JPH02240231A - Permanent magnet material - Google Patents

Permanent magnet material

Info

Publication number
JPH02240231A
JPH02240231A JP1060428A JP6042889A JPH02240231A JP H02240231 A JPH02240231 A JP H02240231A JP 1060428 A JP1060428 A JP 1060428A JP 6042889 A JP6042889 A JP 6042889A JP H02240231 A JPH02240231 A JP H02240231A
Authority
JP
Japan
Prior art keywords
magnet material
permanent magnet
added
heat treatment
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1060428A
Other languages
Japanese (ja)
Other versions
JPH049856B2 (en
Inventor
Tomoyuki Hayashi
智幸 林
Takaaki Yasumura
隆明 安村
Teruo Kiyomiya
照夫 清宮
Yasutoshi Mizuno
水野 保敏
Kazuo Matsui
一雄 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP1060428A priority Critical patent/JPH02240231A/en
Publication of JPH02240231A publication Critical patent/JPH02240231A/en
Publication of JPH049856B2 publication Critical patent/JPH049856B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide the permanent magnet material with coercive force equal to that of a conventional one and to improve its residual magnetic flux density and maximum energy product by adding specified amounts of Zr, Zn, In, Pb and O rare earth element-Co-Fe-Cu series material low in Cu content and high in Fe content. CONSTITUTION:A permanent magnet material is constituted of the compsn. contg., by weight, 22 to 28% R (one or more kinds among rare earth elements including Y), 5 to 16% Fe, 0.5 to 6.5% Cu, 0.1 to 6% Mn, 0.5 to 6% MA (one or both of Zr and Zn), 0.02 to 2% MB (one or more kinds among In, Pb and O) and the balance Co. The magnet material is manufactured by melting and solidifying the raw material having the above compsn. into an ingot, subjecting it to pulverizing, magnetic compacting, thereafter to sintering, solution heat treatment and furthermore executing heat treatment such as rapid cooling after aging treatment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は新規な永久磁石材料、より詳しくは、希土類元
素と遷移金属を生成5分とするR2M17系(Rはイツ
トリウムを含む希土類元素、Mは主として遷移金属であ
る)永久磁石材料に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention is a novel permanent magnet material, more specifically, an R2M17 system in which rare earth elements and transition metals are formed in 5 minutes (R is a rare earth element including yttrium, M (mainly transition metals) pertains to permanent magnetic materials.

(従来技術〕 現在、希土類元素と遷移金属元素とからなる合金系に関
して既に多くのものが提供され中でも希土類元素とコバ
ルトCoとの合金系、特にR2CO17型永久磁石材料
が注目されている。
(Prior Art) At present, many alloy systems consisting of rare earth elements and transition metal elements have already been provided, and among them, alloy systems of rare earth elements and cobalt Co, particularly R2CO17 type permanent magnet materials, are attracting attention.

このR2CO17型材料についても多くの種々のものが
あるが、Coの一部を更にFeとCuで置換してえられ
たR−Co−Fe−Cu系の2−17型希土類永久磁石
材料も従来公知である。この系の合金材料においてCu
の添加は保磁力(iHc)を高める効果があり、10w
t%以上は必要であるとされていた。しかしCuの添加
量が増大すると残留磁束密度(B「)が低下してしまう
問題が生じる。この低下を補うため、B「を高める作用
を持つFeの添加があるが、Feを多量に添加するとi
Hcの低下を招くため8νt%以下とされていた。
There are many different kinds of this R2CO17 type material, but the R-Co-Fe-Cu type 2-17 rare earth permanent magnet material obtained by further substituting a part of Co with Fe and Cu is also conventional. It is publicly known. In this type of alloy material, Cu
The addition of 10w has the effect of increasing the coercive force (iHc).
It was thought that t% or more was necessary. However, as the amount of Cu added increases, a problem arises in that the residual magnetic flux density (B'') decreases.To compensate for this decrease, Fe is added, which has the effect of increasing B'', but if a large amount of Fe is added, i
It was set to be 8 νt% or less because it would lead to a decrease in Hc.

