JP2003045710A - Permanent magnet and manufacturing method therefor - Google Patents

Permanent magnet and manufacturing method therefor

Info

Publication number
JP2003045710A
JP2003045710A JP2001227883A JP2001227883A JP2003045710A JP 2003045710 A JP2003045710 A JP 2003045710A JP 2001227883 A JP2001227883 A JP 2001227883A JP 2001227883 A JP2001227883 A JP 2001227883A JP 2003045710 A JP2003045710 A JP 2003045710A
Authority
JP
Japan
Prior art keywords
phase
powder
permanent magnet
isolated
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001227883A
Other languages
Japanese (ja)
Other versions
JP4547840B2 (en
Inventor
Akira Fukuno
亮 福野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2001227883A priority Critical patent/JP4547840B2/en
Publication of JP2003045710A publication Critical patent/JP2003045710A/en
Application granted granted Critical
Publication of JP4547840B2 publication Critical patent/JP4547840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Abstract

PROBLEM TO BE SOLVED: To provide an R2 Fe14 B-based permanent magnet, that has very high coercive force and a sufficiently high remanent magnetic flux density, and that is superior in corrosion resistance. SOLUTION: This permanent magnet contains R (at least one kind of rare- earth element), T (Fe or Fe and Co), and B at the main components. In the magnet, adjacent main phases are substantially isolated from each other by surrounding each main phase, containing RH (at least one kind of heavy rare- earth element) and RL (at least one kind of light rear-earth element) and composed substantially of an RL2 T14 B intermetallic compound having isolated phase, composed substantially of an RH2 T14 B intermetallic compound. In addition, this permanent magnet contains a low-melting point element ML, which lowers the melting point of the RH2 T14 B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、R(Rは、希土類
元素の少なくとも1種である)、T(Tは、Fe、また
はFeおよびCoである)およびBを含有するR214
B系の希土類焼結磁石と、その製造方法とに関する。
The present invention relates to R 2 T 14 containing R (R is at least one of rare earth elements), T (T is Fe, or Fe and Co) and B.
The present invention relates to a B-based rare earth sintered magnet and a method for manufacturing the same.

【0002】[0002]

【従来の技術】高性能を有する希土類金属磁石として
は、粉末冶金法によるSm−Co系磁石でエネルギー積
32MGOeのものが量産されている。しかし、このも
のは、Sm、Coの原料価格が高いという欠点を有す
る。希土類元素の中では原子量の小さい元素、例えば、
CeやPr、Ndは、Smよりも豊富にあり価格が安
い。また、FeはCoに比べ安価である。
2. Description of the Related Art As rare earth metal magnets having high performance, Sm-Co magnets having an energy product of 32 MGOe produced by powder metallurgy are mass-produced. However, this material has a drawback that the raw material prices of Sm and Co are high. Among rare earth elements, elements with small atomic weight, for example,
Ce, Pr and Nd are more abundant and cheaper than Sm. Further, Fe is cheaper than Co.

【0003】そこで、近年Nd2Fe14B磁石等のR2
14B磁石が開発され、特開昭59−46008号公報
には焼結磁石が開示されている。焼結法による磁石で
は、従来のSm−Co系の粉末冶金プロセス(溶解→鋳
造→インゴット粗粉砕→微粉砕→プレス→焼結→磁石)
を適用でき、また、高い磁気特性を得ることも容易であ
る。R−Fe−B磁石を焼結法により製造する場合、通
常、製造される磁石と同一組成のR2Fe14B合金の原
料粉末を成形し、焼結する。
Therefore, in recent years, R 2 F such as Nd 2 Fe 14 B magnet has been used.
An e 14 B magnet has been developed, and a sintered magnet is disclosed in JP-A-59-46008. For the magnet by the sintering method, the conventional Sm-Co-based powder metallurgy process (melting → casting → coarse grinding of ingot → fine grinding → press → sintering → magnet)
Can be applied and high magnetic characteristics can be easily obtained. When producing the R-Fe-B magnet by a sintering method, typically by molding a raw material powder of the R 2 Fe 14 B alloy having the same composition as the magnet to be manufactured, sintering.

【0004】R2Fe14B焼結磁石において高保磁力を
得るためには、例えば特公平7−78269号公報に記
載されているように、正方晶の金属間化合物からなる主
相同士が、非磁性Rリッチ相により互いに隔離された構
造となっている必要がある。ここで非磁性Rリッチ相と
は、R含有量が80%以上である非磁性相である。
In order to obtain a high coercive force in a R 2 Fe 14 B sintered magnet, for example, as described in Japanese Patent Publication No. 7-78269, the main phases composed of tetragonal intermetallic compounds are not It is necessary that the structure be isolated from each other by the magnetic R-rich phase. Here, the nonmagnetic R-rich phase is a nonmagnetic phase having an R content of 80% or more.

【0005】R2Fe14B磁石の特性、特に残留磁束密
度および保磁力は、密度や結晶粒径によっても変化する
が、Rの種類および含有量に最も影響される。例えば、
Rの主成分がNdやPr等の軽希土類元素である場合、
高飽和磁化の(Nd,Pr) 2Fe14B相が主体となる
ため、高い残留磁束密度が得られる。しかし、(Nd,
Pr)2Fe14B相だけでは高保磁力が得られない。一
方、NdやPrの一部をDyやTb等の重希土類元素で
置換すると、異方性磁界HAの大きい(Dy,Tb)2
14B相が出現する。異方性磁界HAが大きいと磁化反
転しにくいので、重希土類元素の添加により保磁力が向
上する。
R2Fe14B magnet characteristics, especially residual magnetic flux density
Degree and coercive force also change with density and crystal grain size
Is most affected by the type and content of R. For example,
When the main component of R is a light rare earth element such as Nd or Pr,
High saturation magnetization (Nd, Pr) 2Fe14Phase B is the main
Therefore, a high residual magnetic flux density can be obtained. However, (Nd,
Pr)2Fe14A high coercive force cannot be obtained only with the B phase. one
On the other hand, some of Nd and Pr are heavy rare earth elements such as Dy and Tb.
If replaced, the anisotropic magnetic field HAIs large (Dy, Tb)2F
e14Phase B appears. Anisotropic magnetic field HAIs large, the magnetization is anti
Since it is difficult to roll, coercive force is improved by adding heavy rare earth elements.
Go up.

【0006】例えば、特公平5−31807号公報で
は、R(Rは軽希土類元素の少なくとも1種)、Bおよ
びL(Lは、Yを含む重希土類元素およびAl、チタ
ン、V、Nb、Moの少なくとも1種)を含有し、残部
がM(Mは、FeまたはFeとCoとの混合物)よりな
る異方性焼結磁石であって、元素LがR214B母相粒
内の粒界近傍に偏在している希土類永久磁石を提案して
いる。
For example, in Japanese Examined Patent Publication No. 5-31807, R (R is at least one kind of light rare earth element), B and L (L is a heavy rare earth element including Y and Al, titanium, V, Nb, Mo). An anisotropic sintered magnet containing M (at least one of the above) and the balance M (M is Fe or a mixture of Fe and Co), and the element L is contained in the R 2 M 14 B matrix phase grains. We have proposed rare earth permanent magnets that are unevenly distributed near the grain boundaries.

【0007】また、特開平7−122413号公報で
は、R214B結晶粒(Rは希土類元素の少なくとも1
種、Tは遷移金属の少なくとも1種)を主体とする主相
と、Rリッチ相とを主構成相とする希土類永久磁石であ
って、R214B結晶粒内で重希土類元素が少なくとも
3ヶ所高濃度に分布する希土類永久磁石を提案してい
る。
Further, in JP-A-7-122413, R 2 T 14 B crystal grains (R is at least 1 of rare earth elements).
And T is a rare earth permanent magnet having a main phase mainly composed of at least one kind of transition metal) and an R rich phase as main constituent phases, wherein at least heavy rare earth elements are contained in the R 2 T 14 B crystal grains. We are proposing rare earth permanent magnets distributed in three places with high concentration.

【0008】また、特開平4−155902号公報で
は、結晶粒の結晶粒界近傍において、結晶粒中央部より
もTb+Dyの濃度を高くしたR214B磁石が記載さ
れている。なお、Tは、Fe、またはFeおよびCoで
ある。同公報では、少なくともRf(RfはNdおよび
/またはPr)、TおよびBを主成分とする基本組成合
金粉末と、Ra(RaはDyおよび/またはTb)およ
び/またはRa化合物を主成分とする添加粉末との混合
物を、成形、焼結することにより製造される。
Further, Japanese Patent Laid-Open No. 4-155902 discloses an R 2 T 14 B magnet in which the concentration of Tb + Dy is higher in the vicinity of the crystal grain boundaries of the crystal grains than in the central portion of the crystal grains. Note that T is Fe or Fe and Co. In this publication, a basic composition alloy powder containing at least Rf (Rf is Nd and / or Pr), T and B as main components, and Ra (Ra being Dy and / or Tb) and / or Ra compounds as main components. It is manufactured by molding and sintering a mixture with an additive powder.

【0009】しかし、Dy2Fe14BおよびTb2Fe14
Bは飽和磁束密度が低いため、重希土類元素の添加量を
増加させるにつれて残留磁束密度が低下してしまう。し
たがって、磁石として使用するために十分な残留磁束密
度を確保するためには、重希土類元素の含有量を著しく
多くするわけにはいかず、その結果、保磁力の向上には
限界があった。
However, Dy 2 Fe 14 B and Tb 2 Fe 14
Since B has a low saturation magnetic flux density, the residual magnetic flux density decreases as the amount of the heavy rare earth element added increases. Therefore, in order to secure a sufficient residual magnetic flux density for use as a magnet, the content of heavy rare earth elements cannot be increased remarkably, and as a result, there is a limit in improving the coercive force.

