JPH02159337A - Permanent magnet alloy - Google Patents

Permanent magnet alloy

Info

Publication number
JPH02159337A
JPH02159337A JP63311942A JP31194288A JPH02159337A JP H02159337 A JPH02159337 A JP H02159337A JP 63311942 A JP63311942 A JP 63311942A JP 31194288 A JP31194288 A JP 31194288A JP H02159337 A JPH02159337 A JP H02159337A
Authority
JP
Japan
Prior art keywords
content
alloy
ihc
permanent magnet
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63311942A
Other languages
Japanese (ja)
Inventor
Teruo Kiyomiya
照夫 清宮
Takaaki Yasumura
隆明 安村
Yasutoshi Mizuno
水野 保敏
Kazuo Matsui
一雄 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP63311942A priority Critical patent/JPH02159337A/en
Publication of JPH02159337A publication Critical patent/JPH02159337A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To increase the coercive force of the alloy in the low range of Cu amt. and to improve its maximum energy product by adding suitable amounts of O and C to a rare earths-Co-Fe-Cu-Zr series. CONSTITUTION:The compsn. of a permanent magnet alloy is constituted of, by weight, 22 to 28% R (one or more kinds of rare earth elements including Y), 5 to 27% Fe, 3 to 10% Cu, 0.5 to 6% Zr, 0.03 to 0.8% O, 0.005 to 0.5% C and the balance Co. In the alloy, by the addition of O and C, the rectangular hysteresis properties of an 4pi1-H loop are made better and its maximum energy product is improved while the merit of improving the coercive force at the time of adding conventional C only is kept alive as it is.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、希土類元素と遷移金属を主成分とするR 2
 M +7系(但し、Rはイツトリウムを含む希土類元
素Mは主として遷移金属を表す)永久磁石合金に関し、
特に減磁曲線の4πI−Hループの角型性が良好なR2
M+7系永久磁石合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is directed to R 2
Regarding M+7 series (however, R is a rare earth element containing yttrium and M mainly represents a transition metal) permanent magnet alloy,
R2 with particularly good squareness of the 4πI-H loop of the demagnetization curve
This relates to M+7 series permanent magnet alloy.

(従来の技術) R−Co−F e−Cu系の2−17型希土類永久磁石
材料は従来公知である。この系の合金材料において、C
uの添加は保磁力iHcを高める効果があり、10wt
%以上は必要であるとされていた。しかし、Cuの添加
量が増大すると残留磁束密度Brが低下してしまう問題
が生じる。
(Prior Art) A 2-17 type rare earth permanent magnet material based on R-Co-Fe-Cu is conventionally known. In this type of alloy material, C
The addition of u has the effect of increasing the coercive force iHc, and
% or more was considered necessary. However, when the amount of Cu added increases, a problem arises in that the residual magnetic flux density Br decreases.

この問題を解決するため、非磁性体であるCu量令抑え
、代りに適量のZrを添加し、B「の低下を抑制して最
大のエネルギー積(BH)fllaxを高め得る技術が
報告されている(例えば、特公昭55−47097)。
To solve this problem, a technology has been reported that suppresses the amount of Cu, which is a non-magnetic material, and adds an appropriate amount of Zr instead, suppressing the decrease in B and increasing the maximum energy product (BH) flax. (For example, Japanese Patent Publication No. 55-47097).

更に、4πI−Hループの角型性を良くするために、R
2M17系にOを含有させる技術が報告されている(例
えば、特開昭57−134533)。
Furthermore, in order to improve the squareness of the 4πI-H loop, R
A technique for incorporating O into the 2M17 system has been reported (for example, JP-A-57-134533).

また、iHcを向上させるために、R2M +7系にC
を含有させる技術も報告されている(例えば、特公昭5
6−36858)。
In addition, in order to improve iHc, C was added to the R2M +7 system.
Techniques have also been reported to contain (for example, the
6-36858).

