体に対するDy及びTbの合計含有量が15質量%以下である。もっとも好ましくは、R2−M合金粉末は、Dy及びTb等の重希土類元素を含有しない(不可避的不純物を含む)。R2は、R2−M合金全体の65質量%以上97質量%以下である。R2は、好ましくはPrを必ず含み、R2に占めるPrの量は、40質量%以上が好ましく、さらに好ましくは70質量%以上である。
(M) Mは、Ga、Cu、In、Al、Sn及びCoからなる群から選択された少なくとも1つである。Mは、R2−M合金全体の3質量%以上35質量%以下である。Mは、好ましくはGaを必ず含み、Mに占めるGaの量は、50質量%以上である。R2−M合金は、不可避的不純物を含んでいてもよい。最も好ましくは、R2に占めるPrの量が70質量%以上で、かつ、Mに占めるGaの量が50質量%以上であるR2−M合金粉末を使用する。これによりGaを主相結晶粒の内部にほとんど導入させずに二粒子粒界へ導入させることができる。Gaを含む液相が二粒子粒界に導入されることによりDyやTbを使用しなくても高いHcJを得ることができる。
2. Step of preparing R2-M alloy powder produced by the atomizing method (R2) R2 is a rare earth element containing at least one of Nd and Pr, and the total content of Dy and Tb with respect to the whole R2 is 50% by mass or less. is there. For example, when R2 is 80% by mass of the entire R2-M alloy, the total content of Dy and Tb is 40% by mass or less. Preferably, the total content of Dy and Tb with respect to the whole R2 is 15% by mass or less. Most preferably, the R2-M alloy powder does not contain heavy rare earth elements such as Dy and Tb (contains unavoidable impurities). R2 is 65% by mass or more and 97% by mass or less of the entire R2-M alloy. R2 always contains Pr, and the amount of Pr in R2 is preferably 40% by mass or more, more preferably 70% by mass or more.
(M) M is at least one selected from the group consisting of Ga, Cu, In, Al, Sn and Co. M is 3% by mass or more and 35% by mass or less of the entire R2-M alloy. M preferably always contains Ga, and the amount of Ga in M is 50% by mass or more. The R2-M alloy may contain unavoidable impurities. Most preferably, an R2-M alloy powder having an amount of Pr in R2 of 70% by mass or more and an amount of Ga in M of 50% by mass or more is used. As a result, Ga can be introduced into the two-particle boundary with almost no introduction into the main phase crystal grains. By introducing the liquid phase containing Ga into the two-particle boundary, high H cJ can be obtained without using Dy or Tb.

本開示の実施形態において、R2−M合金粉末は、アトマイズ法によって作製されている。アトマイズ法は、溶湯噴霧法とも呼ばれる粉末作製方法の1種であり、ガスアトマイズ法、プラズマアトマイズ法などの公知のアトマイズ法を含む。例えばガスアトマイズ法によれば、金属または合金を溶解炉で溶融して溶湯を形成し、その溶湯を窒素またはアルゴンなどの不活性ガス雰囲気中に噴霧して凝固させる。噴霧された溶湯は、微細な液滴として飛散するため、高速度で冷却されて凝固する。作製される粉末粒子は、それぞれ、球形の形状を持つため、粉砕を行う必要はない。アトマイズ法によって作製される粉末粒子のサイズは、例えば10μm〜200μmの範囲に分布する。 In the embodiments of the present disclosure, the R2-M alloy powder is produced by the atomizing method. The atomizing method is one of the powder producing methods also called the molten metal spraying method, and includes known atomizing methods such as a gas atomizing method and a plasma atomizing method. For example, according to the gas atomization method, a metal or alloy is melted in a melting furnace to form a molten metal, and the molten metal is sprayed into an atmosphere of an inert gas such as nitrogen or argon to solidify. Since the sprayed molten metal scatters as fine droplets, it is cooled at a high speed and solidifies. Since each of the powder particles produced has a spherical shape, it is not necessary to pulverize the powder particles. The size of the powder particles produced by the atomizing method is distributed in the range of, for example, 10 μm to 200 μm.

アトマイズ法によれば、噴霧される合金溶湯の液滴が小さく、各液滴の重量に対する表面積が相対的に大きいため、冷却速度が高くなる。そのため、形成される粉末粒子は、非晶質または微結晶質である。なお、これらの粉末粒子に対しては、接合工程の前に付加的に熱処理を行って非晶質を結晶化させてもよい。 According to the atomizing method, the droplets of the molten alloy to be sprayed are small, and the surface area is relatively large with respect to the weight of each droplet, so that the cooling rate is high. Therefore, the powder particles formed are amorphous or microcrystalline. In addition, these powder particles may be additionally heat-treated before the joining step to crystallize the amorphous material.