【0010】また、従来のR214B磁石では、結晶粒
を包囲する前記非磁性Rリッチ相の存在が必須である
が、この相は腐食しやすく、腐食すると脆化し、また、
体積膨脹が生じる。したがって、この相が腐食すると、
結晶粒が腐食していなくても、結晶粒(主相)が脱落し
てしまう。そのため、従来のR214B磁石には、ニッ
ケルめっき膜や樹脂膜などを保護膜として設けることが
必須であった。
Further, in the conventional R 2 T 14 B magnet, the existence of the non-magnetic R-rich phase surrounding the crystal grains is essential, but this phase is easily corroded and becomes brittle when corroded.
Volume expansion occurs. Therefore, when this phase corrodes,
Even if the crystal grains are not corroded, the crystal grains (main phase) will fall off. Therefore, it has been essential for the conventional R 2 T 14 B magnet to provide a nickel plating film, a resin film, or the like as a protective film.

【0011】[0011]

【発明が解決しようとする課題】本発明はこのような事
情からなされたものであり、著しく高い保磁力と十分に
高い残留磁束密度とを有し、しかも耐食性に優れたR2
Fe14B系永久磁石およびその製造方法を提供すること
を目的とする。
[0008] The present invention has been made from such circumstances, have a significantly higher and the coercive force and a sufficiently high residual magnetic flux density, yet having excellent corrosion resistance R 2
It is an object of the present invention to provide a Fe 14 B-based permanent magnet and a method for manufacturing the same.

【0012】[0012]

【課題を解決するための手段】上記目的は、下記(1)
〜(6)の本発明により達成される。 (1) R(Rは、希土類元素の少なくとも1種であ
る)、T(Tは、Fe、またはFeおよびCoである)
およびBを主成分とする永久磁石であって、RH(RH
重希土類元素の少なくとも1種である)およびRL(RL
は軽希土類元素の少なくとも1種である)を含有し、実
質的にRL214B金属間化合物からなる主相が、実質的
にRH214B金属間化合物からなる隔離相によって包囲
されることによって、隣り合う主相同士が互いに実質的
に隔離されており、かつ、R H214Bの融点を低下させ
る低融点化元素MLが含有される永久磁石。 (2) R214BよりR含有量の多い非磁性Rリッチ
相が存在しないか、前記非磁性Rリッチ相によって前記
主相が包囲されていない上記(1)の永久磁石。 (3) 前記主相に対する前記隔離相の体積比が0.0
1〜0.1である上記(1)または(2)の永久磁石。 (4) 質量百分率で表した元素含有量が、 23≦R≦40、 0.8≦B≦1.5、 0.5≦ML≦10、 残部T である上記(1)〜(3)のいずれかの永久磁石。 (5) モル比RH/RLが0.01〜0.15である上
記(1)〜(4)のいずれかの永久磁石。 (6) 上記(1)〜(5)のいずれかの永久磁石を製
造する方法であって、RL214B金属間化合物を含む主
相用粉末と、RH、TおよびBを含有する隔離相用粉末
と、前記低融点化元素MLとを含有する原料粉末を成形
し、1000℃以下の温度で焼結する工程を有する永久
磁石の製造方法。
[Means for Solving the Problems] The above-mentioned object is as follows (1)
It is achieved by the present invention of (6). (1) R (R is at least one rare earth element
, T (T is Fe or Fe and Co)
And a permanent magnet containing B as a main component, wherein RH(RHIs
At least one heavy rare earth element) and RL(RL
Is at least one of light rare earth elements)
Qualitatively RL2T14The main phase consisting of the B intermetallic compound is substantially
To RH2T14Surrounded by an isolated phase composed of B intermetallic compound
By doing so, the adjacent main phases are substantially
Is isolated from H2T14Lowering the melting point of B
Low melting point element MLA permanent magnet containing. (2) R2T14Non-magnetic R rich with more R content than B
Phase is absent or said non-magnetic R-rich phase
The permanent magnet according to (1) above, in which the main phase is not surrounded. (3) The volume ratio of the isolated phase to the main phase is 0.0
The permanent magnet according to (1) or (2) above, which is 1 to 0.1. (4) The element content expressed as a mass percentage is 23 ≦ R ≦ 40, 0.8 ≦ B ≦ 1.5, 0.5 ≦ ML≦ 10, Balance T The permanent magnet according to any one of (1) to (3) above. (5) Molar ratio RH/ RLIs 0.01 to 0.15
The permanent magnet according to any one of (1) to (4). (6) Manufacture the permanent magnet according to any one of (1) to (5) above.
A method of making, RL2T14Mainly including B intermetallic compounds
Compatible powder and RH, T and B-containing powder for isolated phase
And the low melting point element MLForming raw material powder containing and
And has a process of sintering at a temperature of 1000 ° C or less
Magnet manufacturing method.

【0013】[0013]

【作用および効果】本発明の永久磁石は、従来のR2
14B焼結磁石と同様に、主相としてR214B相を有す
る。しかし、本発明の磁石は、従来のR214B焼結磁
石において保磁力発現に必須であった前記非磁性Rリッ
チ相に替えて、実質的にRH2Fe14B相からなる隔離相
を有する。
OPERATION AND EFFECT The permanent magnet of the present invention has the conventional R 2 T
Like the 14 B sintered magnet, it has the R 2 T 14 B phase as the main phase. However, in the magnet of the present invention, in place of the non-magnetic R-rich phase, which was essential for the expression of coercive force in the conventional R 2 T 14 B sintered magnet, the isolated phase substantially consisting of the R H2 Fe 14 B phase. Have.

【0014】なお、例えば前記特公平5−31807の
図1および図2に示されるように、従来のR214B焼
結磁石であっても、非磁性Rリッチ相が結晶粒界の一部
だけに存在するように見えることもある。しかし、この
ような磁石であっても、例えば透過型電子顕微鏡により
観察すると、主相が薄いRリッチ相によって包囲されて
いることが確認できる。このように従来のR214B焼
結磁石では、Rリッチ相によって包囲されていない限
り、磁石として実用可能な保磁力は得られない。
As shown in FIGS. 1 and 2 of Japanese Patent Publication No. 5-31807, for example, even in the conventional R 2 T 14 B sintered magnet, the nonmagnetic R-rich phase is one of the grain boundaries. It may appear to exist only in the department. However, even with such a magnet, it is possible to confirm that the main phase is surrounded by the thin R-rich phase when observed with a transmission electron microscope, for example. As described above, in the conventional R 2 T 14 B sintered magnet, unless it is surrounded by the R-rich phase, a coercive force practical as a magnet cannot be obtained.

【0015】従来、DyやTbなどの重希土類元素を添
加したR214B焼結磁石は知られている。重希土類元
素を含有する磁石を通常の方法で製造した場合、結晶粒
内において重希土類元素はほぼ均一に分散していること
が一般的である。また、前記特開平4−155902号
公報に記載されているように、Nd214B粉末と重希
土類元素を主成分とする粉末とを混合して焼結した場
合、結晶粒内において重希土類元素の濃度分布が形成さ
れる。
Conventionally, an R 2 T 14 B sintered magnet to which a heavy rare earth element such as Dy or Tb is added has been known. When a magnet containing a heavy rare earth element is manufactured by an ordinary method, it is general that the heavy rare earth element is almost uniformly dispersed in the crystal grains. Further, as described in JP-A-4-155902, when Nd 2 T 14 B powder and a powder containing a heavy rare earth element as a main component are mixed and sintered, the heavy rare earth element is included in the crystal grains. An element concentration distribution is formed.

【0016】これに対し本発明の磁石では、軽希土類元
素を含有するために残留磁束密度が極めて高くなってい
るRL2Fe14B相を主相とし、この主相が、前記隔離相
によって包囲された構造をもつ。隔離相を構成するRH2
Fe14Bは、異方性磁界HAがNd2Fe14Bのそれの約
3倍であり、かつ磁化が小さい。そのため、逆磁区発生
の核を生成するために必要な臨界磁場が大きい。異方性
磁場が大きい隔離相において逆磁区を発生させるために
は、大きな逆磁場が必要となる。また、主相は異方性磁
場が小さいため、主相では逆磁区が発生しやすいが、主
相は異方性磁場の大きい隔離相により包囲されている。
そのため、主相で発生した逆磁区は、著しく大きな逆磁
場を印加しないと隔離相を越えることができない。した
がって、本発明の磁石では磁化反転が極めて生じにく
い。その結果、本発明の磁石では、結晶粒内において重
希土類元素が均一に分布している従来の磁石はもちろ
ん、結晶粒内において重希土類元素の濃度分布を設けた
だけの従来の磁石に比べても、保磁力HcJが著しく高く
なる。
On the other hand, in the magnet of the present invention, the main phase is the R L2 Fe 14 B phase whose residual magnetic flux density is extremely high because it contains a light rare earth element, and this main phase is surrounded by the isolated phase. It has a structured structure. R H2 that constitutes the isolated phase
Fe 14 B has an anisotropic magnetic field H A that is about three times that of Nd 2 Fe 14 B and has a small magnetization. Therefore, the critical magnetic field required to generate nuclei for generating reverse magnetic domains is large. A large reverse magnetic field is required to generate a reverse magnetic domain in the isolated phase having a large anisotropic magnetic field. Further, since the main phase has a small anisotropic magnetic field, reverse magnetic domains are easily generated in the main phase, but the main phase is surrounded by the isolated phase having a large anisotropic magnetic field.
Therefore, the reverse magnetic domain generated in the main phase cannot cross the isolated phase unless a remarkably large reverse magnetic field is applied. Therefore, the magnet of the present invention is extremely unlikely to cause magnetization reversal. As a result, in the magnet of the present invention, compared with the conventional magnet in which the heavy rare earth element is uniformly distributed in the crystal grains, as compared with the conventional magnet having only the concentration distribution of the heavy rare earth element in the crystal grains. However, the coercive force HcJ becomes extremely high.