しかし、このような組成の永久磁石では、高々24M6
φOe程度の最大エネルギー積(BH)   Lか得る
ことができない。
However, in a permanent magnet with such a composition, at most 24M6
It is not possible to obtain a maximum energy product (BH) L of the order of φOe.

aX そこで、10wt%Cu以下の低Cu量でかつ8wt%
Fe以上の高Fefiにて高保磁力が得られ、それによ
り高エネルギー積を有する永久磁石材料を得るための各
種の提案がなされた。
aX Therefore, with a low Cu content of 10 wt% Cu or less and 8 wt%
Various proposals have been made to obtain a permanent magnet material that can obtain a high coercive force with a high Fefi higher than Fe and thereby has a high energy product.

例えば、1)Cu 5〜12vt%において、X:0.
2〜5vt%(XはZ「、Nb、−V、Ta。
For example, 1) Cu 5 to 12 vt%, X: 0.
2-5vt% (X is Z", Nb, -V, Ta.

CrおよびHf)、且つMnQ、2〜3y1%添加した
もの(特公昭56−11378) 、2)Cu2〜10
wt%においてT;6〜35wt%(TはFe。
Cr and Hf), and MnQ, 2-3y1% added (Japanese Patent Publication No. 56-11378), 2) Cu2-10
T in wt%; 6 to 35 wt% (T is Fe.

MnおよびCrのうちの一種以上)、M:0.5〜6w
t%(MはZrおよびHfのうちの一種以上)添加した
もの(特公昭62−61665)、3)Sm−Co−F
e−Cu−Zrの5元系においてCu5vt%以下で特
徴ある熱処理によるもの(特公昭6O−34632) 
、4)一般式がR(Co +−u−、−nCu uF 
e v M w ) zで表わされるもの(特公昭6l
−17881)。
one or more of Mn and Cr), M: 0.5 to 6w
t% (M is one or more of Zr and Hf) added (Japanese Patent Publication No. 62-61665), 3) Sm-Co-F
In a five-element system of e-Cu-Zr, a characteristic heat treatment is performed with Cu5vt% or less (Japanese Patent Publication No. 6O-34632)
, 4) The general formula is R(Co + -u-, -nCu uF
e v M w ) What is represented by z (Tokuko Showa 6l
-17881).

(但し、0°くu≦2.0.0.1<v≦0.6.0.
005≦W≦0.05.6.5≦2≦8.8、M:Ta
、Zr、Nb5Ti、Hf)等がある。
(However, 0° u≦2.0.0.1<v≦0.6.0.
005≦W≦0.05.6.5≦2≦8.8, M: Ta
, Zr, Nb5Ti, Hf), etc.

これらの各磁石材料では夫々比較的高い保磁力やエネル
ギー積を有しているが、まだ不十分な点があり更に改良
が求められる。
Although each of these magnet materials has relatively high coercive force and energy product, there are still some deficiencies and further improvements are required.

〔目的及び構成〕[Purpose and structure]

本発明者らは上記の如き低Cu量でなおかつ高Feff
1のR−Co−Fe−Cu系永久磁石材料の有する磁石
特性を更に改良向上せしめた磁石材料を提供することを
目的として種々研究、実験を重ねたところ、上記の系に
金属MA (MAはZ「とZnのいずれか一方又は両者
)を加えたものに、更にMnと半金属、非金属MB (
MBはIn。
The present inventors have found that the above-mentioned low Cu amount and high Feff
After conducting various research and experiments with the aim of providing a magnet material that further improves the magnetic properties of the R-Co-Fe-Cu permanent magnet material in No. 1, we found that the above system was combined with metal MA (MA is Mn and semimetal, nonmetal MB (
MB is In.

pb、oのいずれか一種又は数種)を添加することによ
り、同等の保磁力を有し、かつ残留磁束密度Brや最大
エネルギー積(BH)   を向上さaX せた有効なR2M、□系永久磁石材料が得られることが
見出されたのである。
By adding one or more of pb, o), effective R2M, □ system permanent with equivalent coercive force and improved residual magnetic flux density Br and maximum energy product (BH). It was discovered that a magnetic material could be obtained.

かくて本発明は、!fl比で22〜28%のR(RはY
を含む希土類元素の1種又はそれ以上)、5〜16%の
Fe、 0. 5〜6. 5%のCu。
Thus, the present invention is! R of 22-28% in fl ratio (R is Y
one or more rare earth elements), 5 to 16% Fe, 0. 5-6. 5% Cu.