R2−M合金粉末の粒度は篩わけすることによって調整され得る。また、篩わけで排除される粉末が10質量%以内であれば、その影響は少ないので、篩わけせずに用いてもよい。 The particle size of the R2-M alloy powder can be adjusted by sieving. Further, if the amount of powder excluded by sieving is within 10% by mass, the effect is small, so that the powder may be used without sieving.

3.複数のR1−T−B系焼結磁石素材の間にR2−M合金粉末を配置する工程
R1−T−B系焼結磁石素材の間に前記R2−M合金粉末を配置する(言い換えると、複数のR1−T−B系焼結磁石素材でR2−M合金粉末を挟む)。配置方法は、両方のR1−T−B系焼結磁石素材の表面にR2−M合金粉末を塗布することにより配置してもよいし、一方のR1−T−B系焼結磁石素材の表面にR2−M合金粉末を塗布するだけでもよい。また、R2−M合金粉末は、R1−T−B系焼結磁石素材の表面全体に塗布してもよいし、図4に示すように接合面のみでもよい。また、組成の異なる2種類以上のR2−M合金粉末を用いてもよい。R2−M合金粉末を複数のR1−T−B系焼結磁石素材の表面に塗布する方法は、特定の塗布方法に限定されない。塗布対象の表面に粘着剤を塗布する塗布工程と、粘着剤を塗布した領域にR2−M合金粉末を付着させる工程を行ってもよい。粘着剤としては、PVA(ポリビニルアルコール)、PVB(ポリビニルブチラール)、PVP(ポリビニルピロリドン)などがあげられる。粘着剤が水系の粘着剤の場合、塗布の前にR−T−B系焼結磁石素材を予備的に加熱してもよい。予備加熱の目的は余分な溶媒を除去し粘着力をコントロールすること、及び、均一に粘着剤を付着させることである。加熱温度は60〜100℃が好ましい。揮発性の高い有機溶媒系の粘着剤の場合はこの工程は省略してもよい。
3. 3. Step of arranging R2-M alloy powder between a plurality of R1-TB based sintered magnet materials The R2-M alloy powder is arranged between R1-TB based sintered magnet materials (in other words, in other words. R2-M alloy powder is sandwiched between a plurality of R1-TB based sintered magnet materials). The arrangement method may be performed by applying R2-M alloy powder to the surfaces of both R1-TB-based sintered magnet materials, or the surface of one R1-TB-based sintered magnet material. R2-M alloy powder may be simply applied to the surface. Further, the R2-M alloy powder may be applied to the entire surface of the R1-TB based sintered magnet material, or may be only the joint surface as shown in FIG. Further, two or more kinds of R2-M alloy powders having different compositions may be used. The method of applying the R2-M alloy powder to the surface of a plurality of R1-TB based sintered magnet materials is not limited to a specific coating method. A coating step of applying the pressure-sensitive adhesive to the surface to be coated and a step of adhering the R2-M alloy powder to the area to which the pressure-sensitive adhesive is applied may be performed. Examples of the pressure-sensitive adhesive include PVA (polyvinyl alcohol), PVB (polyvinyl butyral), PVP (polyvinylpyrrolidone) and the like. When the pressure-sensitive adhesive is a water-based pressure-sensitive adhesive, the RTB-based sintered magnet material may be preheated before coating. The purpose of preheating is to remove excess solvent to control the adhesive strength and to evenly adhere the adhesive. The heating temperature is preferably 60 to 100 ° C. This step may be omitted in the case of a highly volatile organic solvent-based pressure-sensitive adhesive.

R−T−B系焼結磁石素材表面に粘着剤を塗布する方法は、どのようなものでも良い。塗布の具体例としては、スプレー法、浸漬法、ディスペンサーによる塗布などがあげられる。粘着剤の塗布量は、例えば1.02×10-5〜5.10×10-5g/mm2であり得る。Any method may be used for applying the adhesive to the surface of the RTB-based sintered magnet material. Specific examples of coating include a spray method, a dipping method, and coating with a dispenser. The amount of the pressure-sensitive adhesive applied may be, for example, 1.02 × 10 -5 to 5.10 × 10 -5 g / mm 2 .