【0017】また、従来のR214B焼結磁石では、非
磁性Rリッチ相の腐食による結晶粒の脱落を防ぐため
に、ニッケルめっき膜や樹脂膜などの保護膜を設けるこ
とが必須であった。これに対し本発明の磁石が有する前
記隔離相は、非磁性Rリッチ相に比べ耐食性が極めて良
好である。そのため本発明の磁石では、従来よりも性能
の低い保護膜でもよく、また、要求される耐食性能がそ
れほど高くない場合には、保護膜を設けずに使用するこ
とも可能である。そのため、製造コストを低減できる。
Further, in the conventional R 2 T 14 B sintered magnet, it is indispensable to provide a protective film such as a nickel plating film or a resin film in order to prevent crystal grains from falling off due to corrosion of the non-magnetic R rich phase. It was On the other hand, the isolated phase included in the magnet of the present invention has much better corrosion resistance than the nonmagnetic R-rich phase. Therefore, in the magnet of the present invention, a protective film having lower performance than the conventional one may be used, and when the required corrosion resistance is not so high, it can be used without providing the protective film. Therefore, the manufacturing cost can be reduced.

【0018】本発明の磁石は、原料粉末を成形して焼結
することにより製造される。本発明では隔離相を形成す
るために、隔離相を構成するRH2Fe14B金属間化合物
の融点を低下させる低融点化元素MLを、原料粉末中に
含有させる。これにより、融点の比較的高いRH2Fe14
Bが、焼結温度を比較的低くしても液相化しやすくな
る。この原料粉末を従来より低温で焼結することによ
り、焼結時の元素拡散が抑えられるので、隔離相によっ
て主相同士が互いに隔離された組織構造を実現できる。
The magnet of the present invention is manufactured by molding raw material powder and sintering it. In the present invention, in order to form the isolated phase, the raw material powder contains the low melting point element M L which lowers the melting point of the R H2 Fe 14 B intermetallic compound forming the isolated phase. As a result, R H2 Fe 14 having a relatively high melting point is obtained.
B tends to be in a liquid phase even if the sintering temperature is relatively low. By sintering this raw material powder at a lower temperature than before, element diffusion at the time of sintering is suppressed, so that a structure structure in which the main phases are isolated from each other by the isolation phase can be realized.

【0019】上記低融点化元素MLは非磁性成分である
ため、残留磁束密度を低下させる。しかし本発明の磁石
は、従来の磁石と異なり、残留磁束密度を低下させる非
磁性Rリッチ相を含有しないため、低融点化元素ML
含有するにもかかわらず、従来の磁石と同等の残留磁束
密度が得られる。したがって、本発明の磁石では、極め
て高い保磁力と十分な残留磁束密度とが実現する。具体
的には、固有保磁力HcJを1600kA/m以上にすること
ができ、かつ、残留磁束密度を1.2T以上にすること
ができる。
Since the low melting point element M L is a non-magnetic component, it reduces the residual magnetic flux density. However magnet of the present invention, unlike the conventional magnet, because it does not contain a non-magnetic R-rich phase to reduce the residual magnetic flux density, despite containing low melting point element M L, equivalent to the residual and the conventional magnet The magnetic flux density is obtained. Therefore, the magnet of the present invention realizes an extremely high coercive force and a sufficient residual magnetic flux density. Specifically, the intrinsic coercive force HcJ can be set to 1600 kA / m or more, and the residual magnetic flux density can be set to 1.2 T or more.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0021】永久磁石 本発明の永久磁石は、R、TおよびBを主成分とする。
元素Rは、希土類元素の少なくとも1種である。本発明
において希土類元素とは、Yおよびランタノイドであ
る。また、上記元素Tは、Fe、またはFeおよびCo
である。
Permanent Magnet The permanent magnet of the present invention contains R, T and B as main components.
The element R is at least one kind of rare earth element. In the present invention, the rare earth elements are Y and lanthanoid. The element T is Fe, or Fe and Co.
Is.

【0022】本発明の磁石は、 RH(RHは重希土類元
素の少なくとも1種である)およびRL(RLは軽希土類
元素の少なくとも1種である)を含有する。軽希土類元
素にはLa、Ce、Pr、Nd、Pm、Sm、Euが包
含され、重希土類元素にはGd、Tb、Dy、Ho、E
r、Tm、Yb、LuおよびYが包含される。
The magnet of the present invention contains RH ( RH is at least one heavy rare earth element) and RL ( RL is at least one light rare earth element). Light rare earth elements include La, Ce, Pr, Nd, Pm, Sm, and Eu, and heavy rare earth elements include Gd, Tb, Dy, Ho, E.
Included are r, Tm, Yb, Lu and Y.

【0023】本発明の磁石では、実質的にRL214B金
属間化合物からなる主相が、実質的にRH214B金属間
化合物からなる隔離相によって包囲され、この隔離相に
より主相同士が互いに実質的に隔離された構造をもつ。
これにより、高保磁力かつ高残留磁束密度が実現する。
保磁力および残留磁束密度をより高くするためには、R
LとしてNdおよび/またはPrを選択することが好ま
しく、また、RHとしてTb、DyおよびHoの少なく
とも1種を選択することが好ましい。
In the magnet of the present invention, the main phase consisting essentially of the R L2 T 14 B intermetallic compound is surrounded by the isolated phase consisting essentially of the R H2 T 14 B intermetallic compound, and this main phase is the main phase. It has a structure in which the phases are substantially isolated from each other.
Thereby, high coercive force and high residual magnetic flux density are realized.
To increase the coercive force and the residual magnetic flux density, R
It is preferable to select Nd and / or Pr as L , and it is preferable to select at least one of Tb, Dy and Ho as R H.

【0024】なお、本明細書において「実質的にRL2
14B金属間化合物からなる主相」とは、主相中における
原子比RH/RLが、好ましくは0.05以下、より好ま
しくは0.01以下であることを意味する。磁石中にお
ける元素分布は、例えばEPMA(電子線プローブマイ
クロアナリシス)により測定することができる。また、
「実質的にRH214B金属間化合物からなる隔離相」と
は、隔離相中における原子比RL/RHが、好ましくは
0.05以下、より好ましくは0.01以下であること
を意味する。
In the present specification, "substantially R L2 T
The “main phase composed of 14 B intermetallic compound” means that the atomic ratio R H / R L in the main phase is preferably 0.05 or less, more preferably 0.01 or less. The element distribution in the magnet can be measured by, for example, EPMA (electron probe microanalysis). Also,
The "isolated phase substantially consisting of R H2 T 14 B intermetallic compound" means that the atomic ratio R L / RH in the isolated phase is preferably 0.05 or less, more preferably 0.01 or less. Means

【0025】また、本発明では、透過型電子顕微鏡で結
晶粒界付近を観察したとき、任意の視野のいずれにおい
ても、連続した隔離相が主相を切れ目なく包囲している
ことが最も好ましい。ただし、観察する視野の数を10
0としたとき、隣り合う2つの結晶粒の間で隔離相が途
切れている視野の数が5以下であれば、「隔離相により
主相同士が互いに実質的に隔離されている」といえ、本
発明の効果は十分に実現する。なお、この場合、観察す
る視野の大きさは、結晶粒径より狭い範囲とする。
Further, in the present invention, when observing the vicinity of the crystal grain boundary with a transmission electron microscope, it is most preferable that the continuous isolated phase surrounds the main phase in a continuous manner in any arbitrary visual field. However, the number of fields of view to be observed is 10
When the number of fields of view in which the separation phase is interrupted between two adjacent crystal grains is 5 or less when 0 is set, it can be said that “the main phases are substantially separated from each other by the separation phase”, The effects of the present invention are fully realized. In this case, the size of the field of view to be observed is in a range narrower than the crystal grain size.

【0026】上記構造を実現するために、本発明の磁石
には、RH214B金属間化合物の融点を低下させる機能
をもち、かつ、自身が比較的低融点である低融点化元素
Lが含有される。元素MLがRH214Bの融点を低下さ
せるとは、RH214Bを構成する元素の一部、特に元素
Tの一部を元素MLが置換することにより、置換後のR
H214Bの融点が下がることを意味する。低融点化元素
Lとしては、好ましくはAl、Ga、Ag、In、B
i、Sn、Pb、Zn、Li、SbおよびSiの少なく
とも1種であり、より好ましくはAl、Ga、Ag、I
n、BiおよびSnの少なくとも1種であり、さらに好
ましくはAl、Ga、BiおよびSnの少なくとも1種
である。
In order to realize the above structure, the magnet of the present invention has a function of lowering the melting point of the R H2 T 14 B intermetallic compound, and the element M for lowering the melting point which itself has a relatively low melting point. Contains L. The element M L lowers the melting point of R H2 T 14 B means that a part of the elements constituting R H2 T 14 B, particularly a part of the element T, is replaced by the element M L , and the R after replacement is R.
Means that the melting point of H2 T 14 B decreases. The melting point lowering element M L is preferably Al, Ga, Ag, In, B.
At least one of i, Sn, Pb, Zn, Li, Sb and Si, more preferably Al, Ga, Ag, I.
It is at least one kind of n, Bi and Sn, and more preferably at least one kind of Al, Ga, Bi and Sn.