0.1〜6%のMn、0.5〜6%のMA (MA)は
ZrとZnのいずれか一方又は両者)、0.02〜2%
のMB (MBはIn、Pb、Oのいずれか1種又は数
種)、残部Coからなる永久磁石材料を提供するもので
ある。・ 〔発明の詳細な説明〕 以下本発明の詳細な説明する。尚、この明細書で%は重
量%を意味する。
0.1-6% Mn, 0.5-6% MA (MA is Zr and/or Zn), 0.02-2%
MB (MB is any one or more of In, Pb, and O), and the remainder is Co. - [Detailed Description of the Invention] The present invention will be described in detail below. In this specification, % means % by weight.

本発明は上述のように、R−Co−Fe−Cu−MA系
合金材料にMnとMBを添加したものであり、ここでは
RとしてYを含む希土類元素例えばSmを22〜28%
、Feは比較的高く5〜16%、Cuは比較的低く0.
5〜6,5%用いられる。
As mentioned above, the present invention is an R-Co-Fe-Cu-MA alloy material in which Mn and MB are added.
, Fe is relatively high, 5-16%, and Cu is relatively low, 0.
5-6.5% is used.

又MAとしてZrとZnの一方又は両者を0.5〜6%
用いる。適当量のMAの添加は、残留磁束密度Brをあ
まり低下させずに保磁力iHcを高め、緑大エネルギー
積を高める効果がある。これは高Fe1l、低Cu1l
において、残留磁束密Brをあまり低下させずCu添加
の代わりにlHcを高め、エネルギー積をも高めるのに
有効である。
Also, as MA, one or both of Zr and Zn is added at 0.5 to 6%.
use Addition of an appropriate amount of MA has the effect of increasing the coercive force iHc and increasing the green energy product without significantly reducing the residual magnetic flux density Br. This is high Fe1l, low Cu1l
In this case, it is effective to increase lHc and also increase the energy product instead of adding Cu without significantly lowering the residual magnetic flux density Br.

而してM、Aの量が0.5重量%より少ないと保磁力i
Hcへの効果が見られず最大エネルギー積、(BH) 
  の増加も見られない。2.3重量%18X で保磁力、最大エネルギー積がともに最大となるが、更
に多くしてMAが6vt%を超すと(BH)   は添
加しない場合とほぼ同じになりaX 効果がなくなる。従って本発明ではMAは0.5〜6重
量%の範囲の量用いられる。
Therefore, if the amount of M and A is less than 0.5% by weight, the coercive force i
No effect on Hc was observed, and the maximum energy product, (BH)
No increase was observed. At 2.3 wt% 18X, both the coercive force and the maximum energy product are maximum, but when MA is increased further to exceed 6 vt%, (BH) becomes almost the same as when no MA is added, and the aX effect disappears. Accordingly, in the present invention MA is used in amounts ranging from 0.5 to 6% by weight.

本発明はこのような低Cu Ji s高Fe量の系にM
nを0.1〜6%、MB (Pb、I n、Oの中いず
れか1つ又は数種)を0.02〜2%用いるのである。
The present invention incorporates M into such a low Cu Ji s high Fe content system.
0.1 to 6% of n and 0.02 to 2% of MB (one or more of Pb, In, and O) are used.

Mnを添加せずMB例えばpbのみの添加では磁石特性
値は殆んど変らない。pbを添加してMnを0. 1%
以上添加していくと次第に残留磁束密度Brは高くなり
添加量2.5%で最高となり、以後また低下し6%を超
すと添加しない場合と同じ位の値となる。一方最大エネ
ルギー積(BH)   について云えばMn添加量2.
0ax %で最大となりそれ以上加えるとまた低下し、6%を超
すと大きく低下する。従ってMnは0.1〜6%、好ま
しくは0.5〜4%の量用いられる。
If only MB (for example, PB) is added without adding Mn, the magnetic characteristic values hardly change. pb was added to reduce Mn to 0. 1%
As the amount of addition exceeds 6%, the residual magnetic flux density Br gradually increases and reaches a maximum at an addition amount of 2.5%, after which it decreases again and becomes the same value as when no addition is made. On the other hand, regarding the maximum energy product (BH), the amount of Mn added is 2.
It reaches a maximum at 0ax%, decreases again when more than that is added, and decreases significantly when it exceeds 6%. Therefore, Mn is used in an amount of 0.1 to 6%, preferably 0.5 to 4%.

