JPH0561340B2 - - Google Patents

Info

Publication number
JPH0561340B2
JPH0561340B2 JP3059679A JP5967991A JPH0561340B2 JP H0561340 B2 JPH0561340 B2 JP H0561340B2 JP 3059679 A JP3059679 A JP 3059679A JP 5967991 A JP5967991 A JP 5967991A JP H0561340 B2 JPH0561340 B2 JP H0561340B2
Authority
JP
Japan
Prior art keywords
atomic
alloy powder
rare earth
less
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3059679A
Other languages
Japanese (ja)
Other versions
JPH04214803A (en
Inventor
Shigeki Hamada
Michio Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP3059679A priority Critical patent/JPH04214803A/en
Publication of JPH04214803A publication Critical patent/JPH04214803A/en
Publication of JPH0561340B2 publication Critical patent/JPH0561340B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】 この発明は、R(但し、
RはYを包含する希土類元素のうち少なくとも1
種)、B、Feを主成分とする新規な希土類・鉄・
ボロン系永久磁石用合金粉末の成型方法に係り、
合金粉末に所要の潤滑剤を混合することにより、
成型時の成型体の抜き圧を低くして工業生産に適
合させた希土類・鉄・ボロン系永久磁石用合金粉
末の成型方法に関する。
[Industrial Application Field] This invention is based on R (however,
R is at least one rare earth element including Y
A new rare earth, iron,
Regarding the method of molding alloy powder for boron-based permanent magnets,
By mixing the required lubricant with the alloy powder,
This invention relates to a method for molding alloy powder for rare earth, iron, and boron permanent magnets that is suitable for industrial production by lowering the ejection pressure of the molded body during molding.

【0002】[0002]

【従来の技術】 永久磁石材料は、一般家庭の各
種電気製品から大型コンピユータの周辺端末機器
まで、幅広い分野で使用される極めて重要な電
気・電子材料の一つである。近年の電気・電子機
器の小形化、高効率化の要求にともない、永久磁
石材料は益々高性能化が求められるようになつ
た。
[Prior Art] Permanent magnetic materials are one of the extremely important electrical and electronic materials used in a wide range of fields, from various household appliances to peripheral terminal equipment for large computers. With the recent demand for smaller size and higher efficiency of electrical and electronic equipment, permanent magnet materials are required to have increasingly higher performance.

【0003】 現在の代表的な永久磁石材料は、アル
ニコ、ハードフエライトおよび希土類コバルト磁
石である。近年のコバルトの原料事情の不安定化
に伴ない、コバルトを20〜30wt%含むアルニコ
磁石の需要は減り、鉄の酸化物を主成分とする安
価なハードフエライトが磁石材料の主流を占める
ようになつた。
[0003] Current typical permanent magnet materials are alnico, hard ferrite, and rare earth cobalt magnets. As the cobalt raw material situation has become unstable in recent years, the demand for alnico magnets containing 20 to 30 wt% cobalt has decreased, and inexpensive hard ferrite, whose main component is iron oxide, has become the mainstream magnet material. Summer.

【0004】 一方、希土類コバルト磁石はコバルト
を50〜60wt%も含むうえ、希土類鉱石中にあま
り含まれていないSmを使用するため大変高価で
あるが、他の磁石に比べて、磁気特性が格段に高
いため、主として小型で付加価値の高い磁気回路
に多用されるようになつた。 そこで、本発明者は先に、高価なSmやCoを必ず
しも含有しない新しい高性能永久磁石としてFe
−B−R系(RはYを含む希土類元素のうち少な
くとも1種)永久磁石を提案した(特願昭57−
145072号)。
[0004] On the other hand, rare earth cobalt magnets contain 50 to 60 wt% of cobalt and are very expensive because they use Sm, which is not contained in rare earth ores. Because of its high cost, it has come to be used mainly for small, high-value-added magnetic circuits. Therefore, the present inventor first developed Fe as a new high-performance permanent magnet that does not necessarily contain expensive Sm or Co.
-B-R system permanent magnet (R is at least one rare earth element including Y) was proposed (Patent application 1983-
No. 145072).