(発明が解決しようとする課題) しかし、前記のCuff1を抑え、代りにZrを添加す
るR−Co−Fe−Cu−Zr系永久磁石合金では、非
磁性体であるCuEtが少量に抑えられているため、B
rが向上し、その結果として(BH)maxが高められ
てはいるが、(BH)max−(Br)2/4という高
(BH)may、には及ばない。
(Problem to be solved by the invention) However, in the R-Co-Fe-Cu-Zr permanent magnet alloy in which Cuff1 is suppressed and Zr is added instead, CuEt, which is a non-magnetic substance, is suppressed to a small amount. B
Although r is improved and (BH)max is increased as a result, it is still not as high as (BH)may, which is (BH)max-(Br)2/4.

また、前記4πI−Hループの角型性を良好にするため
にR2M17系にOを添加させたものでは、4πI−H
ループの角型性は良いが保磁力iHcが小さい。
In addition, in the case where O is added to the R2M17 system in order to improve the squareness of the 4πI-H loop, the 4πI-H
The squareness of the loop is good, but the coercive force iHc is small.

更に、前記iHcを高めるためにR2M17系にCを添
加させたものの中には、4πI−Hループの角型性が良
好でないものが多い。
Furthermore, many of the R2M17 systems in which C is added to increase the iHc have poor squareness of the 4πI-H loop.

本発明は以上の諸点に鑑みてなされたもので、その目的
とするところは、Cuff1が10wt%以下の低い領
域で高iHcを有し、4πI−Hループの角型性が良好
な従来品より高い(BH)waxを有する永久磁石合金
を提供することにある。
The present invention has been made in view of the above points, and its purpose is to have a high iHc in a low Cuff1 region of 10 wt% or less, and to improve the squareness of the 4πI-H loop compared to conventional products. An object of the present invention is to provide a permanent magnet alloy having high (BH) wax.

(課題を解決するための手段) 本発明者は、上記目的を達成するために、R−Co−F
e−Cu−Zr系の希土類永久磁石材料に関し、高iH
cにおいて4πI−Hループの角型性を向上させること
、つまり(BH)waxを向上させることについて種々
検討した結果、R−Go−F e−Cu−Z r系にO
とCの両方を適量添加すればよいと9知見を得、本発明
を完成させるに至った。
(Means for Solving the Problems) In order to achieve the above object, the present inventors have developed R-Co-F
Regarding e-Cu-Zr rare earth permanent magnet materials, high iH
As a result of various studies on improving the squareness of the 4πI-H loop in c, that is, improving (BH) wax, we found that O
The present invention was completed based on the findings that it is sufficient to add appropriate amounts of both C and C.

即ち本発明は、22〜28wt%のR(但し、Rはイツ
トリウムを含む希土類元素の1種以上)。
That is, in the present invention, R is 22 to 28 wt% (wherein R is one or more rare earth elements including yttrium).

5〜25wt%のFe、3〜10wt%のCu、0゜5
〜6wt%のZ r、0.03〜0.8wt%の0゜0
.005〜0,5wt%のC2残部が実質的にCoから
なることを特徴とする永久磁石合金に関するものである
5-25 wt% Fe, 3-10 wt% Cu, 0°5
~6wt% Zr, 0.03~0.8wt% 0゜0
.. The present invention relates to a permanent magnet alloy characterized in that the balance of C2 of 0.05 to 0.5 wt% consists essentially of Co.

(作 用) このようにR−Co−F e−Cu−Z r系に0とC
とを添加することによって、本発明では、従来のCのみ
を添加する場合の保磁力iHcが向上するメリットをそ
のまま生かし、(BH)maxが余り向上しないという
欠点を従来のOのみを添加する場合のメリット、即ち4
πI−Hループの角型性を良好にすることにより解消す
るのである。
(Function) In this way, 0 and C are added to the R-Co-Fe-Cu-Zr system.
By adding , in the present invention, the advantage of improving the coercive force iHc when only C is added is taken advantage of, and the disadvantage that (BH)max is not improved much is eliminated from the conventional case when only adding O. The advantages of 4
This problem can be solved by improving the squareness of the πI-H loop.