【0027】磁石中において、元素MLは均一に分布し
ていてもよく、隔離相または主相に偏って分布していて
もよいが、均一に分布するか、隔離相に偏って分布して
いることが好ましく、特に、隔離相に偏って分布してい
ることが好ましい。
In the magnet, the element M L may be uniformly distributed, or may be distributed in the isolated phase or the main phase in a biased manner. However, it may be distributed uniformly or in the isolated phase. It is preferable that they are distributed unevenly in the isolated phase.

【0028】従来のR214B磁石において高保磁力を
実現するためには、非磁性Rリッチ相により主相同士が
実質的に隔離されていることが必須であった。これに対
し本発明の磁石では、非磁性Rリッチ相に替え、磁石と
して機能とする上記隔離相で主相同士を隔離する構造と
することにより、高保磁力かつ高残留磁束密度を実現す
る。本発明の磁石では、非磁性Rリッチ相が存在しない
ことが最も好ましいが、結晶粒界の一部(三重点など)
にだけ存在するなど、主相を包囲するものでなければ、
非磁性Rリッチ相が存在してもよい。なお、本発明の磁
石に含有されることのある非磁性Rリッチ相とは、R2
14BよりR含有量の多い非磁性相であり、通常、R含
有量が80質量%以上である相を意味する。
In order to realize a high coercive force in the conventional R 2 T 14 B magnet, it was essential that the main phases be substantially separated from each other by the non-magnetic R rich phase. On the other hand, in the magnet of the present invention, a high coercive force and a high residual magnetic flux density are realized by replacing the non-magnetic R-rich phase with a structure in which the main phases are separated from each other by the isolated phase that functions as a magnet. In the magnet of the present invention, it is most preferable that the non-magnetic R-rich phase does not exist, but some of the grain boundaries (triple point, etc.)
If it does not surround the main phase, such as
A non-magnetic R-rich phase may be present. The non-magnetic R-rich phase that may be contained in the magnet of the present invention means R 2
It is a nonmagnetic phase having a higher R content than T 14 B, and usually means a phase having an R content of 80% by mass or more.

【0029】主相に対する隔離相の体積比は、好ましく
は0.01〜0.15、より好ましくは0.025〜
0.08である。また、隔離相の最小厚さは、好ましく
は0.01〜2μm、より好ましくは0.05〜1μmで
ある。前記体積比が小さすぎたり隔離相が薄すぎたりす
ると、隔離相による主相の隔離が不十分となりやすく、
高保磁力が得られにくい。一方、前記体積比が大きすぎ
たり隔離相が厚すぎたりすると、隔離相より高い磁化を
もつ主相の比率が低くなるため、高残留磁束密度が得ら
れにくくなる。隔離相の最小厚さは、透過型電子顕微鏡
により測定することができる。
The volume ratio of the isolated phase to the main phase is preferably 0.01 to 0.15, more preferably 0.025 to.
It is 0.08. Further, the minimum thickness of the isolated phase is preferably 0.01 to 2 μm, more preferably 0.05 to 1 μm. If the volume ratio is too small or the isolated phase is too thin, the isolation of the main phase by the isolated phase tends to be insufficient,
It is difficult to obtain high coercive force. On the other hand, if the volume ratio is too large or the isolation phase is too thick, the proportion of the main phase having a higher magnetization than the isolation phase becomes low, and it becomes difficult to obtain a high residual magnetic flux density. The minimum thickness of the isolated phase can be measured by a transmission electron microscope.

【0030】主相は、従来のR214B系焼結磁石の結
晶粒と同様に正方晶系であり、その平均径(平均結晶粒
径)は、通常、1〜80μm、好ましくは1〜50μm、
より好ましくは1〜20μmである。
The main phase is a tetragonal system like the crystal grains of the conventional R 2 T 14 B system sintered magnet, and its average diameter (average crystal grain size) is usually 1 to 80 μm, preferably 1 ~ 50 μm,
More preferably, it is 1 to 20 μm.

【0031】磁石中における元素含有量(質量百分率)
は、好ましくは 23≦R≦40、 0.8≦B≦1.5、 0.3≦ML≦10、 残部T であり、より好ましくは 28≦R≦32、 0.8≦B≦1.2、 0.5≦ML≦5、 残部T である。元素R中におけるモル比RH/RLは、前記した
主相に対する隔離相の体積比に応じ、好ましくは0.0
1〜0.15、より好ましくは0.025〜0.08と
される。
Element content in magnet (mass percentage)
Preferably 23 ≦ R ≦ 40, 0.8 ≦ B ≦ 1.5, 0.3 ≦ M L ≦ 10, and the balance T, more preferably 28 ≦ R ≦ 32, 0.8 ≦ B ≦ 1 .2, 0.5 ≦ M L ≦ 5, and the balance T 2. The molar ratio R H / R L in the element R is preferably 0.0 depending on the volume ratio of the isolated phase to the main phase described above.
1 to 0.15, more preferably 0.025 to 0.08.

【0032】R含有量が少なすぎると、遊離α−Fe相
が生成するため、保磁力が低くなる。一方、R含有量が
多すぎると、非磁性Rリッチ相が多くなるため、残留磁
束密度が低くなる。T含有量が少なすぎると残留磁束密
度が低くなり、多すぎると保磁力が低くなる。B含有量
が少なすぎると、R217化合物等の菱面体晶構造をも
つ異方性の低い相が生成するために保磁力が低くなり、
多すぎるとBリッチな非磁性相が多くなるため残留磁束
密度が低くなる。ML含有量が少なすぎると、融点低下
によるRH214Bの液相化が困難となるため、隔離相に
よって主相同士が隔離された構造とすることが困難とな
る。
If the R content is too low, a free α-Fe phase is produced, and the coercive force is lowered. On the other hand, if the R content is too large, the nonmagnetic R-rich phase increases, and the residual magnetic flux density decreases. If the T content is too low, the residual magnetic flux density will be low, and if it is too high, the coercive force will be low. If the B content is too low, a low anisotropy phase having a rhombohedral structure, such as the R 2 T 17 compound, is generated, and the coercive force becomes low.
If the amount is too large, the B-rich nonmagnetic phase increases, and the residual magnetic flux density decreases. If the M L content is too small, it becomes difficult to form a liquid phase of R H2 T 14 B due to the lowering of the melting point, which makes it difficult to form a structure in which the main phases are separated from each other by the separated phase.

【0033】Feの一部をCoで置換することにより、
磁気特性を損うことなく温度特性を改善することができ
る。この場合、T中におけるCoのモル比が50%を超
えると磁気特性が劣化するため、T中におけるCoのモ
ル比は50%以下、特に20%以下であることが好まし
い。
By substituting a part of Fe by Co,
The temperature characteristics can be improved without impairing the magnetic characteristics. In this case, if the molar ratio of Co in T exceeds 50%, the magnetic properties deteriorate, so the molar ratio of Co in T is preferably 50% or less, particularly preferably 20% or less.

【0034】また、保磁力の向上、生産性の向上、低コ
スト化を目的として、C、P、S、Ti、V、Cr、M
n、Bi、Nb、Ta、Mo、W、Ge、Zr、Ni、
Si、Hf、Cu等から選択される元素の1種以上を添
加してもよい。磁石中におけるこれらの元素の合計含有
量は、3質量%以下であることが好ましい。これらの元
素の合計含有量が多すぎると、残留磁束密度が低くな
る。
For the purpose of improving coercive force, productivity, and cost reduction, C, P, S, Ti, V, Cr, M
n, Bi, Nb, Ta, Mo, W, Ge, Zr, Ni,
One or more elements selected from Si, Hf, Cu and the like may be added. The total content of these elements in the magnet is preferably 3% by mass or less. If the total content of these elements is too large, the residual magnetic flux density becomes low.

【0035】製造方法 本発明の磁石は、以下に説明する方法により製造するこ
とが好ましい。
Manufacturing Method The magnet of the present invention is preferably manufactured by the method described below.

【0036】この方法では、主相用粉末および隔離相用
粉末を含有する原料粉末を成形し、焼結することにより
永久磁石を得る。この原料粉末は、さらに、前記低融点
化元素MLを含有する。主相用粉末は、RL2Fe14B金
属間化合物を含む。一方、隔離相用粉末は、RH、Tお
よびBを含有するが、RH2Fe14B金属間化合物を含ん
でいてもいなくてもよい。原料粉末中における元素ML
の存在形態は特に限定されず、以下に説明するいずれの
形態であってもよい。
In this method, a permanent magnet is obtained by molding and sintering a raw material powder containing a powder for main phase and a powder for isolated phase. The raw material powder further contains the low melting point element M L. The main-phase powder includes R L2 Fe 14 B intermetallic compound. On the other hand, the powder for the isolated phase contains R H , T and B, but may or may not contain the R H2 Fe 14 B intermetallic compound. Element M L in the raw powder
The existing form of is not particularly limited, and may be any of the forms described below.

【0037】元素MLは、主相用粉末および/または隔
離相用粉末に含有させてもよい。元素MLは隔離相用粉
末の融点を低下させるために用いるので、元素MLは隔
離相用粉末に含有させることが好ましい。
The element M L may be contained in the main phase powder and / or the isolation phase powder. Since the element M L is used to lower the melting point of the isolation phase powder, the element M L is preferably contained in the isolation phase powder.