【0005】 また、さらに、Fe−B−R系の磁気
異方性焼結体からなる永久磁石の温度特性を改良
するために、Feの一部をCoで置換することによ
り、生成合金のキユリー点を上昇させて温度特性
を改善したFe−Co−B−R系異方性焼結体から
なる永久磁石を提案した(特願昭57−166663号)。
[0005] Furthermore, in order to improve the temperature characteristics of a permanent magnet made of a magnetically anisotropic sintered body of the Fe-B-R system, by replacing a part of Fe with Co, the Curie of the produced alloy is improved. We have proposed a permanent magnet made of an anisotropic sintered body of Fe-Co-BR system which has improved temperature characteristics by increasing the temperature characteristics (Japanese Patent Application No. 166663/1982).

【0006】 上記の新規なFe−B−R系、Fe−Co
−B−R系(RはYを含む希土類元素のうち少な
くとも1種)永久磁石を、製造するための出発原
料の希土類金属は、一般にCa還元法、電解法に
より製造される金属塊であり、この希土類金属塊
を用いて、例えば焼結磁石の場合は次の工程によ
り、上記の新規な永久磁石が製造される。
[0006] The above novel Fe-BR system, Fe-Co
- The rare earth metal that is the starting material for producing a B-R system (R is at least one rare earth element including Y) permanent magnet is a metal lump that is generally produced by a Ca reduction method or an electrolytic method, Using this rare earth metal lump, for example, in the case of a sintered magnet, the above-mentioned novel permanent magnet is manufactured through the following steps.

【0007】 出発原料として、純度99.9%の電
解鉄、B19.4%を含有し残部はFe及びAl、Si、C
等の不純物からなるフエロボロン合金、純度99.7
%以上の希土類金属、あるいはさらに、純度99.9
%の電解Coを高周波溶解し、その後水冷銅鋳型
に鋳造する。 スタンプミルにより35メツシユスルーまでに
粗粉砕し、次にボールミルにより、例えば粗粉砕
粉300gを6時間湿式微粉砕して3〜10μmの微細
粉となす。 磁界(10kOe)中配向して、成形(1.5t/cm2
にて加圧)する。 焼結、1000℃〜1200℃、1時間、Ar中の焼
結後に放冷する。 時効処理、500℃〜1000℃、Ar中。
[0007] As a starting material, electrolytic iron with a purity of 99.9%, containing 19.4% B, the remainder being Fe, Al, Si, and C.
Ferroboron alloy consisting of impurities such as, purity 99.7
% or more rare earth metals, or even purity 99.9
% electrolytic Co is radio-frequency melted and then cast into a water-cooled copper mold. Coarsely pulverize to 35 mesh through using a stamp mill, and then wet-pulverize, for example, 300 g of coarsely pulverized powder for 6 hours using a ball mill to form a fine powder of 3 to 10 μm. Oriented in a magnetic field (10kOe) and molded (1.5t/cm 2
pressurize). Sintering: 1000°C to 1200°C for 1 hour. After sintering in Ar, allow to cool. Aging treatment, 500℃~1000℃, in Ar.

【0008】[0008]

【発明が解決しようとする課題】 上記の如く、
この新規な永久磁石用合金粉末は、所要組成の鋳
塊を粗粉砕及び微粉砕を行なつて得られるが、粉
砕粉の侭では成型性が非常に悪く、成型時にダイ
ス壁面等との摩擦により、ダイス面及び成形体表
面にきず、剥がれ、割れ等が生じ易く、品質上及
び製品歩留上に大きな問題となつていた。
[Problem to be solved by the invention] As mentioned above,
This new alloy powder for permanent magnets can be obtained by coarsely pulverizing and finely pulverizing an ingot of the desired composition, but the formability of the pulverized powder is very poor, and it is difficult to form the powder due to friction with the die wall surface etc. during forming. , scratches, peeling, cracking, etc. are likely to occur on the die surface and the molded body surface, which poses a big problem in terms of quality and product yield.