従って、0とCの両者を添加する特定の組成の本発明に
よれば前記した従来のR−Co−Fe−Cu−Zr系や
R−Co−F e−Cu−Z r−0系の永久磁石合金
より高いiHcが得られ、しかもR−Co−Fe−Cu
−Zr系やR−Co−Fe−Cu−Zr−C系の永久磁
石合金よりも4πI−Hループの角型性を向上させるこ
とが可能となる。そのため、高iHcを有しながら高い
(BH)IIaXを得ることができるのである。
Therefore, according to the present invention with a specific composition in which both C0 and C are added, the permanent Higher iHc can be obtained than magnetic alloy, and R-Co-Fe-Cu
It is possible to improve the squareness of the 4πI-H loop compared to -Zr-based or R-Co-Fe-Cu-Zr-C-based permanent magnet alloys. Therefore, high (BH)IIaX can be obtained while having high iHc.

上記のような作用を発揮させるために、本発明に係る永
久磁石合金の組成を前述のように特定したのである。
In order to exhibit the above effects, the composition of the permanent magnet alloy according to the present invention was specified as described above.

以下、各成分の組成比率につき説明する。The composition ratio of each component will be explained below.

R,Co、Feの比率は、この種の3元系組成物で従来
から一般的に使用されているものとほぼ同様である。
The ratios of R, Co, and Fe are approximately the same as those conventionally commonly used in this type of ternary composition.

即ち、Rを22〜28wt%としたのは、22wt%未
満ではiHcが小さく 、28 wt96を越えるとB
rが低下するからである。
In other words, the reason for setting R to 22 to 28 wt% is that if it is less than 22 wt%, iHc will be small, and if it exceeds 28 wt%, B
This is because r decreases.

Feを5〜25wt%としたのは、5wt%未満ではB
rが低く、25vL%を越えるとiHcが低下するから
である。
The reason for setting Fe to 5 to 25 wt% is that if it is less than 5 wt%, B
This is because r is low and iHc decreases when it exceeds 25vL%.

そして、Cuの含有量を3〜10wt%としたのは、3
vL%未満pはiHcが発生せず、10wt%を越える
とBrが低下するからである。
The reason why the Cu content was set to 3 to 10 wt% was 3
This is because when p is less than vL%, iHc does not occur, and when it exceeds 10wt%, Br decreases.

また、Z「の含有量を0.5〜6wt%としたのは、0
,5wt%未満ではiHcが発生せず、6シt%を越え
るとBrが低下するからである。
In addition, the content of Z" was set to 0.5 to 6 wt% because 0.
, less than 5wt%, iHc does not occur, and if it exceeds 6wt%, Br decreases.

0の含有量をOo 03〜0.8wt%としたのは、0
.03νt%未満ではOの添加効果がなく、4π1−H
ループの角型性の向上が見られないが、0゜8νt%を
越えても4πI−Hループの角型性が悪(なり、しかも
B「も低下するからである。
The reason for setting the content of 0 to Oo 03 to 0.8 wt% is that 0
.. If it is less than 03νt%, there is no effect of O addition, and 4π1-H
Although no improvement in the squareness of the loop is observed, even if it exceeds 0°8νt%, the squareness of the 4πI-H loop becomes poor (and B' also decreases).

Cの含有量を0.005〜0.5wt%としたのは、0
.005wt%未満ではiHcの増加作用が発現せず、
0.5wt%を越えるとBrが低下するからである。
The reason why the C content was set to 0.005 to 0.5 wt% was 0.
.. If it is less than 0.005 wt%, the iHc increasing effect will not be expressed,
This is because if it exceeds 0.5 wt%, Br decreases.

なお、本発明において、Oを含有させる方法としては、
例えばジェットミルで合金材料を微粉砕する際に、キャ
リアガスである窒素中に適量の酸素を混入させて合金材
料の微粉体とCの微粉体を混合させる方法等がある。
In addition, in the present invention, the method for incorporating O is as follows:
For example, when an alloy material is pulverized with a jet mill, there is a method in which a suitable amount of oxygen is mixed into nitrogen, which is a carrier gas, to mix the alloy material fine powder and the C fine powder.