【0038】また、元素MLを含有する粉末を、前記原
料粉末中に独立して存在させてもよい。元素MLを含有
する粉末としては、元素MLからなる粉末であってもよ
く、元素MLを含有する合金からなる粉末であってもよ
く、これらから選択される2種以上の粉末の混合物であ
ってもよい。元素MLを含む合金としては、R−ML合金
およびT−ML合金の少なくとも1種を用いることが好
ましい。
Further, the powder containing the element M L may be independently present in the raw material powder. The powder containing element M L, may be a powder consisting of elements M L, it may be a powder composed of an alloy containing an element M L, a mixture of two or more powder selected from these May be As the alloy containing the element M L , it is preferable to use at least one of R-M L alloy and T-M L alloy.

【0039】また、主相用粉末を構成する合金粒子の表
面および/または隔離相用粉末を構成する合金粒子の表
面に、ML含有金属(元素MLからなる金属または元素M
Lを含有する合金)を被着させてもよい。ML含有金属を
前記合金粒子表面に被着させるには、蒸着法などの気相
形成法または機械的歪力を加える方法が利用できる。
On the surface of the alloy particles constituting the powder for the main phase and / or on the surface of the alloy particles constituting the powder for the isolation phase, a metal containing M L (a metal consisting of element M L or element M L) is formed.
L- containing alloy) may be applied. To deposit the ML- containing metal on the surface of the alloy particles, a vapor phase forming method such as a vapor deposition method or a method of applying a mechanical strain force can be used.

【0040】機械的歪力を加える方法では、ML含有金
属からなる粒子と前記合金粒子との混合物に対し、金属
ボールやセラミックスボールなどの粉砕媒体により機械
的歪力を加える。用いるML含有金属の展延性が低い場
合、ML含有金属からなる粒子は、粒子形状を保った状
態で前記合金粒子表面に固定される。また、ML含有金
属の展延性が高い場合には、ML含有金属は展延されて
前記合金粒子表面の少なくとも一部を被覆することにな
る。
In the method of applying mechanical straining force, mechanical straining force is applied to a mixture of particles made of ML- containing metal and the alloy particles by a grinding medium such as metal balls or ceramic balls. When the spreadability of the ML- containing metal used is low, the particles made of the ML- containing metal are fixed on the surface of the alloy particles while maintaining the particle shape. Further, when the M L- containing metal has a high spreadability, the M L- containing metal is spread and covers at least a part of the surface of the alloy particles.

【0041】なお、元素MLは隔離相用粉末の融点を低
下させるために用いるので、ML含有金属は、隔離相用
粉末を構成する合金粒子の表面に被着させることが好ま
しい。
Since the element M L is used for lowering the melting point of the isolation phase powder, the M L- containing metal is preferably deposited on the surface of the alloy particles constituting the isolation phase powder.

【0042】上記各方法のなかでは、元素MLを隔離相
用粉末に含有させる方法、および、展延性の高いML
有金属を、隔離用粉末構成粒子の表面に機械的歪力を用
いて被着させる方法が好ましい。元素MLを隔離相用粉
末に含有させてある場合、焼結時に隔離相用粉末が比較
的低温で容易に液相化し、焼結反応が進行する。一方、
隔離相用粉末を構成する合金粒子の表面にML含有金属
を被着させた場合、焼結時にML含有金属が溶融して隔
離相用粉末と反応し、隔離相用粉末を低融点化する。そ
の結果、隔離相用粉末が比較的低温で容易に液相化し、
焼結反応が進行する。
Among the above-mentioned respective methods, a method of incorporating the element M L into the powder for the isolation phase, and a method of using an M L- containing metal having high spreadability on the surface of the particles constituting the isolation powder by mechanical strain. The method of deposition is preferred. When the element M L is contained in the powder for the isolation phase, the powder for the isolation phase is easily liquefied at a relatively low temperature during sintering, and the sintering reaction proceeds. on the other hand,
When the M L- containing metal is deposited on the surface of the alloy particles that make up the isolation phase powder, the M L- containing metal melts during sintering and reacts with the isolation phase powder to lower the melting point of the isolation phase powder. To do. As a result, the powder for the isolated phase easily becomes a liquid phase at a relatively low temperature,
The sintering reaction proceeds.

【0043】隔離相用粉末としては、R214B(原子
比)を中心とする組成の粉末(以下、R214B粉末と
いうことがある)だけを用いてもよいが、相異なる組成
の2種以上の粉末を用いてもよい。例えば、主相用粉末
および隔離相用粉末に加え、元素MLを含有する粉末を
用いる場合には、隔離相用粉末として、(1)R214
B粉末とR−B合金粉末との組み合わせ、(2)R2
14B粉末とR−B合金粉末とT−B合金粉末との組み合
わせ、(3)R−B合金粉末とT−B合金粉末との組み
合わせを用いることが好ましい。
As the powder for the isolated phase, only a powder having a composition centered on R 2 T 14 B (atomic ratio) (hereinafter sometimes referred to as R 2 T 14 B powder) may be used, but different powders are used. You may use the powder of 2 or more types of composition. For example, in the case of using a powder containing the element M L in addition to the main phase powder and the isolated phase powder, (1) R 2 T 14 is used as the isolated phase powder.
A combination of B powder and RB alloy powder, (2) R 2 T
14 It is preferable to use a combination of B powder, RB alloy powder and TB alloy powder, and (3) a combination of RB alloy powder and TB alloy powder.

【0044】主相用粉末および隔離相用粉末は、従来の
214B磁石を製造する際に用いる焼結対象の原料粉
末と同様にして製造すればよい。すなわち、これらの粉
末は、ストリップキャスト法や鋳型鋳造法により製造し
た合金を粉砕することにより得ることができる。粉砕方
法は特に限定されないが、通常、ディスクミル等により
10〜100μm程度の粒径まで粗粉砕し、次いで、ジ
ェットミル等により0.5〜10μm程度の粒径まで微
粉砕すればよい。なお、水素吸蔵粉砕を行うこともでき
る。水素吸蔵粉砕では、合金ストリップや30mm角程度
まで粗粉砕した合金インゴットに対し、水素吸蔵と水素
放出とを少なくとも1回行うことにより脆化させ、次い
で、上記した機械的な粗粉砕および微粉砕を行う。な
お、原料粉末は、主相用合金および隔離相用合金のそれ
ぞれについて微粉砕粉を製造し、これらを混合すること
により得てもよく、各合金の粗粉砕粉を混合し、混合物
を微粉砕することにより得てもよい。
The powder for the main phase and the powder for the isolated phase may be manufactured in the same manner as the raw material powder to be sintered used in manufacturing the conventional R 2 T 14 B magnet. That is, these powders can be obtained by crushing an alloy produced by a strip casting method or a mold casting method. The pulverization method is not particularly limited, but generally, it may be roughly pulverized by a disc mill or the like to a particle size of about 10 to 100 μm, and then finely pulverized by a jet mill or the like to a particle size of about 0.5 to 10 μm. In addition, hydrogen occlusion pulverization can also be performed. In hydrogen storage and crushing, alloy strips and alloy ingots roughly crushed to about 30 mm square are embrittled by performing hydrogen storage and hydrogen release at least once, and then mechanically crushed and finely crushed as described above. To do. The raw material powder may be obtained by producing finely pulverized powder for each of the main phase alloy and the isolated phase alloy and mixing them, or by mixing coarsely pulverized powder of each alloy and finely pulverizing the mixture. You may obtain by doing.

【0045】主相用粉末の組成および隔離相用粉末の組
成は、焼結後の全体組成が前記した好ましい範囲内とな
るように、また、主相用粉末ではR214B金属間化合
物が形成可能となるように、適宜設定すればよいが、好
ましくはどちらの粉末も 23≦R≦40、 0.8≦B≦1.5、 残部T とする。ただし、主相用合金では、Rリッチ相の生成を
抑制するためにR含有量を比較的少なくすることがより
好ましく、具体的には、 28≦R≦32、 0.8≦B≦1.2、 1≦ML≦5、 残部T とすることが望ましい。一方、粒界相用合金では、融点
を低くするためにR含有量を比較的多くすることがより
好ましく、具体的には 28≦R≦35、 0.8≦B≦1.2、 1≦ML≦5、 残部T とすることが望ましい。なお、主相用粉末および/また
は隔離相用粉末にMLを含有させる場合は、元素Tを置
換する形でMLを添加すればよい。また、主相用粉末で
は元素Rの全量を元素RLとし、隔離相用粉末では元素
Rの全量を元素RHとすることが好ましい。
The composition of the powder for the main phase and the composition of the powder for the isolated phase are such that the overall composition after sintering falls within the preferable range described above, and in the powder for the main phase, the R 2 T 14 B intermetallic compound is used. However, it is preferable that both powders have 23 ≦ R ≦ 40, 0.8 ≦ B ≦ 1.5, and the balance T. However, in the alloy for the main phase, it is more preferable that the R content is relatively small in order to suppress the generation of the R-rich phase. Specifically, 28 ≦ R ≦ 32, 0.8 ≦ B ≦ 1. 2, 1 ≦ M L ≦ 5 , it is desirable that the balance T. On the other hand, in the grain boundary phase alloy, it is more preferable that the R content is relatively large in order to lower the melting point. Specifically, 28 ≦ R ≦ 35, 0.8 ≦ B ≦ 1.2, 1 ≦ It is desirable that M L ≦ 5 and the balance T. In the case of incorporating the M L powder for the main-phase powder and / or quarantine phase, it may be added to M L in a manner to replace the element T. Further, it is preferable that the total amount of the element R is the element R L in the main phase powder and the total amount of the element R is the element R H in the isolated phase powder.