【0009】 この発明は、工業的に安定した成型性
を有しかつ十分な磁気特性を有する希土類・鉄・
ボロン系永久磁石を得るための該系磁石用合金粉
末の成型方法を目的とし、すぐれた潤滑性により
ダイス面及び成形体の摩擦を低減して成型性を改
善し、磁石の磁気特性の劣化が少ない潤滑剤を使
用した希土類・鉄・ボロン系永久磁石用合金粉末
の成型方法の提供を目的としている。
[0009] This invention has industrially stable formability and sufficient magnetic properties.
The purpose is to create a method for molding alloy powder for boron-based permanent magnets, which uses excellent lubricity to reduce friction between the die surface and the compact, improves moldability, and prevents deterioration of the magnet's magnetic properties. The purpose of this invention is to provide a method for molding rare earth/iron/boron alloy powder for permanent magnets using a small amount of lubricant.

【0010】[0010]

【課題を解決するための手段】 この発明は、 R10原子%〜30原子%(但し、RはYを包含する
希土類元素のうち少なくとも1種)、 B2原子%〜28原子%、 Fe65原子%〜82原子% を主成分とする合金粉末に潤滑剤として、ステア
リン酸、ステアリン酸亜鉛及びビスアマイドのう
ち少なくとも1種を用いて混合した後成型するこ
とを特徴とする希土類・鉄・ボロン系永久磁石用
合金粉末の成型方法である。
[Means for Solving the Problems] This invention provides R10 atomic% to 30 atomic% (wherein R is at least one kind of rare earth elements including Y), B2 atomic% to 28 atomic%, Fe65 atomic% to For use in rare earth/iron/boron based permanent magnets, which is characterized in that alloy powder containing 82 atomic % as a main component is mixed with at least one of stearic acid, zinc stearate, and bisamide as a lubricant, and then molded. This is a method for molding alloy powder.

【0011】 この発明は、R,B,Feを主成分と
する永久磁石用合金粉末の成型に使用可能な潤滑
剤について種々検討した結果、特定量のステアリ
ン酸、ステアリン酸亜鉛及びビスアマイドのうち
少なくとも1種が適していることを知見したもの
で、すぐれた潤滑性によりダイス面及び成形体の
摩擦を低減して成型性を改善し、さらに焼結磁石
の磁気特性の劣化が少ない利点があり、特に成型
時の成型体の抜き圧を低くでき、工業生産上きわ
めて有利である。
[0011] As a result of various studies on lubricants that can be used for molding alloy powder for permanent magnets containing R, B, and Fe as main components, the present invention has discovered that at least a specific amount of stearic acid, zinc stearate, and bisamide. It was found that type 1 is suitable, and it has excellent lubricity, reduces friction between the die surface and the compact, improves moldability, and has the advantage of less deterioration of the magnetic properties of the sintered magnet. In particular, the ejection pressure of the molded body during molding can be lowered, which is extremely advantageous in industrial production.

【0012】[0012]

【作用】 この発明において、潤滑剤の添加量
は、原料合金粉末の粒度およびダイス、成形体の
形状、寸法、摩擦面積、プレス条件等に応じて適
宜選定すればよく、少量の添加で成型性改善効果
が大きく、添加量の増大とともに抜き圧など成型
性は向上するが、好ましい添加量は単独、複合添
加ともに合金粉末100重量部に対して、0.2重量部
以下である。
[Function] In this invention, the amount of lubricant added may be appropriately selected depending on the particle size of the raw alloy powder, die, shape and dimensions of the compact, friction area, press conditions, etc.; The improvement effect is large, and as the amount added increases, the moldability such as ejection pressure improves, but the preferable amount added is 0.2 parts by weight or less per 100 parts by weight of the alloy powder, both alone and in combination.