(実施例) 本実施例1 (合金の組成) Sm:24.3wt%  Fe:12.5wt%Cuニ
ア、8wt%   Zr:1.5wt%C:0.1wt
%    0 : 0.02〜0.9wt%Co:残部 (前 工 程) 必要とする合金材料を高周波溶解炉又はアーク溶解炉で
溶解し、ショークラッシャによって粗粉砕した後、ジェ
ットミルにより微粉砕した。
(Example) Present Example 1 (Composition of alloy) Sm: 24.3 wt% Fe: 12.5 wt% Cu near, 8 wt% Zr: 1.5 wt% C: 0.1 wt
%0: 0.02-0.9wt%Co: Remainder (pre-process) The required alloy material was melted in a high-frequency melting furnace or an arc melting furnace, coarsely pulverized by a show crusher, and then finely pulverized by a jet mill. .

この微粉砕際に、適量の酸素をジェットに混入させて、
上記の合金材料に含有させた。
During this fine pulverization, an appropriate amount of oxygen is mixed into the jet,
It was included in the above alloy material.

微粉砕粉体を適量のC粉体と混合し、15kOeの磁場
中で成形圧2 ton / cjで圧縮成形した。
The finely pulverized powder was mixed with an appropriate amount of C powder and compression molded in a magnetic field of 15 kOe at a molding pressure of 2 ton/cj.

(熱 処 理) 上記の成形物をこの成形物中のOの含有量に応じて11
70〜1190℃(Ojlが多い程、高温側)で4時間
の焼結を行い、1120℃以上で且つ焼結温度より低い
温度で3時間の溶体化処理を行った。
(Heat treatment) The above molded product was heated to 11% depending on the O content in the molded product.
Sintering was performed for 4 hours at 70 to 1190°C (the higher the Ojl, the higher the temperature), and solution treatment was performed for 3 hours at a temperature of 1120°C or higher and lower than the sintering temperature.

その後、820℃で3時間の時効処理を行い、引き続い
て2℃/mlnの冷却速度で400℃まで冷却した。
Thereafter, an aging treatment was performed at 820° C. for 3 hours, and subsequently, the material was cooled to 400° C. at a cooling rate of 2° C./ml.

0の含有量に対するi Hc、B r、(BH)aaX
の測定結果を第1表に示す。
i Hc, B r, (BH)aaX for the content of 0
The measurement results are shown in Table 1.

また、0の含有量に対する4πI−Hループの減磁曲線
を第1図に示す。
Moreover, the demagnetization curve of the 4πI-H loop with respect to the content of 0 is shown in FIG.

第1表 酸素含有量が0.03wt%未満では4πI−Hループ
の角型性が悪< 、(B H) sawが低い。
Table 1: When the oxygen content is less than 0.03 wt%, the squareness of the 4πI-H loop is poor and the (BH) saw is low.

また、酸素含有量が0.8wt%を越えるとB「が低下
し、しかS24πI−Hループの角型性が悪くなり、(
BH)llaX も低くなる。
In addition, when the oxygen content exceeds 0.8 wt%, B' decreases, and the squareness of the S24πI-H loop worsens, and (
BH) llaX also becomes lower.

更に、Cを0.1wt%含有させているため、iHcは
いずれも良好であった。
Furthermore, since 0.1 wt% of C was contained, all iHc values were good.

なお、焼結温度をO量が多くなる程高温にしたのは、高
温での焼結により焼結密度をできるだけ高くして、Br
を高くするためである。
The reason for increasing the sintering temperature as the amount of O increases is to increase the sintered density as much as possible by sintering at a high temperature.
This is to increase the

本実施例2 (合金の組成) Sm:24.3wt%  Fe:12.5wt%Cuニ
ア、8wt%   Zr二1.5wt%C: 0.00
3〜0.8wt% O:0.1wt%Co:残部 (前 工 程) 実施例1に同じ (熱 処 理) 前工程で得られた成形物をこの成形物中のCの含有量に
応じて1170〜1200℃(CJIが多い程、高温側
)で4時間の焼結を行い、1120℃以上で且つ焼結温
度より低い温度で3時間の溶体化処理を行った。
Example 2 (Composition of alloy) Sm: 24.3wt% Fe: 12.5wt%Cu, 8wt% Zr2, 1.5wt%C: 0.00
3 to 0.8 wt% O: 0.1 wt% Co: Remaining part (previous step) Same as Example 1 (heat treatment) The molded product obtained in the previous step was treated according to the content of C in this molded product. Sintering was performed for 4 hours at 1170 to 1200°C (the higher the CJI, the higher the temperature), and solution treatment was performed for 3 hours at a temperature of 1120°C or higher and lower than the sintering temperature.

その後、820℃で3時間の時効処理を行い、引き続い
て2℃/ 1Iinの冷却速度で400 ”Cまで冷却
した。
Thereafter, aging treatment was performed at 820°C for 3 hours, followed by cooling to 400''C at a cooling rate of 2°C/1 inch.

Cの含有量に対するiHc、Br、(BH)maXの測
定結果を第2表に示す。
Table 2 shows the measurement results of iHc, Br, and (BH)maX with respect to the C content.

第2表 炭素含有量が0.005wt%未満ではiHcが小さく
、そのためBrの大きさに対して(BH)waxが小さ
い。
Table 2 When the carbon content is less than 0.005 wt%, iHc is small, and therefore (BH)wax is small relative to the size of Br.

また、炭素含有量が0.5wt%を越えるとBrが低下
し1、そのため(BH)waxも低くなる。
Further, when the carbon content exceeds 0.5 wt%, Br decreases1, and therefore (BH)wax also decreases.

更に、Oを0.1wt%含有させているため、4πl−
1(ループの角型性は、いずれも実施例1の0含有ff
1O,1wt%のものとほぼ同様であった。
Furthermore, since it contains 0.1 wt% of O, 4πl-
1 (the squareness of the loop is 0-containing ff of Example 1)
It was almost the same as that of 1O, 1wt%.

なお、焼結温度をC量が多くなる程高温にしたのは、実
施例1の場合と同様、焼結密度を高めてBrを向上させ
るためである。
Note that the reason why the sintering temperature was made higher as the amount of C increased was to increase the sintered density and improve the Br, as in the case of Example 1.

*実施例3 (合金の組成) S m : 20.5〜28.7wt%  Fe:12
.5wt%Cuニア、8wt%    Zr:1゜5w
t%C:0.1wt%     0:0.1wt%Co
:残部 (前 工 程) 実施例1に同じ (熱 処 理) 前工程で得られた成形物をこの成形物中のSmの含有量
に応じて11BO〜121O℃(S重量が多い程、低温
側)で4時間の焼結を行い、1120℃以上で且つ焼結
温度より低い温度で3時間の溶体化処理を行った。
*Example 3 (Alloy composition) S m: 20.5 to 28.7 wt% Fe: 12
.. 5wt% Cu near, 8wt% Zr: 1°5w
t%C: 0.1wt% 0:0.1wt%Co
: Remaining part (previous step) Same as Example 1 (heat treatment) The molded product obtained in the previous step was heated at 11BO to 1210°C depending on the Sm content in the molded product (the higher the S weight, the lower the temperature). Sintering was performed for 4 hours on the side), and solution treatment was performed for 3 hours at a temperature of 1120° C. or higher and lower than the sintering temperature.

その後、820℃で3時間の時効処理を行い、引き続い
て2℃/ mlnの冷却速度で400℃まで冷却した。
Thereafter, aging treatment was performed at 820°C for 3 hours, followed by cooling to 400°C at a cooling rate of 2°C/mln.

Smの含有量に対するi Hc、B r、(BH)Il
aXの測定結果を第3表に示す。
i Hc, B r, (BH) Il with respect to Sm content
The measurement results of aX are shown in Table 3.

第3表 Smの含有量が22.0wt5未満ではiHcが低くな
る。またSm含有量が28.0w1%を越えるとBrが
低下する。
When the content of Sm in Table 3 is less than 22.0wt5, iHc becomes low. Moreover, when the Sm content exceeds 28.0w1%, Br decreases.

*実施例4 (合金の組成) Sm:24.3wt%   Fe:12.5wt%Cu
 : 2.3〜11.1wt%  Zr:1.5wt%
C:0.1wt%     0:0.1wt%Co:残
部 (前 工 程) 実施例1に同じ (熱 処 理) 前工程で得られた成形物をこの成形物中のCuの含有量
に応じて1170〜1200℃(成形物中のCu量が多
い程、低温側)で4時間の焼結を行い、1120℃以上
で且つ焼結温度より低い温度で3時間の溶体化処理を行
った。
*Example 4 (Alloy composition) Sm: 24.3wt% Fe: 12.5wt%Cu
: 2.3-11.1wt% Zr: 1.5wt%
C: 0.1 wt% 0: 0.1 wt% Co: Remainder (previous step) Same as Example 1 (heat treatment) The molded product obtained in the previous step was treated according to the content of Cu in this molded product. Sintering was performed for 4 hours at 1170 to 1200°C (the higher the amount of Cu in the molded product, the lower the temperature), and solution treatment was performed for 3 hours at a temperature of 1120°C or higher and lower than the sintering temperature.

その後、Cu含有量が6.0〜11.lwt%の試料に
ついては、820℃で3時間の時効処理を行い、引き続
いて2℃/■inの冷却速度で400℃まで冷却した。
After that, the Cu content is 6.0 to 11. The lwt% sample was aged at 820° C. for 3 hours and subsequently cooled to 400° C. at a cooling rate of 2° C./in.

また、Cu含有量が2.3〜4.7wt%の試料につい
ては、650℃で3時間の第1段時効と、830℃で3
時間の第2段時効を行い、引き続いて2℃/ll1in
の冷却速度で400℃まで冷却した。
In addition, for samples with a Cu content of 2.3 to 4.7 wt%, the first stage aging was performed at 650°C for 3 hours and at 830°C for 3 hours.
A second stage aging for 2 hours followed by 2℃/ll1in
It was cooled to 400°C at a cooling rate of .

Cuの含有量に対するi Hc、B r、(BH)II
aXの測定結果を第4表に示す。
i Hc, B r, (BH) II for Cu content
The measurement results of aX are shown in Table 4.

第4表 Cuの含有量が3.0wt%未満ではiHcが低くなる
。またCu含有量が10.Owt%を越えるとBrが低
下する。
Table 4 When the Cu content is less than 3.0 wt%, iHc becomes low. Moreover, the Cu content is 10. If it exceeds Owt%, Br decreases.

なお、本例で特効処理を2段階に変えたのはCufiが
5wt%未満の場合、Cu量が5wt%以上の組成物と
同じ1段階時効処理を行ってもiHcが発現せず、2段
階時効処理でiHcが発現するからである。
In this example, the specific effect treatment was changed to two stages because when Cufi is less than 5 wt%, iHc does not develop even if the same one-stage aging treatment as for compositions with Cu content of 5 wt% or more is performed, and the two-stage This is because iHc is expressed during aging treatment.

*実施例5 (合金の組成) Sm:24.3wt%  Fe:12.5wt%Cuニ
ア、8wt%   Z r : 0.3〜B、8wt%
C:0.1wt%    O:0.1wt%Co:残部 (前 工 程) 実施例1に同じ (熱 処 理) 前工程で得られた成形物をこの成形物中のZrの含有量
に応じて1170〜1200℃(Zr含有量が多い程、
高温側)で4時間の焼結を行い、1120℃以上で且つ
焼結温度より低い温度で3時間の溶体化処理を行った。
*Example 5 (Alloy composition) Sm: 24.3 wt% Fe: 12.5 wt% Cu near, 8 wt% Z r: 0.3 to B, 8 wt%
C: 0.1 wt% O: 0.1 wt% Co: Remainder (previous process) Same as Example 1 (heat treatment) The molded product obtained in the previous process was treated according to the Zr content in this molded product. and 1170 to 1200°C (the higher the Zr content, the
Sintering was performed for 4 hours at a high temperature (high temperature side), and solution treatment was performed for 3 hours at a temperature of 1120° C. or higher and lower than the sintering temperature.

その後、820℃で3時間の時効処理を行い、引き続い
て2℃/n+inの冷却速度で400℃まで冷却した。
Thereafter, aging treatment was performed at 820°C for 3 hours, followed by cooling to 400°C at a cooling rate of 2°C/n+in.

Zrの含有量に対するiHc、Br、(BH)ffia
Xの測定結果を第5表に示す。
iHc, Br, (BH)ffia for Zr content
The measurement results for X are shown in Table 5.

第5表 Zrの含有量が0.5νt%未満ではiHcが低くなる
。またZr含有量が6.Owt%を越えるとBrが低下
する。
Table 5 When the Zr content is less than 0.5 νt%, iHc becomes low. Moreover, the Zr content is 6. If it exceeds Owt%, Br decreases.

なお、焼結温度をZr量が多い程高くしたのは、実施例
1の場合と同様、焼結密度を高めて、B「を向上させる
ためである。
Note that the reason why the sintering temperature was increased as the amount of Zr increased was to increase the sintered density and improve B'', as in the case of Example 1.

*実施例6 (合金の組成) S m : 12.3〜24.3wt% Ce : O
〜12.owt%(但しSm+Cem24.3wt%) Fe:12.5wt%  Cuニア、8wt%Zr:1
.5wt%   C:0.1wt%0:0.1wt% 
   Co:残部 (前 工 程) 実施例1に同じ (熱 処 理) 前工程で得られた成形物をこの成形物中のCeの含有量
に応じて1140〜1180℃(Ceffiが多い程、
低温側)で4時間の焼結を行い、1120℃以上で且つ
焼結温度より低い温度で3時間の溶体化処理を行った。
*Example 6 (Alloy composition) S m: 12.3 to 24.3 wt% Ce: O
~12. owt% (However, Sm+Cem24.3wt%) Fe: 12.5wt% Cu near, 8wt% Zr: 1
.. 5wt% C: 0.1wt% 0: 0.1wt%
Co: Remaining part (previous step) Same as Example 1 (heat treatment) The molded product obtained in the previous step was heated to 1140 to 1180°C depending on the Ce content in this molded product (the higher the Ceffi, the more
Sintering was performed for 4 hours at a low temperature (low temperature side), and solution treatment was performed for 3 hours at a temperature of 1120° C. or higher and lower than the sintering temperature.

その後、820℃で3時間の時効処理を行い、引き続い
て2℃/1nの冷却速度で400℃まで冷却した。
Thereafter, an aging treatment was performed at 820°C for 3 hours, and subsequently, the material was cooled to 400°C at a cooling rate of 2°C/1n.

Ceの含有量に対するiHc、Br、(BH)01aX
のハ1定結果を第6表に示す。
iHc, Br, (BH)01aX with respect to Ce content
The results are shown in Table 6.

このようにCeの置換量が多くなるほど特性は悪くなる
が、Smの一部をCeで置換しても実用上は十分な特性
が得られる。このことはSm以外の希土類元素(イツト
リウムを含む)の場合でも本発明は有効であることを明
示するものである。
As described above, the characteristics deteriorate as the amount of Ce substitution increases, but sufficient characteristics can be obtained for practical use even if a portion of Sm is replaced with Ce. This clearly shows that the present invention is effective even in the case of rare earth elements (including yttrium) other than Sm.

(発明の効果) 以上のように本発明に係る永久磁石合金によれば、従来
技術と同等以上の保磁力を発生させながら、4πI−H
ループの角型性を従来技術以上に良好にできる。
(Effects of the Invention) As described above, according to the permanent magnet alloy according to the present invention, while generating a coercive force equivalent to or higher than that of the prior art, 4πI-H
The squareness of the loop can be made better than in the prior art.