【0046】次に、原料粉末を成形する。成形は磁場中
にて行う。磁場強度は800kA/m以上、成形圧力は50
〜500MPa程度であることが好ましい。
Next, the raw material powder is molded. Molding is performed in a magnetic field. Magnetic field strength is 800 kA / m or more, molding pressure is 50
It is preferably about 500 MPa.

【0047】成形後、焼結する。焼結温度(安定温度)
は、1000℃以下、好ましくは900〜980℃とす
る。安定温度とは、昇温過程と降温過程とに挟まれた安
定温度域における温度である。安定温度に保持する時間
は、好ましくは0.1〜100時間、より好ましくは2
0〜80時間とする。このように本発明では、焼結工程
において、従来よりも低温かつ長時間の加熱を行うこと
を特徴とする。焼結温度が低すぎたり焼結時間が短すぎ
たりすると、隔離相用粉末が液相化しにくくなるので、
焼結が十分に進まず、残留磁束密度および保磁力のいず
れもが低くなりやすい。一方、焼結温度が高すぎたり焼
結時間が長すぎたりすると、元素拡散が進む結果、隔離
相としての機能および主相としての機能が低くなってし
まう。
After molding, it is sintered. Sintering temperature (stable temperature)
Is 1000 ° C. or lower, preferably 900 to 980 ° C. The stable temperature is a temperature in a stable temperature region sandwiched between a temperature raising process and a temperature lowering process. The time for maintaining the stable temperature is preferably 0.1 to 100 hours, more preferably 2 hours.
0 to 80 hours. As described above, the present invention is characterized in that in the sintering step, heating is performed at a lower temperature and for a longer time than in the conventional case. If the sintering temperature is too low or the sintering time is too short, the powder for the isolation phase will be difficult to liquefy,
Sintering does not proceed sufficiently, and both the residual magnetic flux density and the coercive force tend to be low. On the other hand, if the sintering temperature is too high or the sintering time is too long, the diffusion of elements proceeds, and as a result, the function as the isolation phase and the function as the main phase become low.

【0048】焼結後、時効処理を施すことが好ましい。
時効処理は、好ましくは450℃以上焼結温度以下の温
度、より好ましくは550〜950℃で、0.1〜10
0時間加熱することにより行う。時効処理により保磁力
がさらに向上する。なお、時効処理は、多段階の熱処理
から構成してもよい。例えば2段の熱処理からなる時効
処理では、1段目の熱処理を700℃以上焼結温度未満
の温度で0.1〜50時間行い、2段目の熱処理を50
0〜700℃で0.1〜100時間行うことが好まし
い。
After sintering, it is preferable to perform an aging treatment.
The aging treatment is preferably performed at a temperature of 450 ° C. or higher and a sintering temperature or lower, more preferably 550 to 950 ° C. for 0.1 to 10 ° C.
It is performed by heating for 0 hours. The coercive force is further improved by the aging treatment. The aging treatment may be composed of multi-step heat treatment. For example, in the aging treatment consisting of two-step heat treatment, the first-step heat treatment is performed at a temperature of 700 ° C. or higher and lower than the sintering temperature for 0.1 to 50 hours, and the second-step heat treatment is performed for 50 hours.
It is preferable to carry out the treatment at 0 to 700 ° C. for 0.1 to 100 hours.

【0049】なお、粉砕、混合、成形、焼結および時効
処理の各工程は、Arガス、N2ガス等の非酸化性ガス
雰囲気中または真空中で行なわれることが好ましい。
The steps of crushing, mixing, molding, sintering and aging treatment are preferably carried out in a non-oxidizing gas atmosphere such as Ar gas or N 2 gas or in vacuum.

【0050】本発明の磁石の用途は特に限定されず、本
発明の磁石は、例えばモータやスピーカなど各種機器に
適用可能である。
The use of the magnet of the present invention is not particularly limited, and the magnet of the present invention can be applied to various devices such as a motor and a speaker.

【0051】[0051]

【実施例】サンプルNo.1 以下の手順で、主相用粉末を製造した。まず、 Nd:29質量%、 B:1.05質量%、 Fe:残部 および微量の不可避的不純物からなる合金ストリップ
を、ストリップキャスト法により製造した。この合金ス
トリップは、厚さが0.3〜0.6mmであり、柱状のR
214B金属間化合物結晶を含むものであった。X線回
折による分析では、他の相に由来する回折線は認められ
ず、また、EPMAによる観察では、少量の非磁性Rリ
ッチ相が認められた。
Example Sample No. 1 A powder for main phase was manufactured by the following procedure. First, an alloy strip composed of Nd: 29% by mass, B: 1.05% by mass, Fe: the balance and a trace amount of unavoidable impurities was manufactured by a strip casting method. This alloy strip has a thickness of 0.3-0.6 mm and a columnar R
It contained 2 T 14 B intermetallic compound crystals. Analysis by X-ray diffraction revealed no diffraction lines derived from other phases, and observation by EPMA revealed a small amount of non-magnetic R-rich phase.

【0052】この合金ストリップに室温付近で水素を吸
蔵させ、昇温して脱水素化することにより合金ストリッ
プを脆化した後、350μmのオープニングの篩を通過
する寸法までディスクミルにより粗粉砕した。次いで、
窒素ガスを利用したジェットミルにより平均粒径が5μ
mとなるまで微粉砕して、主相用粉末を得た。
Hydrogen was absorbed in this alloy strip at around room temperature, and the temperature was increased to dehydrogenate to embrittle the alloy strip, and then coarsely pulverized by a disc mill to a size that passed through an opening sieve of 350 μm. Then
Average particle size is 5μ by jet mill using nitrogen gas
Finely pulverized to m to obtain a main phase powder.

【0053】また、以下の手順で隔離相用粉末を製造し
た。まず、 Dy:32.5質量%、 B:1.13質量%、 Co:3質量%、 Fe:残部 および微量の不可避的不純物からなる合金ストリップ
を、ストリップキャスト法により製造した。この合金ス
トリップは、厚さが0.3〜0.6mmであり、柱状のR
214B金属間化合物結晶を含むものであった。X線回
折による分析では、他の相に由来する回折線は認められ
なかった。この合金ストリップを用い、主相用粉末製造
の際と同様にして粉砕することにより、平均粒径3.5
μmの隔離相用粉末を得た。
A powder for the isolated phase was manufactured by the following procedure. First, an alloy strip composed of Dy: 32.5% by mass, B: 1.13% by mass, Co: 3% by mass, Fe: the balance and trace amounts of unavoidable impurities was manufactured by a strip casting method. This alloy strip has a thickness of 0.3-0.6 mm and a columnar R
It contained 2 T 14 B intermetallic compound crystals. Analysis by X-ray diffraction showed no diffraction lines derived from other phases. By using this alloy strip and pulverizing it in the same manner as in the production of the powder for the main phase, an average particle size of 3.5
A μm powder for the isolated phase was obtained.

【0054】この隔離相用粉末を、雰囲気制御が可能な
ロータリーキルンに投入し、ロータリーキルン内にAl
蒸気を導入することにより、隔離相用粉末を構成する合
金粒子の表面にAl膜を形成した。合金粒子表面に被着
したAlの量は、隔離相用粉末に対し10質量%であっ
た。なお、このAlは、本発明における低融点化元素M
Lとして機能する。
This powder for the isolated phase was placed in a rotary kiln capable of controlling the atmosphere, and Al was placed in the rotary kiln.
By introducing the steam, an Al film was formed on the surface of the alloy particles constituting the powder for the isolation phase. The amount of Al deposited on the surface of the alloy particles was 10 mass% with respect to the powder for the isolation phase. It should be noted that this Al is an element M for lowering the melting point in the present invention.
Functions as L.

【0055】次いで、主相用粉末/Alが被着した隔離
相用粉末=9/1(質量比)となるように両粉末をVミ
キサーにより混合し、原料粉末を得た。この原料粉末
を、1.2Tの磁場中で、磁場の向きと直交する方向に
196MPaの圧力を加えて成形した。得られた成形体
を、1気圧未満のArガス雰囲気中において980℃に
29時間保持することにより焼結した。得られた焼結体
を450℃で12時間時効処理して、焼結磁石サンプル
No.1を得た。
Next, both powders were mixed by a V mixer so that the powder for the main phase / the powder for the isolated phase adhered with Al = 9/1 (mass ratio), to obtain a raw material powder. The raw material powder was molded in a magnetic field of 1.2 T by applying a pressure of 196 MPa in a direction orthogonal to the direction of the magnetic field. The obtained compact was sintered by holding it at 980 ° C. for 29 hours in an Ar gas atmosphere of less than 1 atm. The obtained sintered body was aged at 450 ° C. for 12 hours to obtain a sintered magnet sample.
I got No.1.