【0013】 また、この発明において、潤滑剤の合
金粉末への添加は、乾式混合または溶媒をもちい
ての湿式混合のいずれでもよいが、該合金粉末が
酸素あるいは水分に対して反応しやすく活性であ
るため、湿式で行なうことが好ましく、使用する
溶媒としては、ヘキサン、トルエン、トリクロル
エチレン、弗素系溶媒などの不活性溶媒が好まし
い。混合時の態様は、乾燥状態あるいはスラリー
状態のいずれであつてもよく、例えば、湿式粉砕
工程中、あるいはその前後、または乾燥工程中あ
るいはその前後に適宜混合することができる。
[0013] Furthermore, in the present invention, the lubricant may be added to the alloy powder by either dry mixing or wet mixing using a solvent, but if the alloy powder is easily reactive with oxygen or moisture and is active, Therefore, it is preferable to carry out the process in a wet manner, and the solvent used is preferably an inert solvent such as hexane, toluene, trichloroethylene, or a fluorine-based solvent. The mixing state may be in either a dry state or a slurry state, and for example, mixing may be carried out as appropriate during or before or after the wet pulverization process, or during or before or after the drying process.

【0014】 この発明において、合金粉末の成型
は、通常の粉末冶金法と同様に行なうことがで
き、加圧成型時に磁場付与有無により、異方性磁
石あるいは等方性磁石を得ることができる。
[0014] In this invention, the alloy powder can be molded in the same manner as a normal powder metallurgy method, and an anisotropic magnet or an isotropic magnet can be obtained depending on whether or not a magnetic field is applied during pressure molding.

【0015】 以下に、この発明における希土類・
鉄・ボロン系永久磁石用原料合金粉末の組成限定
理由を説明する。 この発明の永久磁石用原料合金粉末に含有される
希土類元素Rは、イツトリウム(Y)を包含し軽
希土類及び重希土類を包含する希土類元素であ
る。 Rとしては、軽希土類をもつて足り、特にNd、
Prが好ましい。また通例Rのうち1種をもつて
足りるが、実用上は2種以上の混合物(ミツシユ
メタル、ジジム等)を入手上の便宜等の理由によ
り用いることができ、Sm,Y,La,Ce,Gd、
等は他のR、特にNd、Pr等との混合物として用
いることができる。なお、このRは純希土類元素
でなくてもよく、工業上入手可能な範囲で製造上
不可避な不純物を含有するものでも差支えない。
[0015] Below, rare earths and
The reason for limiting the composition of the raw material alloy powder for iron/boron permanent magnets will be explained. The rare earth element R contained in the raw material alloy powder for permanent magnets of this invention is a rare earth element that includes yttrium (Y) and includes light rare earths and heavy rare earths. As R, a light rare earth element is sufficient, especially Nd,
Pr is preferred. In addition, it is usually sufficient to have one type of R, but in practice, a mixture of two or more types (Mitsushimetal, didymium, etc.) can be used for reasons such as convenience of acquisition, Sm, Y, La, Ce, Gd. ,
etc. can be used as a mixture with other R, especially Nd, Pr, etc. Note that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within an industrially available range.

【0016】 R(Yを含む希土類元素のうち少なく
とも1種)は、新規な上記系永久磁石を製造する
合金粉末として必須元素であつて、10原子%未満
では高磁気特性、特に高保磁力が得られず、30原
子%を越えると残留磁束密度(Br)が低下して、
すぐれた特性の永久磁石が得られない。よつて、
Rは10原子%〜30原子%の範囲とする。
[0016] R (at least one rare earth element including Y) is an essential element as an alloy powder for producing the new above-mentioned permanent magnet, and if it is less than 10 atomic %, high magnetic properties, especially high coercive force, cannot be obtained. If it exceeds 30 atom%, the residual magnetic flux density (Br) decreases,
Permanent magnets with excellent characteristics cannot be obtained. Then,
R is in the range of 10 atomic % to 30 atomic %.

【0017】 Bは、新規な上記系永久磁石を製造す
る合金粉末として必須元素であつて、2原子%未
満では高い保磁力(iHc)は得られず、28原子%
を越えると残留磁束密度(Br)が低下するため、
すぐれた永久磁石が得られない。よつて、Bは2
原子%〜28原子%の範囲とする。
[0017] B is an essential element as an alloy powder for manufacturing the new above-mentioned permanent magnet, and if it is less than 2 atomic %, high coercive force (iHc) cannot be obtained;
As the residual magnetic flux density (Br) decreases when exceeding
An excellent permanent magnet cannot be obtained. Therefore, B is 2
The range is from atomic% to 28 atomic%.

【0018】 Feは、新規な上記系永久磁石を製造
する合金粉末として必須元素であるが、65原子%
未満では残留磁束密度(Br)が低下し、82原子
%を越えると高い保磁力が得られないので、Fe
は65原子%〜82原子%に限定する。 また、Feの一部をCoで置換する理由は、永久磁
石の温度特性を向上させる効果が得られるためで
あり、CoはFeの50%を越えると高い保磁力が得
られず、すぐれた永久磁石が得られない。よつ
て、Coは50%を上限とする。
[0018] Fe is an essential element as an alloy powder for manufacturing the new above-mentioned permanent magnet, but 65 at%
Fe
is limited to 65 at% to 82 at%. In addition, the reason why part of Fe is replaced with Co is that it has the effect of improving the temperature characteristics of permanent magnets, and if Co exceeds 50% of Fe, high coercive force cannot be obtained, so I can't get a magnet. Therefore, the upper limit for Co is 50%.

【0019】 この発明の合金粉末において、高い残
留磁束密度と高い保磁力を共に有するすぐれた永
久磁石を得るためには、R10原子%〜25原子%、
B4原子%〜26原子%、Fe65原子%〜82原子%が
好ましい。
[0019] In the alloy powder of this invention, in order to obtain an excellent permanent magnet having both a high residual magnetic flux density and a high coercive force, R10 atomic % to 25 atomic %,
B4 atomic% to 26 atomic% and Fe65 atomic% to 82 atomic% are preferable.

【0020】 また、この発明による合金粉末は、
R,B,Feの他、工業的生産上不可避的不純物
の存在を許容できるが、Bの一部を、 4.0原子%以下のC、3.5原子%以下のP、 2.5原子%以下のS、3.5原子%以下のCu のうち少なくとも1種、合計量で4.0原子%以下
で置換することにより、磁石合金の製造性改善、
低価格化が可能である。
[0020] Furthermore, the alloy powder according to the present invention is
In addition to R, B, and Fe, the presence of unavoidable impurities in industrial production is acceptable, but some of the B must be replaced by 4.0 atom% or less of C, 3.5 atom% or less of P, 2.5 atom% or less of S, 3.5 Improved manufacturability of magnetic alloys by replacing at least one type of Cu with a total amount of 4.0 atomic % or less,
It is possible to lower the price.

【0021】 さらに、前記R,B,Fe合金あるい
はCoを含有するR,B,Fe合金に、9.5原子%以
下のAl、4.5原子%以下のTi、 9.5原子%以下のV、8.5原子%以下のCr、 8.0原子%以下のMn、5原子%以下のBi、 12.5原子%以下のNb、10.5原子%以下のTa、 9.5原子%以下のMo、9.5原子%以下のW、 2.5原子%以下のSb、7原子%以下のGe、 3.5原子%以下のSn、5.5原子%以下のZr、 5.5原子%以下のHfのうち少なくとも1種を添加
含有させることにより、永久磁石合金の高保磁力
化が可能になる。
[0021] Furthermore, in the R, B, Fe alloy or R, B, Fe alloy containing Co, Al of 9.5 atomic % or less, Ti of 4.5 atomic % or less, V of 9.5 atomic % or less, 8.5 atomic % or less Cr, 8.0 atom% or less Mn, 5 atom% or less Bi, 12.5 atom% or less Nb, 10.5 atom% or less Ta, 9.5 atom% or less Mo, 9.5 atom% or less W, 2.5 atom% or less It is possible to increase the coercive force of a permanent magnet alloy by adding at least one of Sb, Ge at 7 at % or less, Sn at 3.5 at % or less, Zr at 5.5 at % or less, and Hf at 5.5 at % or less. become.

【0022】 この発明のR−B−Fe系永久磁石に
おいて、結晶相は主相が正方晶であることが不可
欠であり、特に、微細で均一な合金粉末を得て、
すぐれた磁気特性を有する焼結永久磁石を作製す
るのに効果的である。
[0022] In the R-B-Fe permanent magnet of the present invention, it is essential that the main crystal phase is tetragonal, and in particular, to obtain a fine and uniform alloy powder,
It is effective for producing sintered permanent magnets with excellent magnetic properties.

【0023】 この発明による合金微粉末の粒度は、
平均粒度が10μmを越えると永久磁石の作製時に
すぐれた磁気特性、とりわけ高い保磁力が得られ
ず、また、平均粒度が1μm未満では永久磁石の作
製工程、すなわちプレス成形、焼結、時効処理工
程における酸化が著しく、すぐれた磁気特性が得
られないため、平均粒度1〜10μmの合金微粉末
が最も望ましい。
[0023] The particle size of the alloy fine powder according to this invention is
If the average grain size exceeds 10 μm, excellent magnetic properties, especially high coercive force, cannot be obtained during the production of permanent magnets, and if the average grain size is less than 1 μm, the manufacturing process of permanent magnets, that is, press forming, sintering, and aging treatment steps will be difficult. Since the oxidation of the alloy is significant and excellent magnetic properties cannot be obtained, a fine alloy powder with an average particle size of 1 to 10 μm is most desirable.

【0024】 この発明による永久磁石用合金微粉末
を使用して得られる磁気異方性永久磁石合金は、
保磁力iHc≧1kOe、残留磁束密度Br>4kGを示
し、最大エネルギー積(BH)maxはハードフエ
ライトと同等以上となり、最も好ましい組成範囲
では、(BH)max≧10MGOeを示し、最大値は
25MGOe以上に達する。 また、この発明による合金微粉末の組成が、R10
原子%〜30原子%、B2原子%〜28原子%、Co45
原子%以下、Fe65原子%〜82原子%の場合、得
られる磁気異方性永久磁石合金は上記磁石合金と
同等の磁気特性を示し、残留磁束密度の温度係数
が0.1%/℃以下となり、すぐれた特性が得られ
る。 また、合金粉末のRの主成分がその50%以上を軽
希土類金属が占める場合で、R12原子%〜20原子
%、B4原子%〜24原子%、Fe65原子%〜82原子
%の場合、あるいはさらにCo5原子%〜45原子%
を含有するとき最もすぐれた磁気特性を示し、特
に軽希土類金属がNdの場合には、(BH)maxは
その最大値が33MGOe以上に達する。
[0024] The magnetically anisotropic permanent magnet alloy obtained using the alloy fine powder for permanent magnets according to the present invention is
It shows coercive force iHc≧1kOe, residual magnetic flux density Br>4kG, and the maximum energy product (BH)max is equal to or higher than hard ferrite.In the most preferable composition range, (BH)max≧10MGOe, and the maximum value is
Reach over 25MGOe. Further, the composition of the alloy fine powder according to the present invention is R10
atomic% ~ 30 atomic%, B2 atomic% ~ 28 atomic%, Co45
When Fe is 65 atomic % to 82 atomic %, the obtained magnetically anisotropic permanent magnet alloy exhibits magnetic properties equivalent to those of the above magnetic alloys, and has an excellent temperature coefficient of residual magnetic flux density of 0.1%/°C or less. characteristics can be obtained. In addition, when the main component of R in the alloy powder is 50% or more of light rare earth metals, R12 at% to 20 at%, B4 at% to 24 at%, Fe65 at% to 82 at%, or Furthermore, Co5 atomic% to 45 atomic%
In particular, when the light rare earth metal is Nd, the maximum value of (BH)max reaches 33MGOe or more.

【0025】【0025】

【実施例】 出発原料として、純度99.9%の電解
鉄、B19.4%を含有し残部はFe及びC等の不純物
からなるフエロボロン合金、純度99.7%以上の
Ndを所定量配合して高周波溶解し、その後水冷
銅鋳型に鋳造し、15Nd8B77Fe(at%)なる組成
の鋳塊を得た。 この鋳塊を機械的粉砕により35メツシユスルーま
でに粗粉砕した。ついで、ボール・ミルによる微
粉砕を行ない、平均粒度3.3μmの合金粉末を得
た。 この合金粉末に、ステアリン酸、ステアリン酸亜
鉛、ビスアマイドを、合金粉末100重量部に対し
て、各々0.2重量部、予めトリクロロトリフルオ
ロエタンに溶解または分散させたものを湿式混合
したのち、乾燥させた。
[Example] As starting materials, electrolytic iron with a purity of 99.9%, a feroboron alloy containing 19.4% B and the remainder consisting of impurities such as Fe and C, and a ferroboron alloy with a purity of 99.7% or more are used.
A predetermined amount of Nd was blended and high-frequency melted, and then cast in a water-cooled copper mold to obtain an ingot with a composition of 15Nd8B77Fe (at%). This ingot was mechanically crushed to a roughness of 35 mesh throughput. Then, fine pulverization was performed using a ball mill to obtain an alloy powder with an average particle size of 3.3 μm. To this alloy powder, 0.2 parts by weight of each of stearic acid, zinc stearate, and bisamide were preliminarily dissolved or dispersed in trichlorotrifluoroethane per 100 parts by weight of the alloy powder, and the mixture was wet-mixed and then dried. .

【0026】 この乾燥合金粉末並びに潤滑剤を添加
しない合金粉末を用いて、磁界12kOe中で配向
し、2t/cm2にて加圧成型し、幅15mm×長さ16mm×
高さ10mmの成型体10個を得た。この成型時の成型
体の抜き圧、圧粉密度、グリーン強度を測定し、
その結果を表1に示す。 なお、グリーン強度指数はラトラー試験機で成型
体を100回回転させた後の重量残%で示す。
[0026] Using this dry alloy powder and alloy powder without adding a lubricant, it is oriented in a magnetic field of 12 kOe, pressure molded at 2t/cm 2 , and a width of 15 mm x length of 16 mm is obtained.
Ten molded bodies with a height of 10 mm were obtained. During this molding process, the ejection pressure, green density, and green strength of the molded body were measured.
The results are shown in Table 1. The green strength index is expressed as the weight remaining after the molded body is rotated 100 times using a Rattler tester.

【0027】[0027]

【表1】 ■■■ 亀の甲 [0039] ■■■[Table 1] ■■■ Turtle shell [0039] ■■■

【0028】【0028】

【発明の効果】 表1より明らかな如く、ステア
リン酸、ステアリン酸亜鉛、ビスアマイドを潤滑
剤として混合した後成型するこの発明方法によ
り、抜き圧は小さく、圧粉密度が高く、潤滑性が
改善され、成型体外観においてもきずや割れの発
生も少なく、成型性が大幅に改善される。 特に、抜き圧を小さくできることから、成型金型
に対する負荷を少なくでき長寿命化が可能であ
り、また作業性がよく新規な希土類・鉄・ボロン
系永久磁石の工業生産に適した合金粉末の成型方
法を提供できる。
Effects of the Invention As is clear from Table 1, the method of the present invention, in which stearic acid, zinc stearate, and bisamide are mixed as lubricants and then molded, results in low extraction pressure, high green density, and improved lubricity. Also, there are fewer scratches and cracks in the appearance of the molded product, and moldability is greatly improved. In particular, since the extraction pressure can be reduced, the load on the molding die can be reduced and its life can be extended, and the alloy powder can be molded with good workability and is suitable for the industrial production of new rare earth, iron, and boron permanent magnets. I can provide a method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 R10原子%〜30原子%(但し、R
はYを包含する希土類元素のうち少なくとも1
種)、 B2原子%〜28原子%、 Fe65原子%〜82原子% を主成分とする合金粉末に潤滑剤として、ステア
リン酸、ステアリン酸亜鉛及びビスアマイドのう
ち少なくとも1種を用いて混合した後成型するこ
とを特徴とする希土類・鉄・ボロン系永久磁石用
合金粉末の成型方法。
Claim 1: R10 atomic% to 30 atomic% (however, R
is at least one rare earth element including Y
After mixing an alloy powder whose main components are B2 atomic% to 28 atomic% and Fe65 atomic% to 82 atomic% with at least one of stearic acid, zinc stearate, and bisamide as a lubricant, the mixture is molded. A method for molding rare earth/iron/boron alloy powder for permanent magnets.
JP3059679A 1991-02-28 1991-02-28 Method for molding alloy powder for rare earth-iron-boron based permanent magnet Granted JPH04214803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3059679A JPH04214803A (en) 1991-02-28 1991-02-28 Method for molding alloy powder for rare earth-iron-boron based permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3059679A JPH04214803A (en) 1991-02-28 1991-02-28 Method for molding alloy powder for rare earth-iron-boron based permanent magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3996184A Division JPS60184602A (en) 1984-03-01 1984-03-01 Method for molding alloy powder for permanent magnet

Publications (2)

Publication Number Publication Date
JPH04214803A JPH04214803A (en) 1992-08-05
JPH0561340B2 true JPH0561340B2 (en) 1993-09-06

Family

ID=13120128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3059679A Granted JPH04214803A (en) 1991-02-28 1991-02-28 Method for molding alloy powder for rare earth-iron-boron based permanent magnet

Country Status (1)

Country Link
JP (1) JPH04214803A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486224A (en) * 1993-12-28 1996-01-23 Sumitomo Metal Industries, Ltd. Powder mixture for use in compaction to produce rare earth iron sintered permanent magnets
JP6689571B2 (en) 2015-03-05 2020-04-28 信越化学工業株式会社 Rare earth sintered magnet manufacturing method

Also Published As

Publication number Publication date
JPH04214803A (en) 1992-08-05

Similar Documents

Publication Publication Date Title
US5110377A (en) Process for producing permanent magnets and products thereof
EP0126802B2 (en) Process for producing of a permanent magnet
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JPH0424401B2 (en)
JPH0316761B2 (en)
JPH0320046B2 (en)
JPH045740B2 (en)
JPH0561340B2 (en)
JPH0422011B2 (en)
JPH0461042B2 (en)
JPH04214804A (en) Method for molding alloy powder for rare earth-iron-boron based permanent magnet
JPH045739B2 (en)
JPH0549737B2 (en)
JPH0535210B2 (en)
JPS60138056A (en) Material for sintered magnet
JPH0535211B2 (en)
JPH0480961B2 (en)
JP2682619B2 (en) Manufacturing method of rare earth permanent magnet
JPH0320048B2 (en)
JPH0316763B2 (en)
JPH0320047B2 (en)
JPH0475303B2 (en)
JPH045737B2 (en)
JPH0480962B2 (en)
JPH0649886B2 (en) Molding improver for Fe-BR system alloy powder for permanent magnets

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term