この結果、最大エネルギー積を向上させることができる
As a result, the maximum energy product can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る第1実施例における4πI−H
ループ減磁曲線を示すグラフである。 特許出願人      富士電気化学株式会社代 理 
人      弁理士 −色 健 輔同       
 弁理士 松 本 雅 利第6表
FIG. 1 shows 4πI-H in the first embodiment according to the present invention.
It is a graph showing a loop demagnetization curve. Patent applicant Fuji Electrochemical Co., Ltd. Representative
Person Patent Attorney - Ken Sukedo Iro
Patent Attorney Masatoshi Matsumoto Table 6

Claims (1)

【特許請求の範囲】[Claims] 22〜28wt%のR(但し、Rはイットリウムを含む
希土類元素の1種以上),5〜25wt%のFe,3〜
10wt%のCu,0.5〜6wt%のZr,0.03
〜0.8wt%のO,0.005〜0.5wt%のC,
残部Coから成ることを特徴とする永久磁石合金。
22-28 wt% R (however, R is one or more rare earth elements including yttrium), 5-25 wt% Fe, 3-25 wt%
10wt% Cu, 0.5-6wt% Zr, 0.03
~0.8wt% O, 0.005~0.5wt% C,
A permanent magnetic alloy characterized in that the balance consists of Co.
JP63311942A 1988-12-12 1988-12-12 Permanent magnet alloy Pending JPH02159337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63311942A JPH02159337A (en) 1988-12-12 1988-12-12 Permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63311942A JPH02159337A (en) 1988-12-12 1988-12-12 Permanent magnet alloy

Publications (1)

Publication Number Publication Date
JPH02159337A true JPH02159337A (en) 1990-06-19

Family

ID=18023290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63311942A Pending JPH02159337A (en) 1988-12-12 1988-12-12 Permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPH02159337A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547097A (en) * 1978-09-29 1980-04-02 Sharp Kk Releasing mechanism for lock of door
JPS5636858A (en) * 1979-08-31 1981-04-10 Shin Kobe Electric Mach Co Ltd Sealed lead storage battery
JPS57134533A (en) * 1981-02-12 1982-08-19 Namiki Precision Jewel Co Ltd Permanent magnet alloy
JPS58193336A (en) * 1982-05-01 1983-11-11 Sumitomo Special Metals Co Ltd Permanent magnet material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547097A (en) * 1978-09-29 1980-04-02 Sharp Kk Releasing mechanism for lock of door
JPS5636858A (en) * 1979-08-31 1981-04-10 Shin Kobe Electric Mach Co Ltd Sealed lead storage battery
JPS57134533A (en) * 1981-02-12 1982-08-19 Namiki Precision Jewel Co Ltd Permanent magnet alloy
JPS58193336A (en) * 1982-05-01 1983-11-11 Sumitomo Special Metals Co Ltd Permanent magnet material

Similar Documents

Publication Publication Date Title
US3821035A (en) Sintered cobalt-neodymium-samarium intermetallic product and permanent magnets produced therefrom
JPH10106875A (en) Manufacturing method of rare-earth magnet
US3682714A (en) Sintered cobalt-rare earth intermetallic product and permanent magnets produced therefrom
JPH0551656B2 (en)
JP3303044B2 (en) Permanent magnet and its manufacturing method
JPH02159337A (en) Permanent magnet alloy
JPH0146575B2 (en)
US3682715A (en) Sintered cobalt-rare earth intermetallic product including samarium and lanthanum and permanent magnets produced therefrom
US3919003A (en) Sintered cobalt-rare earth intermetallic product
JPS60197843A (en) Permanent magnet alloy
JP2632025B2 (en) Rare earth permanent magnet material
JPS61147504A (en) Rare earth magnet
JPH0620818A (en) Rare earth cobalt magnet
JPH0620007B2 (en) Permanent magnet manufacturing method
JPS62257704A (en) Permanent magnet
JPH0320044B2 (en)
JPH0328503B2 (en)
JPS62227055A (en) Rare earth-cobalt magnet material
JPH02128404A (en) Manufacture of rare-earth permanent magnet
JP2002088451A (en) Rare earth magnet and its manufacturing method
JPH063763B2 (en) Rare earth permanent magnet manufacturing method
JPH01127643A (en) Manufacture of rare earth magnetic material
JPS58108706A (en) Rare earth permanent magnet material
JPH05234733A (en) Sintered magnet
JPH06299303A (en) Alloy for rare earth metal magnet