【0056】サンプルNo.1の組成は、 Nd:26.1質量%、 Dy:3.0質量%、 B:1.05質量%、 Co:0.27質量%、 Al:0.91質量%、 Fe:残部 であり、さらに微量の不可避的不純物を含むものであ
る。サンプルNo.1の断面を、EPMA、微小領域のX
線回折および透過型電子顕微鏡により調べた。その結
果、結晶粒(主相)と粒界相(隔離相)とが存在し、主
相はNd214B金属間化合物から実質的に構成され、
隔離相はDy214B金属間化合物から実質的に構成さ
れ、結晶粒界の三重点にわずかな量の非磁性Rリッチ相
が存在し、Alが主相よりも隔離相に高濃度で分布する
組織構造をもつことがわかった。また、平均結晶粒径は
11μmであり、隔離相の最小厚さは0.12μmであ
り、主相に対する隔離相の体積比は0.07であった。
また、透過型電子顕微鏡の100視野中、隣り合う2つ
の結晶粒の間で隔離相が途切れている視野は、3であっ
た。
The composition of sample No. 1 was: Nd: 26.1% by mass, Dy: 3.0% by mass, B: 1.05% by mass, Co: 0.27% by mass, Al: 0.91% by mass. , Fe: The balance, which further contains a trace amount of unavoidable impurities. The cross section of sample No. 1 shows the EPMA and X
It was examined by line diffraction and transmission electron microscopy. As a result, a crystal grain (main phase) and a grain boundary phase (isolation phase) exist, and the main phase is substantially composed of Nd 2 T 14 B intermetallic compound,
The isolated phase is substantially composed of Dy 2 T 14 B intermetallic compound, a small amount of non-magnetic R-rich phase is present at the triple points of the grain boundaries, and Al is present in the isolated phase at a higher concentration than the main phase. It was found to have a distributed tissue structure. The average crystal grain size was 11 μm, the minimum thickness of the isolated phase was 0.12 μm, and the volume ratio of the isolated phase to the main phase was 0.07.
In addition, in 100 fields of view of the transmission electron microscope, the field of view in which the isolation phase was interrupted between two adjacent crystal grains was 3.

【0057】サンプルNo.2 サンプルNo.1の製造に用いた隔離相用粉末と平均粒径
1μmのAl粉末とを、直径5mmのステンレススチール
製ボールと共にバレル加工機中に投入し、Ar雰囲気中
で振動を加えた。これにより、隔離相用粉末を構成する
合金粒子の表面に、Al粒子を被着させた。合金粒子表
面に被着したAl量は、隔離相用粉末に対し10.5質
量%であった。
Sample No. 2 The powder for the isolation phase used in the production of Sample No. 1 and the Al powder having an average particle size of 1 μm were put into a barrel processing machine together with a stainless steel ball having a diameter of 5 mm, and were placed in an Ar atmosphere. Vibration was applied at. As a result, Al particles were deposited on the surfaces of the alloy particles constituting the powder for the isolated phase. The amount of Al deposited on the surface of the alloy particles was 10.5 mass% with respect to the powder for the isolation phase.

【0058】このようにしてAlを被着させた隔離相用
粉末を用いたほかはサンプルNo.1と同様にして、焼結
磁石サンプルNo.2を得た。サンプルNo.2の断面をサン
プルNo.1と同様にして調べたところ、サンプルNo.1と
同様な組織構造であった。また、平均結晶粒径は8μm
であり、隔離相の最小厚さは0.08μmであり、主相
に対する隔離相の体積比は0.07であった。また、透
過型電子顕微鏡の100視野中、隣り合う2つの結晶粒
の間で隔離相が途切れている視野は、4であった。
Sintered magnet sample No. 2 was obtained in the same manner as sample No. 1 except that the powder for the isolated phase coated with Al was used. When the cross section of Sample No. 2 was examined in the same manner as Sample No. 1, it was found to have the same structure structure as Sample No. 1. Also, the average crystal grain size is 8 μm
The minimum thickness of the isolated phase was 0.08 μm, and the volume ratio of the isolated phase to the main phase was 0.07. Further, in 100 fields of view of the transmission electron microscope, the field of view in which the isolation phase was discontinued between two adjacent crystal grains was 4.

【0059】サンプルNo.3 Dy:30質量%、 B:1.13質量%、 Co:3質量%、 Al:10質量%、 Fe:残部 および微量の不可避的不純物からなる合金ストリップ
を、ストリップキャスト法により製造した。この合金ス
トリップは、厚さが0.3〜0.6mmであり、柱状のR
214B金属間化合物結晶を含むものであった。X線回
折による分析では、他の相に由来する回折線は認められ
なかった。なお、Alは、R214B金属間化合物結晶
のFeサイトを置換していると考えられる。この合金ス
トリップを、サンプルNo.1の主相用粉末製造の際と同
様にして粉砕することにより、平均粒径3.6μmの隔
離相用粉末を得た。
Sample No. 3 Dy: 30% by mass, B: 1.13% by mass, Co: 3% by mass, Al: 10% by mass, Fe: An alloy strip consisting of the balance and trace amounts of unavoidable impurities was strip cast. It was manufactured by the method. This alloy strip has a thickness of 0.3-0.6 mm and a columnar R
It contained 2 T 14 B intermetallic compound crystals. Analysis by X-ray diffraction showed no diffraction lines derived from other phases. It is considered that Al replaces the Fe site of the R 2 T 14 B intermetallic compound crystal. The alloy strip was pulverized in the same manner as in the production of the powder for the main phase of Sample No. 1 to obtain the powder for the isolated phase having an average particle diameter of 3.6 μm.

【0060】この隔離相用粉末とサンプルNo.1の製造
に用いた主相用粉末とを、主相用粉末/隔離相用粉末=
9/1(質量比)となるようにVミキサーにより混合
し、原料粉末を得た。この原料粉末を用いたほかはサン
プルNo.1と同様にして、焼結磁石サンプルNo.3を得
た。
The powder for the isolated phase and the powder for the main phase used in the production of Sample No. 1 were prepared as follows: powder for the main phase / powder for the isolated phase =
The raw material powder was obtained by mixing with a V mixer so as to be 9/1 (mass ratio). Sintered magnet sample No. 3 was obtained in the same manner as sample No. 1 except that this raw material powder was used.

【0061】サンプルNo.3の組成は、 Nd:26.1質量%、 Dy:3.0質量%、 B:1.06質量%、 Co:0.3質量%、 Al:1.0質量%、 Fe:残部 であり、さらに微量の不可避的不純物を含むものであ
る。サンプルNo.3の断面をサンプルNo.1と同様にして
調べたところ、サンプルNo.1と同様な組織構造であっ
た。また、平均結晶粒径は11μmであり、隔離相の最
小厚さは0.14μmであり、主相に対する隔離相の体
積比は0.09であった。また、透過型電子顕微鏡の1
00視野中、隣り合う2つの結晶粒の間で隔離相が途切
れている視野は、2であった。
The composition of sample No. 3 was as follows: Nd: 26.1% by mass, Dy: 3.0% by mass, B: 1.06% by mass, Co: 0.3% by mass, Al: 1.0% by mass. , Fe: The balance, which further contains a trace amount of unavoidable impurities. When the cross section of Sample No. 3 was examined in the same manner as Sample No. 1, it was found to have the same structure structure as Sample No. 1. The average crystal grain size was 11 μm, the minimum thickness of the isolated phase was 0.14 μm, and the volume ratio of the isolated phase to the main phase was 0.09. In addition, 1 of transmission electron microscope
The number of visual fields in which the isolated phase was discontinued between two adjacent crystal grains was 00 in the 00 visual field.

【0062】サンプルNo.4(比較) Nd:29.8質量%、 Dy:2.8質量%、 B:1.06質量%、 Fe:残部 からなる合金ストリップを、ストリップキャスト法によ
り製造した。この合金ストリップは、厚さが0.3〜
0.6mmであり、柱状のR214B金属間化合物結晶を
含むものであった。X線回折による分析では、他の相に
由来する回折線は認められず、また、EPMAによる観
察では、非磁性Rリッチ相が認められた。この合金スト
リップを、サンプルNo.1の主相用粉末製造の際と同様
にして粉砕することにより、平均粒径5.5μmの原料
粉末を得た。
Sample No. 4 (comparative) Nd: 29.8% by mass, Dy: 2.8% by mass, B: 1.06% by mass, Fe: An alloy strip consisting of the balance was manufactured by the strip casting method. This alloy strip has a thickness of 0.3-
It was 0.6 mm and contained columnar R 2 T 14 B intermetallic compound crystals. Analysis by X-ray diffraction showed no diffraction lines derived from other phases, and observation by EPMA showed a non-magnetic R-rich phase. The alloy strip was pulverized in the same manner as in the production of the powder for main phase of Sample No. 1 to obtain a raw material powder having an average particle size of 5.5 μm.

【0063】次いで、この原料粉末を、サンプルNo.1
製造の際と同条件で磁場中成形した。得られた成形体
を、1気圧未満のArガス雰囲気中において、1050
℃に4時間保持することにより焼結した。得られた焼結
体に450℃で12時間時効処理を施して、焼結磁石サ
ンプルNo.4を得た。
Next, this raw material powder was sample No. 1
Molding was performed in a magnetic field under the same conditions as in manufacturing. The obtained molded body was heated to 1050 in an Ar gas atmosphere of less than 1 atm.
Sintering was carried out by holding at 4 ° C for 4 hours. The obtained sintered body was aged at 450 ° C. for 12 hours to obtain a sintered magnet sample No. 4.

【0064】サンプルNo.4の断面をサンプルNo.1と同
様にして調べたところ、R214Bからなる主相が非磁
性Rリッチ相により包囲され、主相同士が非磁性Rリッ
チ相により隔離された構造であった。
When the cross section of Sample No. 4 was examined in the same manner as in Sample No. 1, the main phase composed of R 2 T 14 B was surrounded by the nonmagnetic R rich phase, and the main phases were nonmagnetic R rich phase. It was a structure isolated by.

【0065】評価 上記各サンプルについて、室温において保磁力HcJおよ
び残留磁束密度Brを測定した。また、80℃−90%
RHの恒温・恒湿条件下で保存し、発錆するまでの時間
を調べた。これらの結果を表1に示す。
Evaluation The coercive force HcJ and the residual magnetic flux density Br of each of the above samples were measured at room temperature. Also, 80 ° C-90%
It was stored under constant temperature and humidity conditions of RH, and the time until rusting was examined. The results are shown in Table 1.