又MBを含まず前記基本組成に更にMnのみしか添加し
ない場合、磁石特性値は殆んど変らない。
Further, when only Mn is added to the basic composition without MB, the magnetic characteristic values hardly change.

しかしマンガンMnに加えて更にMB、たとえば鉛pb
を加えていくと0.04%から残留磁束密度、最大エネ
ルギー積ともに高くなり、又この両者は1.0%で最高
となり、2.0%を超えると両者とともに急激に低下す
る。又MBとしてインジウムInを用いたときは0.0
4%より漸次残留磁束密度、エネルギー積ともに上昇し
0.8%で最高となり、2.0%をこえると大きく低下
する。同様にMBとして酸素0を加えるとPb11nに
比べて少量で残留磁束密度、エネルギー積に影響を加え
共に添加しないときに比べて高くなり、0,3%で最高
値となり0.8%を超えると低下してしまう。かくてM
Bはほぼ0.02〜2.0%の範囲添加され、その中P
b、Inは0.3〜1.5%、Oは0.02〜0.8%
の範囲が好ましい。
However, in addition to manganese Mn, there are also MB, such as lead pb.
As % is added, both the residual magnetic flux density and the maximum energy product increase from 0.04%, and both reach their maximum at 1.0%, and when they exceed 2.0%, they both decrease rapidly. Also, when indium In is used as MB, 0.0
Both the residual magnetic flux density and the energy product gradually increase from 4%, reaching a maximum at 0.8%, and decrease significantly when exceeding 2.0%. Similarly, when oxygen 0 is added as MB, a small amount compared to Pb11n affects the residual magnetic flux density and energy product, making it higher than when neither is added, reaching the highest value at 0.3%, and exceeding 0.8%. It will drop. Thus M
B is added in a range of approximately 0.02 to 2.0%, in which P
b, In is 0.3 to 1.5%, O is 0.02 to 0.8%
A range of is preferred.

これらの結果からMn、MBのいずれか単独では効果な
く、それら両者を共に用いしかもごく限られた範囲で用
いられたときのみ著しい効果がみられる。これらの事実
は以下の実施例によって明らかである。
These results show that either Mn or MB has no effect when used alone, and a significant effect can be seen only when both are used together and within a very limited range. These facts are clear from the following examples.

この磁石材料は公知の方法でつくることができる。たと
えば所定の組成を有する原料を調合し、溶融固化してイ
ンゴットをつくり、これを粉砕して磁場で成形する。次
いで焼結、溶体化処理を施し、更に時効処理後急冷する
などの熱処理を行なってつくられる。MBとして酸素を
用いるときは粉砕の際所定量の酸素をジェットに混ぜて
含有させるが、熱処理は他の場合と同様である。
This magnetic material can be made by a known method. For example, raw materials having a predetermined composition are prepared, melted and solidified to create an ingot, which is crushed and shaped using a magnetic field. The material is then subjected to sintering, solution treatment, and further heat treatment such as aging treatment followed by rapid cooling. When oxygen is used as the MB, a predetermined amount of oxygen is mixed into the jet during pulverization, but the heat treatment is the same as in other cases.

〔実施例〕〔Example〕

以下の例1においてはMnもMBも添加しないときの磁
石特性、例2はMBを一定量添加しMnを種々の量添加
したとき、例3.4.5はいずれもMnを一定量添加し
、PbSIn、Oを夫々種々の量加えたときそして例6
は他を一定量としMAを種々の量加えたときの磁石特性
の変化を示すものである。
Example 1 below shows the magnetic properties when neither Mn nor MB is added, Example 2 shows the magnetic properties when a fixed amount of MB is added and various amounts of Mn, and Examples 3.4.5 show the magnet properties when a fixed amount of Mn is added. , PbSIn, and O were added in various amounts, and Example 6
shows the change in magnetic properties when various amounts of MA are added while other values are constant.

例1 (組 成) Sm:24.lvt%、Fe :12.9vt%、Cu
:3.9wt%、Zr:2.3wt%、残部がCoから
なる (前工程) 必要とする合金を高周波溶解炉で溶解し、ショークラッ
シャーで粗粉砕後、ジェットミルで微粉砕した。この微
粉体を15KOeの磁場中で成形圧3 ton/cシで
圧縮成形した。
Example 1 (Composition) Sm: 24. lvt%, Fe: 12.9vt%, Cu
: 3.9 wt%, Zr: 2.3 wt%, and the balance consists of Co (pre-process) The required alloy was melted in a high frequency melting furnace, coarsely crushed in a show crusher, and then finely crushed in a jet mill. This fine powder was compression molded in a magnetic field of 15 KOe at a molding pressure of 3 ton/c.

(熱処理) 1180〜1250℃で5時間の焼結を行い、1100
〜1240℃で5時間の溶体化処理を行った後、900
℃=3時間の時効処理を行い、0.5℃l■1nの速度
で400℃まで冷却後急冷した。
(Heat treatment) Sintering was performed at 1180 to 1250°C for 5 hours, and 1100°C
After solution treatment at ~1240°C for 5 hours, 900°C
Aging treatment was carried out for 3 hours at 0.5° C., and the material was cooled to 400° C. at a rate of 0.5° C. 1×1 n, followed by rapid cooling.

(特 性) Br−10,82KG、1Hc=11.04例2 (組 成) Sm:24.lvt%、Fe:12.9vt%、Cu:
3.9vt%、Zr:2.3vt%、Mn:xvt%、
Pb:1.0昭%、残部がCOからなる。
(Characteristics) Br-10,82KG, 1Hc=11.04 Example 2 (Composition) Sm: 24. lvt%, Fe: 12.9vt%, Cu:
3.9vt%, Zr: 2.3vt%, Mn: xvt%,
Pb: 1.0%, the balance consisting of CO.

(前工程) 例1と同じ (熱処理) 例1と同じ 例3 (組 成) Smm24.lvt%、Fe−12,9wt%、Cu−
3,9vt%、Zrm2.3vt%、Mnm2.0w1
%、Pbmxwt%、残部がC。
(Pre-process) Same as Example 1 (Heat treatment) Same as Example 1 Example 3 (Composition) Smm24. lvt%, Fe-12,9wt%, Cu-
3.9vt%, Zrm2.3vt%, Mnm2.0w1
%, Pbmxwt%, the balance is C.

からなる。Consisting of

(前工程) 例1と同じ (熱処理) 例1と同じ 例4 (組 成) Sm:24.lvt%、Fe:12.9vt%、Cu:
3.9vt%、Zr:2.3vt%、Mn : 2. 
Ovt%、In:xvt%、残部がCOからなる。
(Pre-process) Same as Example 1 (Heat treatment) Same as Example 1 Example 4 (Composition) Sm: 24. lvt%, Fe: 12.9vt%, Cu:
3.9vt%, Zr: 2.3vt%, Mn: 2.
Ovt%, In:xvt%, and the remainder is CO.

(前工程) 例1と同じ (熱処理) 例1と同じ 例5 (組 成) Sm−24,1重量%、Fe−12,9重量%、Cu−
3,9重量%、Zr−2,3重量%、Mnm2.0重量
%、Omx重二%、残部がCoからなる。
(Pre-process) Same as Example 1 (Heat treatment) Same as Example 1 Example 5 (Composition) Sm-24, 1% by weight, Fe-12, 9% by weight, Cu-
It consists of 3.9% by weight, 2.3% by weight of Zr, 2.0% by weight of Mnm, 2% of Omx, and the balance of Co.

(前工程) 必要とする合金を高周波溶解炉で溶解し、ショークラッ
シャーで粗粉砕後、ジェットミルにより微粉砕した。微
粉砕の際に適量の酸素をジェットに混ぜて含有させた。
(Pre-process) The required alloy was melted in a high frequency melting furnace, coarsely crushed in a show crusher, and then finely crushed in a jet mill. During pulverization, an appropriate amount of oxygen was mixed into the jet to contain it.

この微粉体を15KOeの磁場中で成形圧3ton/c
−で圧縮成形した。
This fine powder was molded in a magnetic field of 15 KOe under a molding pressure of 3 ton/c.
- compression molded.

(熱処理) 例1に同じ 例6 (組 成) Sm−24,1重量%、Fem12゜ Cu=3.9Zit量%、Zr−X。(Heat treatment) Same as example 1 Example 6 (composition) Sm-24, 1% by weight, Fem12゜ Cu=3.9Zit amount%, Zr-X.

Mn−2,0重量%、Pb−1゜ 残部がCoからなる。Mn-2.0% by weight, Pb-1゜ The remainder consists of Co.

(前工程) 例1に同じ (熱処理) 例1に同じ 0重量%、 9重量%、 〔発明の効果〕 本発明によれば、低いCu:lと高いFe量の従来の組
成にMnとMBを夫々限定量加えるとき、従来と同等の
保磁力を有し、残留磁束密度と最大エネルギー積を増加
させ磁石特性を向上させることができて誠に有効である
(Pre-process) Same as Example 1 (Heat treatment) Same as Example 1 0% by weight, 9% by weight [Effect of the invention] According to the present invention, Mn and MB are added to the conventional composition with low Cu:l and high Fe content. When a limited amount of each is added, the coercive force is the same as that of the conventional one, and the residual magnetic flux density and maximum energy product can be increased and the magnetic properties can be improved, which is very effective.

Claims (1)

【特許請求の範囲】[Claims] 重量比で22〜28%のR(RはYを含む希土類元素の
1種又はそれ以上)、5〜16%のFe、0.5〜6.
5%のCu、0.1〜6%のMn、0.5〜6%のMA
(MAはZrとZnのいずれか一方又は両者)、0.0
2〜2%のMB(MBはIn、Pb、Oのいずれか1種
又は数種)、残部Coからなる永久磁石材料。
22-28% R by weight (R is one or more rare earth elements including Y), 5-16% Fe, 0.5-6.
5% Cu, 0.1-6% Mn, 0.5-6% MA
(MA is either Zr or Zn or both), 0.0
A permanent magnet material consisting of 2 to 2% MB (MB is one or more of In, Pb, and O) and the balance is Co.
JP1060428A 1989-03-13 1989-03-13 Permanent magnet material Granted JPH02240231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1060428A JPH02240231A (en) 1989-03-13 1989-03-13 Permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1060428A JPH02240231A (en) 1989-03-13 1989-03-13 Permanent magnet material

Publications (2)

Publication Number Publication Date
JPH02240231A true JPH02240231A (en) 1990-09-25
JPH049856B2 JPH049856B2 (en) 1992-02-21

Family

ID=13141952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1060428A Granted JPH02240231A (en) 1989-03-13 1989-03-13 Permanent magnet material

Country Status (1)

Country Link
JP (1) JPH02240231A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193336A (en) * 1982-05-01 1983-11-11 Sumitomo Special Metals Co Ltd Permanent magnet material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193336A (en) * 1982-05-01 1983-11-11 Sumitomo Special Metals Co Ltd Permanent magnet material

Also Published As

Publication number Publication date
JPH049856B2 (en) 1992-02-21

Similar Documents

Publication Publication Date Title
US4284440A (en) Rare earth metal-cobalt permanent magnet alloy
US5647886A (en) Magnetic powder, permanent magnet produced therefrom and process for producing them
US6139765A (en) Magnetic powder, permanent magnet produced therefrom and process for producing them
JPS63317643A (en) Production of rare earth-iron permanent magnetic material
JPH0551656B2 (en)
JPH0320046B2 (en)
JP3303044B2 (en) Permanent magnet and its manufacturing method
JPH0352529B2 (en)
US4375996A (en) Rare earth metal-containing alloys for permanent magnets
JPH02240231A (en) Permanent magnet material
JPH0831626A (en) Rare earth magnetic powder, permanent magnet thereof, and manufacture of them
EP0372948B1 (en) Permanent magnet composition
JPH0146575B2 (en)
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
EP0654801B1 (en) Magnetic powder, permanent magnet produced therefrom and process for producing them
JPH0568841B2 (en)
US5183517A (en) Permanent magnet composition
JPH1097907A (en) Manufacture of r-tm-b based permanent magnet
JPS6135259B2 (en)
JPH02240232A (en) Permanent magnet material
JPS63282239A (en) Permanent magnet alloy
JPH0328503B2 (en)
JPS6135258B2 (en)
JPS6221858B2 (en)
JPH04214803A (en) Method for molding alloy powder for rare earth-iron-boron based permanent magnet