4.複数のR1−T−B系焼結磁石を接合する工程
本開示によれば、R1−T−B系焼結磁石素材とR2−M合金粉末(アトマイズ粉)とが接した状態で接合のための熱処理を開始する。その結果、高い接合強度を実現しつつ、R1−T−B系焼結磁石の粒界相が磁石内部の全体にわたって改質されて高いBr及びHcJを実現する。
4. Step of joining a plurality of R1-TB based sintered magnets According to the present disclosure, for joining in a state where the R1-TB based sintered magnet material and the R2-M alloy powder (atomized powder) are in contact with each other. Start the heat treatment of. As a result, while achieving a high bonding strength, R1-T-B based sintered magnet of the grain boundary phase to realize a reformed with high B r and H cJ throughout the internal magnet.

接合のための熱処理は、450℃以上1000℃以下の温度で、5分以上720分以下の時間、実行され得る。熱処理は、比較的高い温度(700℃以上1000℃以下)で熱処理を行った後比較的低い温度(450℃以上600℃以下)で熱処理(二段熱処理)をしてもよい。好ましい条件は、730℃以上980℃以下で5分から500分程度の熱処理を施し、冷却後(室温まで冷却後、または440℃以上550℃以下まで冷却後)、さらに440℃以上550℃以下で5分から500分程度熱処理をすることが挙げられる。熱処理の雰囲気ガスは、窒素または不活性ガスであり得る。雰囲気ガスは減圧されていてもよい。 The heat treatment for joining can be carried out at a temperature of 450 ° C. or higher and 1000 ° C. or lower for a time of 5 minutes or more and 720 minutes or less. The heat treatment may be performed at a relatively high temperature (700 ° C. or higher and 1000 ° C. or lower) and then at a relatively low temperature (450 ° C. or higher and 600 ° C. or lower) (two-stage heat treatment). Preferred conditions are heat treatment at 730 ° C. or higher and 980 ° C. or lower for about 5 to 500 minutes, after cooling (after cooling to room temperature or after cooling to 440 ° C. or higher and 550 ° C. or lower), and further at 440 ° C. or higher and 550 ° C. or lower. Heat treatment may be performed for about 1 to 500 minutes. The atmosphere gas for heat treatment can be nitrogen or an inert gas. The atmospheric gas may be depressurized.

本開示を実施例によりさらに詳細に説明するが、本開示はそれらに限定されるものではない。 The present disclosure will be described in more detail by way of examples, but the present disclosure is not limited thereto.

実験例1
R1−T−B系焼結磁石素材がおよそ表1のNo.1−A及び1−Bに示す組成となるように、各元素を秤量してストリップキャスト法により鋳造し、フレーク状の合金を得た。得られたフレーク状の合金を水素加圧雰囲気で水素脆化させた後、550℃まで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量%に対して0.04質量%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素雰囲気中で乾式粉砕し、粒径D50が4.3μmの合金粉末を得た。前記合金粉末に、液体潤滑剤を微粉砕粉100質量%に対して、0.3質量%添加、混合した後、磁界中成形し、成形体を得た。なお、成形装置は、磁場印加方向と加圧法方向とが直行する、いわゆる直角磁界成形装置(横磁界成形装置)を用いた。得られた成形体を、真空中、1000℃以上1050℃以下(サンプル毎に焼結による緻密化が十分起こる温度を選定)で4時間焼結し、R1−T−B系焼結磁石素材(No.1−A及び1−B)を複数個準備した。焼結磁石の密度は7.5Mg/m3以上であった。また、得られたR1−T−B系焼結磁石素材を機械加工し、長さ10mm×幅5mm×厚さ3mm(厚さが磁化方向)にした。得られたR1−T−B焼結磁石素材の成分の結果を表1に示す。なお、表1における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。また、R1−T−B系焼結磁石素材はいずれも不等式(1)を満足していた。
Experimental Example 1
The R1-TB based sintered magnet material is No. 1 in Table 1. Each element was weighed and cast by a strip casting method so as to have the compositions shown in 1-A and 1-B to obtain a flake-shaped alloy. The obtained flake-shaped alloy was hydrogen embrittled in a hydrogen-pressurized atmosphere, and then dehydrogenated by heating and cooling in a vacuum up to 550 ° C. to obtain coarsely pulverized powder. Next, to the obtained coarsely pulverized powder, 0.04% by mass of zinc stearate was added as a lubricant to 100% by mass of the coarsely pulverized powder, mixed, and then using an airflow type crusher (jet mill device). , Dry pulverization in a nitrogen atmosphere to obtain an alloy powder having a particle size D 50 of 4.3 μm. A liquid lubricant was added to the alloy powder in an amount of 0.3% by mass based on 100% by mass of the finely pulverized powder, mixed, and then molded in a magnetic field to obtain a molded product. As the molding apparatus, a so-called right-angle magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressurizing method direction are orthogonal to each other was used. The obtained molded product was sintered in vacuum at 1000 ° C. or higher and 1050 ° C. or lower (select a temperature at which sufficient densification occurs by sintering for each sample) for 4 hours, and an R1-TB-based sintered magnet material (R1-TB-based sintered magnet material). A plurality of No. 1-A and 1-B) were prepared. The density of the sintered magnet was 7.5 Mg / m 3 or more. Further, the obtained R1-TB-based sintered magnet material was machined to obtain a length of 10 mm, a width of 5 mm, and a thickness of 3 mm (thickness is the magnetization direction). Table 1 shows the results of the components of the obtained R1-TB sintered magnet material. Each component in Table 1 was measured using high frequency inductively coupled plasma emission spectroscopy (ICP-OES). Further, all the R1-TB based sintered magnet materials satisfied the inequality (1).

Figure 2019187857
Figure 2019187857

次に、表2のNo.1−aに示す組成の合金粉末をアトマイズ法により作製することにより、R2−M合金粉末を準備した。得られたR2−M合金粉末の粒度は106μm以下であった。さらに表2のNo.1−bに示す組成の合金になるように各元素を秤量してストリップキャスト法により鋳造し、フレーク状の合金を得た。得られたフレーク状の合金を水素加圧雰囲気で水素脆化させた後、550℃まで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉を得た。得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量%に対して0.04質量%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素雰囲気中で乾式粉砕し、粒径D50が4.3μmの合金粉末を得た。Next, No. in Table 2 An R2-M alloy powder was prepared by producing an alloy powder having the composition shown in 1-a by an atomizing method. The particle size of the obtained R2-M alloy powder was 106 μm or less. Furthermore, No. in Table 2 Each element was weighed so as to obtain an alloy having the composition shown in 1-b and cast by a strip casting method to obtain a flake-shaped alloy. The obtained flake-shaped alloy was hydrogen embrittled in a hydrogen-pressurized atmosphere, and then dehydrogenated by heating and cooling in a vacuum up to 550 ° C. to obtain coarsely pulverized powder. Zinc stearate as a lubricant was added to the obtained coarsely pulverized powder in an amount of 0.04% by mass based on 100% by mass of the coarsely pulverized powder, mixed, and then a nitrogen atmosphere was used using an air flow type pulverizer (jet mill device). Dry pulverization was performed in the medium to obtain an alloy powder having a particle size D 50 of 4.3 μm.

Figure 2019187857
Figure 2019187857

次に、表1のNo.1−A及び1−BのR1−T−B系焼結磁石素材表面全面に粘着剤を塗布した。塗布方法は、R1−T−B系焼結磁石素材をホットプレート上で60℃に加熱後、スプレー法でR1−T−B系焼結磁石素材に粘着剤を塗布した。粘着剤としてPVP(ポリビニルピロリドン)を用いた。 Next, No. 1 in Table 1. An adhesive was applied to the entire surface of the 1-A and 1-B R1-TB based sintered magnet materials. As a coating method, the R1-TB based sintered magnet material was heated to 60 ° C. on a hot plate, and then an adhesive was applied to the R1-TB based sintered magnet material by a spray method. PVP (polyvinylpyrrolidone) was used as the pressure-sensitive adhesive.

次に、粘着剤を塗布したR1−T−B系焼結磁石素材(No.1−A及び1−B)に対して、表2のNo.1−aの拡散源(R2−M合金粉末)を付着させた。付着方法は、容器に拡散源を広げ、粘着剤を塗布したR1−T−B系焼結磁石素材を常温まで降温させた後、容器内で拡散源をR1−T−B系焼結磁石素材全面にまぶすように付着させた。 Next, with respect to the R1-TB based sintered magnet materials (No. 1-A and 1-B) coated with the adhesive, No. 1 in Table 2 was applied. A diffusion source of 1-a (R2-M alloy powder) was attached. The method of attachment is to spread the diffusion source in the container, cool the R1-TB-based sintered magnet material coated with the adhesive to room temperature, and then use the diffusion source in the container as the R1-TB-based sintered magnet material. It was attached so as to be sprinkled on the entire surface.

次に、R1−T−B系焼結磁石素材(No.1−A及び1−B)とR2−M合金粉末(No.1−a)とが接した状態で、R1−T−B系焼結磁石素材No.1−Aと1−Bとを厚さ(3mm)方向に重ね(長さ10mm×幅5mmの面どうしを接触させ)、熱処理を行うことでR1−T−B系焼結磁石素材を接合し、R−T−B系焼結磁石(No.1−1)を得た。熱処理は、900℃で8時間の熱処理を行った後室温まで冷却し、さらに500℃で6時間の熱処理(二段熱処理)を行った。同様の方法で、R1−T−B系焼結磁石素材(No.1−A及び1−B)に対して、表2のNo.1−bの拡散源を付着させ、同様の方法で熱処理を行ってR1−T−B系焼結磁石素材を接合し、R−T−B系焼結磁石(No.1−2)を得た。 Next, the R1-TB system is in contact with the R1-TB system sintered magnet materials (No. 1-A and 1-B) and the R2-M alloy powder (No. 1-a). Sintered magnet material No. The R1-TB based sintered magnet material is joined by stacking 1-A and 1-B in the thickness (3 mm) direction (contacting the surfaces of 10 mm in length × 5 mm in width) and performing heat treatment. , RTB-based sintered magnet (No. 1-1) was obtained. The heat treatment was carried out at 900 ° C. for 8 hours, then cooled to room temperature, and further heat-treated at 500 ° C. for 6 hours (two-stage heat treatment). In the same manner, with respect to the R1-TB based sintered magnet materials (No. 1-A and 1-B), No. 1 in Table 2 was used. A diffusion source of 1-b is attached, and heat treatment is performed in the same manner to bond the R1-TB-based sintered magnet material to obtain an R-TB-based sintered magnet (No. 1-2). It was.

得られたR−T−B系焼結磁石の接合面における巣の発生を確認した。巣が多く発生すると、接着強度が低下したり、巣を起点とした剥がれが起きる可能性があるため、特に高速で回転することが必要なモータなどにR−T−B系焼結磁石が用いられる場合、巣の発生を抑える必要がある。 The generation of cavities on the joint surface of the obtained RTB-based sintered magnet was confirmed. If many nests occur, the adhesive strength may decrease or peeling may occur starting from the nests. Therefore, RTB-based sintered magnets are used especially for motors that need to rotate at high speed. If so, it is necessary to suppress the development of nests.

R−T−B系焼結磁石(No.1−1及び1−2)をそれぞれ機械加工により切断研磨し接合面を含む任意の接合磁石の断面(幅5mm×厚さ6mmにおける磁石断面)を走査電子顕微鏡(SEM:日本電子製JCM−7001F)で観察した。観察領域は500μm×500μmであり、視認により接合面における巣の発生を確認した。巣の発生が接合面の10%以下(100×巣の部分の面積/接合部分の面積)を本発明とする。結果を表3に示す。巣の発生が10%以下の場合を〇と10%を超える場合を×と記載する。さらに、R−T−B系焼結磁石の磁気特性の結果を表3に示す。磁気特性は、B−Hトレーサを用いて測定した。 RTB-based sintered magnets (No. 1-1 and 1-2) are cut and polished by machining, respectively, and the cross section of any bonded magnet including the bonded surface (magnet cross section at width 5 mm x thickness 6 mm) is obtained. It was observed with a scanning electron microscope (SEM: JCM-7001F manufactured by JEOL Ltd.). The observation area was 500 μm × 500 μm, and the occurrence of nests on the joint surface was confirmed by visual inspection. According to the present invention, the occurrence of nests is 10% or less of the joint surface (100 × area of nest portion / area of joint portion). The results are shown in Table 3. When the occurrence of nests is 10% or less, it is described as 〇, and when it exceeds 10%, it is described as ×. Further, Table 3 shows the results of the magnetic characteristics of the RTB-based sintered magnet. The magnetic properties were measured using a BH tracer.

Figure 2019187857
Figure 2019187857

表3に示すように本発明例は巣の発生が抑えられているのに対し、比較例(ストリップキャスト法で作製した拡散源を用いた場合)は巣の発生が抑えられていない。 As shown in Table 3, the example of the present invention suppresses the generation of nests, whereas the comparative example (when a diffusion source prepared by the strip cast method is used) does not suppress the generation of nests.

実験例2
およそ表4のNo.2−A及び2−Bに示す組成となるように、実験例1と同様にしてR1−T−B系焼結磁石素材を準備した。得られたR1−T−B系焼結磁石素材を機械加工し、長さ10mm×幅5mm×厚さ3mm(厚さが磁化方向)にした。得られたR1−T−B焼結磁石素材の成分の結果を表4に示す。なお、表4における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。さらに、実験例1のNo.1−A及び1−BのR1−T−B系焼結磁石素材を準備した。
Experimental Example 2
Approximately No. in Table 4. An R1-TB based sintered magnet material was prepared in the same manner as in Experimental Example 1 so as to have the compositions shown in 2-A and 2-B. The obtained R1-TB-based sintered magnet material was machined to obtain a length of 10 mm, a width of 5 mm, and a thickness of 3 mm (thickness is the magnetization direction). Table 4 shows the results of the components of the obtained R1-TB sintered magnet material. Each component in Table 4 was measured using high frequency inductively coupled plasma emission spectroscopy (ICP-OES). Further, No. 1 of Experimental Example 1. 1-A and 1-B R1-TB based sintered magnet materials were prepared.

Figure 2019187857
Figure 2019187857

次に、表5のNo.2−a〜2−eに示す組成の合金粉末をアトマイズ法により作製することにより、R2−M合金粉末を準備した。さらに、実験例1の1−aのR2−M合金粉末を準備した。得られたR2−M合金粉末の粒度は106μm以下であった。 Next, No. in Table 5 The R2-M alloy powder was prepared by producing the alloy powder having the compositions shown in 2-a to 2-e by the atomizing method. Further, the R2-M alloy powder of 1-a of Experimental Example 1 was prepared. The particle size of the obtained R2-M alloy powder was 106 μm or less.


Figure 2019187857
Figure 2019187857

次に、表6に示す条件で、実験例1と同様にしてR1−T−B系焼結磁石素材を接合し、R−T−B系焼結磁石を得た。表6のNo.2−1は、No.1−A及び1−BのR1−T−B系焼結磁石素材表面全面に粘着剤を実験例1と同様にして塗布し、粘着剤を塗布したR1−T−B系焼結磁石素材(No.1−A及び1−B)に対して、No.2−aのR−2M合金粉末を実験例1と同様にして付着させた。次に、R1−T−B系焼結磁石素材(No.1−A及び1−B)とR2−M合金粉末(No.2−a)とが接した状態で、R1−T−B系焼結磁石素材No.1−Aと1−Bとを厚さ方向(3mm)に重ね、実験例1と同様にして熱処理を行うことでR1−T−B系焼結磁石素材を接合し、R−T−B系焼結磁石(No.2−1)を得たものである。No.2−2〜2−7も同様に記載している。得られたR−T−B系焼結磁石に対し、実験例1と同様にして、視認により接合面における巣の発生を確認した。さらに、R−T−B系焼結磁石の磁気特性を測定した。結果を表6に示す。 Next, under the conditions shown in Table 6, the R1-TB-based sintered magnet material was bonded in the same manner as in Experimental Example 1 to obtain an R-TB-based sintered magnet. No. in Table 6 2-1 is No. 1-A and 1-B R1-TB based sintered magnet material An adhesive was applied to the entire surface of the surface in the same manner as in Experimental Example 1, and the adhesive was applied to the R1-TB based sintered magnet material ( No. 1-A and 1-B) The R-2M alloy powder of 2-a was attached in the same manner as in Experimental Example 1. Next, the R1-TB system is in contact with the R1-TB system sintered magnet materials (No. 1-A and 1-B) and the R2-M alloy powder (No. 2-a). Sintered magnet material No. By stacking 1-A and 1-B in the thickness direction (3 mm) and performing heat treatment in the same manner as in Experimental Example 1, the R1-TB-based sintered magnet material is bonded, and the R-TB-based A sintered magnet (No. 2-1) was obtained. No. 2-2-2-7 are also described in the same manner. With respect to the obtained RTB-based sintered magnet, the occurrence of cavities on the joint surface was visually confirmed in the same manner as in Experimental Example 1. Further, the magnetic characteristics of the RTB-based sintered magnet were measured. The results are shown in Table 6.

Figure 2019187857
Figure 2019187857

表6に示すように、本発明例はいずれも巣の発生が抑えられている。 As shown in Table 6, in all the examples of the present invention, the generation of nests is suppressed.

本発明によれば、高いBrと高いHcJを有するR−T−B系焼結磁石を作製することができる。本発明の焼結磁石は、高温下に晒されるハイブリッド車搭載用モータ等の各種モータや家電製品等に好適である。According to the present invention, it is possible to produce R-T-B based sintered magnet having a high B r and high H cJ. The sintered magnet of the present invention is suitable for various motors such as motors for mounting on hybrid vehicles exposed to high temperatures, home appliances, and the like.

12 R214B化合物からなる主相
14 粒界相
14a 二粒子粒界相

14b 粒界三重点
20 固体部材
30 R2−M合金粉末
22、24、26 R1−T−B系焼結磁石素材
50 合金粉末
12 R 2 T 14 B Main phase 14 grain boundary phase 14a Two grain boundary phase

14b Grain boundary triple point 20 Solid member 30 R2-M alloy powder 22, 24, 26 R1-TB based sintered magnet material 50 Alloy powder

Claims (6)

組成が異なる複数のR1−T−B系焼結磁石素材(R1は、Nd及びPrの少なくとも一方を含む希土類元素、Tは、Feを主とする遷移金属元素であって、Coを含んでもよい)を準備する工程と、
R2:65質量%以上97質量%以下(R2は、Nd及びPrの少なくとも一方を含む希土類元素であり、R2全体に対するDy及びTbの合計含有量が50質量%以下である)、及び
M:3質量%以上35質量%以下(Mは、Ga、Cu、In、Al、Sn及びCoからなる群から選択された少なくとも1つ)
を含有し、アトマイズ法によって作製されたR2−M合金粉末を準備する工程と、
前記複数のR1−T−B系焼結磁石素材の間に前記R2−M合金粉末を配置し、450℃以上1000℃以下の温度で前記複数のR1−T−B系焼結磁石素材を接合する工程と、
を包含する、R−T−B系焼結磁石の製造方法。
A plurality of R1-TB based sintered magnet materials having different compositions (R1 is a rare earth element containing at least one of Nd and Pr, T is a transition metal element mainly containing Fe, and may contain Co. ) And the process of preparing
R2: 65% by mass or more and 97% by mass or less (R2 is a rare earth element containing at least one of Nd and Pr, and the total content of Dy and Tb with respect to R2 is 50% by mass or less), and M: 3. Mass% or more and 35 mass% or less (M is at least one selected from the group consisting of Ga, Cu, In, Al, Sn and Co)
And the step of preparing the R2-M alloy powder produced by the atomizing method.
The R2-M alloy powder is placed between the plurality of R1-TB based sintered magnet materials, and the plurality of R1-TB based sintered magnet materials are bonded at a temperature of 450 ° C. or higher and 1000 ° C. or lower. And the process to do
A method for producing an RTB-based sintered magnet, which comprises the above.
R2全体に対するDy及びTbの合計含有量が15質量%以下である、請求項1に記載のR−T−B系焼結磁石の製造方法。 The method for producing an RTB-based sintered magnet according to claim 1, wherein the total content of Dy and Tb with respect to the entire R2 is 15% by mass or less. R2はPrを必ず含み、MはGaを必ず含む、請求項1又は2に記載のR−T−B系焼結磁石の製造方法。 The method for producing an RTB-based sintered magnet according to claim 1 or 2, wherein R2 always contains Pr and M always contains Ga. 前記複数のR1−T−B系焼結磁石素材は、相対的に保磁力の高い第1のR1−T−B系焼結磁石素材と、相対的に保磁力の低い第2のR1−T−B系焼結磁石素材とを含んでいる、請求項1から3のいずれかに記載のR−T−B系焼結磁石の製造方法。 The plurality of R1-TB-based sintered magnet materials include a first R1-TB-based sintered magnet material having a relatively high coercive force and a second R1-T having a relatively low coercive force. The method for producing an RT-B-based sintered magnet according to any one of claims 1 to 3, which includes a −B-based sintered magnet material. 前記第1のR1−T−B系焼結磁石素材及び第2のR1−T−B系焼結磁石素材の少なくとも一方は、2mm以下の厚さを有している、請求項1から4のいずれかに記載のR−T−B系焼結磁石の製造方法。 Claims 1 to 4, wherein at least one of the first R1-TB-based sintered magnet material and the second R1-TB-based sintered magnet material has a thickness of 2 mm or less. The method for manufacturing an RTB-based sintered magnet according to any one of the above. 前記第1のR1−T−B系焼結磁石素材及び第2のR1−T−B系焼結磁石素材の少なくとも一方は、1mm以下の厚さを有している、請求項1から5のいずれかに記載のR−T−B系焼結磁石の製造方法。 Claims 1 to 5, wherein at least one of the first R1-TB-based sintered magnet material and the second R1-TB-based sintered magnet material has a thickness of 1 mm or less. The method for manufacturing an RTB-based sintered magnet according to any one of the above.
JP2020510452A 2018-03-29 2019-02-22 Method for producing RTB based sintered magnet Active JP7248016B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2018064132 2018-03-29
JP2018064132 2018-03-29
JP2018175734 2018-09-20
JP2018175734 2018-09-20
PCT/JP2019/006845 WO2019187857A1 (en) 2018-03-29 2019-02-22 Method for manufacturing r-t-b sintered magnet

Publications (2)

Publication Number Publication Date
JPWO2019187857A1 true JPWO2019187857A1 (en) 2021-04-22
JP7248016B2 JP7248016B2 (en) 2023-03-29

Family

ID=68061221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020510452A Active JP7248016B2 (en) 2018-03-29 2019-02-22 Method for producing RTB based sintered magnet

Country Status (3)

Country Link
JP (1) JP7248016B2 (en)
CN (1) CN111937103A (en)
WO (1) WO2019187857A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015073045A (en) * 2013-10-04 2015-04-16 大同特殊鋼株式会社 RFeB-BASED MAGNET AND PRODUCTION METHOD THEREFOR
JP2018026390A (en) * 2016-08-08 2018-02-15 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet
WO2018030187A1 (en) * 2016-08-08 2018-02-15 日立金属株式会社 Method of producing r-t-b sintered magnet

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3441197B2 (en) * 1994-11-16 2003-08-25 本田技研工業株式会社 Paste joining material for brazing
JP5328161B2 (en) * 2008-01-11 2013-10-30 インターメタリックス株式会社 Manufacturing method of NdFeB sintered magnet and NdFeB sintered magnet
JP5874951B2 (en) * 2011-05-02 2016-03-02 日立金属株式会社 Method for producing RTB-based sintered magnet
CN106024236B (en) * 2015-03-25 2020-02-07 Tdk株式会社 R-T-B based rare earth sintered magnet and method for producing same
JP6380652B2 (en) * 2015-07-30 2018-08-29 日立金属株式会社 Method for producing RTB-based sintered magnet
JP6578916B2 (en) * 2015-12-03 2019-09-25 Tdk株式会社 Method for manufacturing alloy for RTB-based rare earth sintered magnet and method for manufacturing RTB-based rare earth sintered magnet
CN106601464B (en) * 2016-12-14 2017-12-26 安徽大地熊新材料股份有限公司 A kind of low heavy rare earth, high-coercive force permanent-magnet material preparation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015073045A (en) * 2013-10-04 2015-04-16 大同特殊鋼株式会社 RFeB-BASED MAGNET AND PRODUCTION METHOD THEREFOR
JP2018026390A (en) * 2016-08-08 2018-02-15 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet
WO2018030187A1 (en) * 2016-08-08 2018-02-15 日立金属株式会社 Method of producing r-t-b sintered magnet

Also Published As

Publication number Publication date
CN111937103A (en) 2020-11-13
WO2019187857A1 (en) 2019-10-03
JP7248016B2 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
JP6051892B2 (en) Method for producing RTB-based sintered magnet
WO2016133071A1 (en) Method for producing r-t-b system sintered magnet
JP6750543B2 (en) R-T-B system sintered magnet
JP7180089B2 (en) Method for producing RTB based sintered magnet
JP6939339B2 (en) Manufacturing method of RTB-based sintered magnet
CN109585152B (en) Method for producing R-T-B sintered magnet and diffusion source
JP6946905B2 (en) Diffusion source
JP6939337B2 (en) Manufacturing method of RTB-based sintered magnet
TWI683007B (en) Sintered body for forming rare earth magnet and rare earth sintered magnet
JP6946904B2 (en) Diffusion source
JP7155813B2 (en) Method for producing RTB based sintered magnet
JP7000776B2 (en) Manufacturing method of RTB-based sintered magnet
JP7248016B2 (en) Method for producing RTB based sintered magnet
JP7099218B2 (en) Manufacturing method of RTB-based sintered magnet
JP7248017B2 (en) Method for producing RTB based sintered magnet
JP2022077979A (en) Manufacturing method of rare earth sintered magnet
US11062843B2 (en) Method for producing sintered R-T-B based magnet and diffusion source
CN109585151B (en) Method for producing R-T-B sintered magnet and diffusion source
JP7000774B2 (en) Manufacturing method of RTB-based sintered magnet
JP2020107888A (en) Method for manufacturing r-t-b based sintered magnet
JP6760169B2 (en) Manufacturing method of RTB-based sintered magnet
JP6610957B2 (en) Method for producing RTB-based sintered magnet
JP6939338B2 (en) Manufacturing method of RTB-based sintered magnet
KR102159079B1 (en) Method Of rare earth sintered magnet
KR102057870B1 (en) Method Of rare earth sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230227

R150 Certificate of patent or registration of utility model

Ref document number: 7248016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150