【0066】[0066]

【表1】 [Table 1]

【0067】表1から、本発明の効果が明らかである。
すなわち、サンプルNo.1〜3は、サンプルNo.4に比
べ、重希土類元素の含有量が同等であるにもかかわら
ず、保磁力HcJが著しく高くなっており、また、耐食性
も極めて良好となっている。しかも、残留磁束密度Br
はほとんど劣らない。
From Table 1, the effect of the present invention is clear.
In other words, Sample Nos. 1 to 3 have significantly higher coercive force HcJ and extremely good corrosion resistance as compared to Sample No. 4 even though the contents of heavy rare earth elements are the same. ing. Moreover, the residual magnetic flux density Br
Is almost inferior.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 R(Rは、希土類元素の少なくとも1種
である)、T(Tは、Fe、またはFeおよびCoであ
る)およびBを主成分とする永久磁石であって、 RH(RHは重希土類元素の少なくとも1種である)およ
びRL(RLは軽希土類元素の少なくとも1種である)を
含有し、実質的にRL214B金属間化合物からなる主相
が、実質的にRH214B金属間化合物からなる隔離相に
よって包囲されることによって、隣り合う主相同士が互
いに実質的に隔離されており、かつ、R H214Bの融点
を低下させる低融点化元素MLが含有される永久磁石。
1. R (R is at least one rare earth element)
, T (T is Fe, or Fe and Co)
And a permanent magnet containing B as a main component, RH(RHIs at least one of the heavy rare earth elements) and
And RL(RLIs at least one kind of light rare earth element)
Contains and substantially RL2T14Main phase consisting of B intermetallic compound
But substantially RH2T14In the isolation phase consisting of B intermetallic compound
Therefore, by being surrounded, adjacent main phases are mutually
Is substantially isolated, and R H2T14Melting point of B
Element for lowering melting point MLA permanent magnet containing.
【請求項2】 R214BよりR含有量の多い非磁性R
リッチ相が存在しないか、前記非磁性Rリッチ相によっ
て前記主相が包囲されていない請求項1の永久磁石。
2. A non-magnetic R having a higher R content than R 2 T 14 B.
The permanent magnet according to claim 1, wherein a rich phase does not exist, or the main phase is not surrounded by the non-magnetic R rich phase.
【請求項3】 前記主相に対する前記隔離相の体積比が
0.01〜0.1である請求項1または2の永久磁石。
3. The permanent magnet according to claim 1, wherein the volume ratio of the isolated phase to the main phase is 0.01 to 0.1.
【請求項4】 質量百分率で表した元素含有量が、 23≦R≦40、 0.8≦B≦1.5、 0.5≦ML≦10、 残部T である請求項1〜3のいずれかの永久磁石。4. A element content expressed in percent by mass is, 23 ≦ R ≦ 40, 0.8 ≦ B ≦ 1.5, 0.5 ≦ M L ≦ 10, of claims 1 to 3 the balance T One of the permanent magnets. 【請求項5】 モル比RH/RLが0.01〜0.15で
ある請求項1〜4のいずれかの永久磁石。
5. The permanent magnet according to claim 1, wherein the molar ratio R H / R L is 0.01 to 0.15.
【請求項6】 請求項1〜5のいずれかの永久磁石を製
造する方法であって、 RL214B金属間化合物を含む主相用粉末と、RH、T
およびBを含有する隔離相用粉末と、前記低融点化元素
Lとを含有する原料粉末を成形し、1000℃以下の
温度で焼結する工程を有する永久磁石の製造方法。
6. The method for producing a permanent magnet according to claim 1, wherein the main phase powder contains R L2 T 14 B intermetallic compound, and R H and T
A method for producing a permanent magnet, comprising a step of molding a raw material powder containing a powder for an isolated phase containing B and B and the low melting point element M L and sintering the powder at a temperature of 1000 ° C. or less.
JP2001227883A 2001-07-27 2001-07-27 Permanent magnet and method for manufacturing the same Expired - Fee Related JP4547840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001227883A JP4547840B2 (en) 2001-07-27 2001-07-27 Permanent magnet and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001227883A JP4547840B2 (en) 2001-07-27 2001-07-27 Permanent magnet and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2003045710A true JP2003045710A (en) 2003-02-14
JP4547840B2 JP4547840B2 (en) 2010-09-22

Family

ID=19060475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001227883A Expired - Fee Related JP4547840B2 (en) 2001-07-27 2001-07-27 Permanent magnet and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4547840B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004114333A1 (en) * 2003-06-18 2004-12-29 Japan Science And Technology Agency Rare earth - iron - boron based magnet and method for production thereof
JP2019169560A (en) * 2018-03-22 2019-10-03 日立金属株式会社 Manufacturing method of r-t-b-based sintered magnet

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393841A (en) * 1986-10-04 1988-04-25 Shin Etsu Chem Co Ltd Rare-earth permanent magnet alloy
JPS63278208A (en) * 1987-01-30 1988-11-15 Tokin Corp Manufacture of rare earth permanent magnet
JPH04114406A (en) * 1990-09-04 1992-04-15 Fuji Elelctrochem Co Ltd Manufacture of bonded magnet
JPH0574618A (en) * 1991-09-11 1993-03-26 Shin Etsu Chem Co Ltd Manufacture of rare earth permanent magnet
JPH07176414A (en) * 1993-11-02 1995-07-14 Tdk Corp Manufacture of permanent magnet
JPH09170055A (en) * 1995-12-18 1997-06-30 Showa Denko Kk Alloy for rare earth magnet, its production and production of permanent magnet
JPH1154351A (en) * 1997-07-31 1999-02-26 Hitachi Metals Ltd Manufacture of r-fe-b rare earth permanent magnet and r-fe-b rare earth permanent magnet
JP2000188213A (en) * 1998-10-14 2000-07-04 Hitachi Metals Ltd R-t-b sintered permanent magnet
WO2002061769A1 (en) * 2001-01-30 2002-08-08 Sumitomo Special Metals Co., Ltd. Method for preparation of permanent magnet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393841A (en) * 1986-10-04 1988-04-25 Shin Etsu Chem Co Ltd Rare-earth permanent magnet alloy
JPS63278208A (en) * 1987-01-30 1988-11-15 Tokin Corp Manufacture of rare earth permanent magnet
JPH04114406A (en) * 1990-09-04 1992-04-15 Fuji Elelctrochem Co Ltd Manufacture of bonded magnet
JPH0574618A (en) * 1991-09-11 1993-03-26 Shin Etsu Chem Co Ltd Manufacture of rare earth permanent magnet
JPH07176414A (en) * 1993-11-02 1995-07-14 Tdk Corp Manufacture of permanent magnet
JPH09170055A (en) * 1995-12-18 1997-06-30 Showa Denko Kk Alloy for rare earth magnet, its production and production of permanent magnet
JPH1154351A (en) * 1997-07-31 1999-02-26 Hitachi Metals Ltd Manufacture of r-fe-b rare earth permanent magnet and r-fe-b rare earth permanent magnet
JP2000188213A (en) * 1998-10-14 2000-07-04 Hitachi Metals Ltd R-t-b sintered permanent magnet
WO2002061769A1 (en) * 2001-01-30 2002-08-08 Sumitomo Special Metals Co., Ltd. Method for preparation of permanent magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004114333A1 (en) * 2003-06-18 2004-12-29 Japan Science And Technology Agency Rare earth - iron - boron based magnet and method for production thereof
JP2019169560A (en) * 2018-03-22 2019-10-03 日立金属株式会社 Manufacturing method of r-t-b-based sintered magnet

Also Published As

Publication number Publication date
JP4547840B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
US10160037B2 (en) Rare earth magnet and its preparation
EP1645648B1 (en) A rare earth alloy sintered compact
EP2511916A1 (en) Rare-earth anisotropic magnet powder, method for producing same, and bonded magnet
JP6881338B2 (en) Rare earth magnet manufacturing method
EP1465213B1 (en) Method for producing r-t-b based rare earth element permanent magnet
EP4044202B1 (en) Method of preparing a high-coercivity sintered ndfeb magnet
EP1494251A1 (en) Composite rare earth anisotropic bonded magnet, compound for composite rare earth anisotropic bonded magnet, and method for production thereof
JP3865180B2 (en) Heat-resistant rare earth alloy anisotropic magnet powder
JP7035683B2 (en) RTB-based sintered magnet
JP7035682B2 (en) RTB-based sintered magnet
JPH0696928A (en) Rare-earth sintered magnet and its manufacture
JP2675430B2 (en) Corrosion resistant rare earth-transition metal magnet and method of manufacturing the same
JP4547840B2 (en) Permanent magnet and method for manufacturing the same
JP3474684B2 (en) High performance R-Fe-BC system magnet material with excellent corrosion resistance
WO2021193333A1 (en) Anisotropic rare-earth sintered magnet and method for producing same
JP4650218B2 (en) Method for producing rare earth magnet powder
JP3151087B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JPH04120238A (en) Manufacture of rare earth sintered alloy and manufacture of permanent magnet
WO2021193334A1 (en) Anisotropic rare earth sintered magnet and method for producing same
JP7256483B2 (en) RTB permanent magnet and manufacturing method thereof
JP7143605B2 (en) RTB system sintered magnet
JP6652011B2 (en) RTB based sintered magnet
JPH04338606A (en) Manufacture of corrosion-resistant rare earthtransition metal magnet
JPH07166205A (en) Production of rare earth-iron-nitrogen-based magnet powder

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040526

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

R150 Certificate of patent or registration of utility model

Ref document number: 4547840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees