JPH02128404A - Manufacture of rare-earth permanent magnet - Google Patents

Manufacture of rare-earth permanent magnet

Info

Publication number
JPH02128404A
JPH02128404A JP63282218A JP28221888A JPH02128404A JP H02128404 A JPH02128404 A JP H02128404A JP 63282218 A JP63282218 A JP 63282218A JP 28221888 A JP28221888 A JP 28221888A JP H02128404 A JPH02128404 A JP H02128404A
Authority
JP
Japan
Prior art keywords
weight
mentioned
decreases
weight percentage
ihc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63282218A
Other languages
Japanese (ja)
Inventor
Takaaki Yasumura
隆明 安村
Kazuo Matsui
一雄 松井
Teruo Kiyomiya
照夫 清宮
Yasutoshi Mizuno
水野 保敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP63282218A priority Critical patent/JPH02128404A/en
Publication of JPH02128404A publication Critical patent/JPH02128404A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PURPOSE:To improve coercive force, and to make it possible to generate the maximum energy product by a method wherein a specific quantity of oxide of Sm and/or Nd is added to the specific composition of R, Co, Fe, Cu and Zr, and the mixed material is molded and sintered. CONSTITUTION:The title permanent magnet is composed of R (one or two or more kinds of rare-earth elements containing yttrium) of 22 to 28wt.%, Fe of 5 to 16wt.%, Cu of 1 to 10wt.%, Zr of 0.5 to 6wt.%, X (Sm2O3 and/or Nd2O3) of 0.05 to 10wt.%, and the remaining part consisting of Co. The coercive force (iHc) of R, Cu and Zr is small in the weight percentage less than those mentioned above, and when the percentage exceeds the above-mentioned ranges, their residual magnetic flux density (Br) decreases. Also, when the R, Cu, Zr and X exceed the above-mentioned weight percentage, Br decreases. Also, the Br of Fe decreases in the range of weight percentage less than the above- mentioned figures. Accordingly, the iHc can be enhanced to the practical level with the above-mentioned range of weight percentage, and the maximum energy product (BHmax) can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、希土類元素と遷移金属を主成分とするRgM
+7系(但しRはY(イツトリウム)を含む希土類元素
、Mは主として遷移金属)永久磁石の製造方法に関し、
更に詳しくは銅とジルコニウムの他に希土類酸化物を適
量添加する希土類永久磁石の製造方法に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to RgM containing rare earth elements and transition metals as main components.
Regarding the manufacturing method of permanent magnets of the +7 series (where R is a rare earth element containing Y (yttrium), and M is mainly a transition metal),
More specifically, the present invention relates to a method for manufacturing rare earth permanent magnets in which an appropriate amount of rare earth oxide is added in addition to copper and zirconium.

[従来の技術] RCo−Fe−Cu系の2−17型希土類永久磁石材料
は従来公知である。この系の合金材料において、Cuの
添加は保磁力を高める効果があり10重量%以上は必要
であるとされていた。しかしCuの添加量が増大すると
残留磁束密度Brが低下してしまう問題が生じる。
[Prior Art] RCo-Fe-Cu type 2-17 rare earth permanent magnet materials are conventionally known. In this type of alloy material, the addition of Cu has the effect of increasing coercive force, and it has been said that 10% by weight or more is necessary. However, when the amount of Cu added increases, a problem arises in that the residual magnetic flux density Br decreases.

この問題を解決するため、更に適量のZr(ジルコニウ
ム)を添加することにより低Cu量の組成で保磁力iH
c及び最大エネルギー積BHmaxを高め得る技術が報
告されている(例えば特公昭55−47097号、特公
昭5548094号)。
In order to solve this problem, we added an appropriate amount of Zr (zirconium) to increase the coercive force iH with a composition with a low Cu content.
Techniques capable of increasing c and the maximum energy product BHmax have been reported (for example, Japanese Patent Publication No. 55-47097 and Japanese Patent Publication No. 5548094).

[発明が解決しようとする課題] Cuの添加量を抑えた組成でのR−C。[Problem to be solved by the invention] R-C with a composition that suppresses the amount of Cu added.

Fe−Cu−Zr系合金に限っては、非磁性であるCu
量を少なくしたことにより残留磁束密度Brが向上し、
その結果として最大エネルギー積BHmaxを高めた磁
石合金を得ることができる。しかし従来技術では保磁力
i Hcはまだ不十分であり、改善の余地は大きい。
As for Fe-Cu-Zr alloys, non-magnetic Cu
By reducing the amount, the residual magnetic flux density Br is improved,
As a result, a magnet alloy with increased maximum energy product BHmax can be obtained. However, in the conventional technology, the coercive force i Hc is still insufficient, and there is a large room for improvement.

本発明の目的は、Cu量が1〜10重量%という低い領
域でiHcを高め、従来品より高いBHmaxを有する
希土類永久磁石を製造する方法を提供することにある。
An object of the present invention is to provide a method for producing a rare earth permanent magnet that increases iHc in a low Cu content range of 1 to 10% by weight and has a higher BHmax than conventional products.

[課題を解決するための手段] 本発明者はR−Co−Fe−Cu−Zr系の希土類永久
磁石材料に関し、iHcを実用範囲まで高めること、そ
れによって13Hmayを向上させることについて種々
検討した結果、RCo−Fe−Cu−Zr系に適当な希
土類酸化物を適量添加することによって前記目的を達成
できることを見出し、本発明を完成させるに至ったもの
である。
[Means for Solving the Problems] The present inventor has conducted various studies on increasing iHc to a practical range and thereby improving 13Hmay regarding R-Co-Fe-Cu-Zr rare earth permanent magnet materials. The inventors have discovered that the above object can be achieved by adding an appropriate amount of a suitable rare earth oxide to the RCo-Fe-Cu-Zr system, and have completed the present invention.

即ち本発明は、12〜28重量%のR(但しRはイツト
リウムを含む希土類元素の1種もしくは2種以上)、5
〜16重景%重量e、1〜10重量%のCu、015〜
6重量%のZr。
That is, the present invention provides 12 to 28% by weight of R (where R is one or more rare earth elements including yttrium), 5
~16 weight% weight e, 1-10 weight% Cu, 015~
6% by weight Zr.

0.05−10重量%のX(但しXはSm2O3及び/
又はNd2O3) 、残部が実質的にC0からなる材料
を、成形し焼結する希土類永久磁石の製造方法である。
0.05-10% by weight of X (where X is Sm2O3 and/or
or Nd2O3), the remainder of which is substantially C0, is formed and sintered to produce a rare earth permanent magnet.

本発明の特徴は上記のようにR−co−FeCu−Zr
系の組成において、Cu量を抑え適量のZrと希土類酸
化物を添加する点にある。
The feature of the present invention is as mentioned above that R-co-FeCu-Zr
The key point in the system composition is to suppress the amount of Cu and add appropriate amounts of Zr and rare earth oxides.

本発明における合金の組成比率は全て以下に述べる実施
例に示すような実験結果に基づいている。Rの比率は、
別に酸化物の形で添加するため、この種の3元系組成物
で一般的に使用されているものよりも低い範囲にまで及
ぶ。C。
The composition ratios of the alloys in the present invention are all based on experimental results as shown in the Examples described below. The ratio of R is
Since it is added separately in the form of an oxide, it extends to a lower range than that commonly used in ternary compositions of this type. C.

Feの比率は、この種の3元系組成物で一般的に使用さ
れているものとほぼ同様である。
The proportion of Fe is approximately similar to that commonly used in ternary compositions of this type.

Rを12〜28重量%とじたのは、12重量%未満では
1)(cが小さく、28重量%を超えるとBrが低下す
るからである。Feを5〜16重量%とじたのは、5重
量%未満ではBrが低く16重量%を超えるとi Hc
が低下し、そのためBHmax も減少するからである
The reason why R is limited to 12 to 28% by weight is because 1) (c) is small when it is less than 12% by weight, and Br decreases when it exceeds 28% by weight.The reason why it is limited to 5 to 16% by weight is that If it is less than 5% by weight, Br is low and if it exceeds 16% by weight, i Hc
This is because BHmax also decreases.

Cuの量を1〜10重量%とじたのは、1重量%未満で
はiHcが著しく低下し、10重量%を超えるとBrが
著しく低下するからである。
The reason why the amount of Cu is limited to 1 to 10% by weight is that if it is less than 1% by weight, iHc will be significantly lowered, and if it exceeds 10% by weight, Br will be significantly lowered.

Zrの量を0.5〜6重量%とじたのは、0゜5重量%
未満ではiHcが低下し、6重量%を超えるとBrが小
さくなるからである。X(XはSm2o3及び/又はN
 d 2O3)の量を0.05〜10重量%としたのは
、10重重量を超えるとBrが低下するからである。
The amount of Zr is 0.5 to 6% by weight, which is 0.5% by weight.
This is because if it is less than 6% by weight, iHc decreases, and if it exceeds 6% by weight, Br decreases. X (X is Sm2o3 and/or N
The reason why the amount of d2O3) is set to 0.05 to 10% by weight is that if it exceeds 10% by weight, Br decreases.

このような特定の組成を採用することによってiHcを
実用範囲まで高め、結果として高いBHmaxを得るこ
とができる。
By employing such a specific composition, iHc can be increased to a practical range, and as a result, a high BHmax can be obtained.

なお3m2Os 、Nd2O3は焼結時に還元され組織
的には酸化物の形では残存しない。
Note that 3m2Os and Nd2O3 are reduced during sintering and do not remain in the form of oxides.

[実施例1コ (合金の組成a・・・本発明品方法) Sm=22.0重量%、Fe=12.9重量%、Cu量
6.1重量%、Zr=2.3重量%、Smz ol =
3.2重量%、残部がCOからなる。
[Example 1 (alloy composition a...method of the present invention) Sm = 22.0% by weight, Fe = 12.9% by weight, Cu amount 6.1% by weight, Zr = 2.3% by weight, Smz ol =
3.2% by weight, the balance being CO.

(前工程a・・・本発明方法) 必要とする合金材料を高周波溶解炉で溶解し、ショーク
ラッシャによって粗粉砕した後、更にジェットミルによ
り約3μmまで微粉砕した。
(Pre-step a...method of the present invention) The required alloy material was melted in a high frequency melting furnace, coarsely pulverized in a show crusher, and further finely pulverized to about 3 μm in a jet mill.

この微粉砕粉体と約3μmに粉砕した希土類酸化物の微
粉体とをボールミルで混合した。この混合粉体を15k
Oeの磁場中で成形圧l ton/cm”で圧縮成形し
た。
This finely pulverized powder and rare earth oxide fine powder pulverized to about 3 μm were mixed in a ball mill. 15k of this mixed powder
Compression molding was performed in a magnetic field of Oe at a molding pressure of 1 ton/cm''.

(合金の組成り・・・従来品方法) Sm=24.1重量%、Fe=12.9重量%、Cu量
6.1重量%、Zr=2.3重量%、残部がCOからな
る。
(Alloy composition: conventional product method) Sm = 24.1% by weight, Fe = 12.9% by weight, Cu amount 6.1% by weight, Zr = 2.3% by weight, the balance being CO.

(前工程b・・・従来方法) 必要とする合金材料を高周波溶解炉で溶解し、ショーク
ラッシャによって粗粉砕した後、更にジェットミルによ
り約3μmまで微粉砕した。
(Pre-step b: conventional method) The required alloy material was melted in a high frequency melting furnace, coarsely pulverized in a show crusher, and further finely pulverized to about 3 μm in a jet mill.

この微粉砕粉体を15kOeの磁場中で成形圧1 to
n/cm2で圧縮成形した。
This finely pulverized powder was molded in a magnetic field of 15 kOe under a molding pressure of 1 to
Compression molding was performed at n/cm2.

(熱処理) 焼結を1195℃で5時間、溶体化処理を1160℃で
2時間行い、800°Cで5時維持した後、1℃/分の
冷却速度で400℃まで冷却した。
(Heat treatment) Sintering was performed at 1195° C. for 5 hours, solution treatment was performed at 1160° C. for 2 hours, maintained at 800° C. for 5 hours, and then cooled to 400° C. at a cooling rate of 1° C./min.

(測定結果) 本発明方法と従来方法とにより得られた希土類永久磁石
の磁気特性の測定結果を第1表に示す。
(Measurement Results) Table 1 shows the measurement results of the magnetic properties of rare earth permanent magnets obtained by the method of the present invention and the conventional method.

第1表 このように希土類酸化物を別に添加するとiHc及びB
Hmaxが大きくなる。
Table 1: When rare earth oxides are added separately, iHc and B
Hmax increases.

[実施例2] (合金の組成) Sm=25.2−x重量%、Fe=12.9重量%、C
u−6,1重量%、Zr=2.3重量%、Smz O:
l =x重量%、残部がCOからなる。
[Example 2] (Alloy composition) Sm = 25.2-x weight %, Fe = 12.9 weight %, C
u-6, 1% by weight, Zr=2.3% by weight, Smz O:
l = x% by weight, the remainder consisting of CO.

(前工程) 実施例1の前工程aに同じ。(pre-process) Same as previous step a of Example 1.

(熱処理) 実施例1に同じ。(Heat treatment) Same as Example 1.

(測定結果) Sm、02量X(重量%)に対する磁気特性(B r、
  i Hc、 BHmax )の測定結果を第1図に
示す。Sm2Oiを添加することによりBHmaxが大
きくなり、且つiHcが14kOe以上の高保磁力タイ
プの永久磁石を製造できることが判る。
(Measurement results) Magnetic properties (Br,
The measurement results of iHc, BHmax) are shown in FIG. It can be seen that by adding Sm2Oi, a high coercive force type permanent magnet with an increased BHmax and an iHc of 14 kOe or more can be manufactured.

[実施例3コ (合金の組成) Sm=25.1−x重量%、Fe=13.1重量%、C
u=7.2重量%、Zr=1.9重量%、Sml O,
=x重重量、残部がCoからなる。
[Example 3 (alloy composition) Sm = 25.1-x wt%, Fe = 13.1 wt%, C
u=7.2% by weight, Zr=1.9% by weight, SmlO,
= x weight, the remainder being Co.

(前工程) 実施例1の前工程aに同じ。(pre-process) Same as previous step a of Example 1.

(熱処理) 実施例1に同じ。(Heat treatment) Same as Example 1.

(測定結果) Smz o3量X(重量%)に対する磁気特性(Br、
iHc、BHmax )の測定結果を第2図に示す。S
mz off量X(重量%)が10重量%を超えると添
加前のBHmayよりも低くなってしまう。
(Measurement results) Magnetic properties (Br,
The measurement results of iHc, BHmax) are shown in FIG. S
If the mz off amount X (wt%) exceeds 10 wt%, it will be lower than the BHmay before addition.

[実施例4] (合金の組成) Sm=24.9−x重量%、Fe=13.1重量%、C
u=7.2重量%、Zr=1.9重量%、Nd2O,=
x重量%、残部がCOからなる。
[Example 4] (Alloy composition) Sm = 24.9-x wt%, Fe = 13.1 wt%, C
u=7.2% by weight, Zr=1.9% by weight, Nd2O,=
x% by weight, the balance consisting of CO.

(前工程) 実施例1の前工程aに同じ。(pre-process) Same as previous step a of Example 1.

(熱処理) 実施例1に同じ。(Heat treatment) Same as Example 1.

(測定結果) Nd2O3量X(重量%)に対する磁気特性(Br、i
Hc、BHmaに)の測定結果を第3図に示す。N d
 2O x量X(重量%)が10重量%を超えると添加
前のBHmaxよりも低くなってしまう。
(Measurement results) Magnetic properties (Br, i
Figure 3 shows the measurement results for Hc and BHma. Nd
If the 2O x amount X (wt%) exceeds 10 wt%, the BHmax will be lower than before addition.

[発明の効果] 本発明は上記のような特定組成のR−C。[Effect of the invention] The present invention relates to an R-C having a specific composition as described above.

Fe−Cu−Zr系の合金材料に、Sm及び/又はNd
の酸化物を適量添加して成形し焼結する方法であるから
、従来技術より保磁力(iHC)が向上し、より高い最
大エネルギー積(BHmax )を発生させることがで
きる。
Sm and/or Nd is added to the Fe-Cu-Zr alloy material.
Since this is a method of adding an appropriate amount of oxide, forming and sintering, the coercive force (iHC) is improved compared to the conventional technology, and a higher maximum energy product (BHmax) can be generated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図ははそれぞれSmzOi量Xに対する
磁気特性の変化を示すグラフ、第3図はN d z O
:+量Xに対する磁気特性の変化を示すグラフである。 特許出願人  富士電気化学株式会社
Figures 1 and 2 are graphs showing changes in magnetic properties with respect to SmzOi amount X, respectively, and Figure 3 is a graph of N d z O
:+ is a graph showing changes in magnetic properties with respect to amount X. Patent applicant Fuji Electrochemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1.12〜28重量%のR(但しRはイットリウムを含
む希土類元素の1種もしくは2種以上)、5〜16重量
%のFe、1〜10重量%のCu、0.5〜6重量%の
Zr、0.05〜10重量%のX(但しXはSm_2O
_3及び/又はNd_2O_3)、残部が実質的にCo
からなる材料を、成形し焼結することを特徴とする希土
類永久磁石の製造方法。
1.12-28% by weight of R (wherein R is one or more rare earth elements including yttrium), 5-16% by weight of Fe, 1-10% by weight of Cu, 0.5-6% by weight of Zr, 0.05 to 10% by weight of X (where X is Sm_2O
_3 and/or Nd_2O_3), the remainder being substantially Co
A method for producing a rare earth permanent magnet, which comprises forming and sintering a material consisting of:
JP63282218A 1988-11-08 1988-11-08 Manufacture of rare-earth permanent magnet Pending JPH02128404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63282218A JPH02128404A (en) 1988-11-08 1988-11-08 Manufacture of rare-earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63282218A JPH02128404A (en) 1988-11-08 1988-11-08 Manufacture of rare-earth permanent magnet

Publications (1)

Publication Number Publication Date
JPH02128404A true JPH02128404A (en) 1990-05-16

Family

ID=17649597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63282218A Pending JPH02128404A (en) 1988-11-08 1988-11-08 Manufacture of rare-earth permanent magnet

Country Status (1)

Country Link
JP (1) JPH02128404A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300790A (en) * 2000-07-31 2007-11-15 Shin Etsu Chem Co Ltd Method for using rare earth sintered magnet
US20180151276A1 (en) * 2016-11-28 2018-05-31 Ningbo Co-Star Materials Hi-Tech Co., Ltd. Rare earth-cobalt-based composite magnetic material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104203A (en) * 1980-12-22 1982-06-29 Namiki Precision Jewel Co Ltd Production of permanent magnet alloy
JPS60211032A (en) * 1984-02-13 1985-10-23 シエリツト・ゴ−ドン・マインズ・リミテツド Sm2co17 alloy suitable for use as permanent magnet
JPS63114927A (en) * 1986-11-04 1988-05-19 Hitachi Metals Ltd Production of permanent magnet alloy
JPS63118042A (en) * 1986-11-05 1988-05-23 Hitachi Metals Ltd Permanent magnet material and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104203A (en) * 1980-12-22 1982-06-29 Namiki Precision Jewel Co Ltd Production of permanent magnet alloy
JPS60211032A (en) * 1984-02-13 1985-10-23 シエリツト・ゴ−ドン・マインズ・リミテツド Sm2co17 alloy suitable for use as permanent magnet
JPS63114927A (en) * 1986-11-04 1988-05-19 Hitachi Metals Ltd Production of permanent magnet alloy
JPS63118042A (en) * 1986-11-05 1988-05-23 Hitachi Metals Ltd Permanent magnet material and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300790A (en) * 2000-07-31 2007-11-15 Shin Etsu Chem Co Ltd Method for using rare earth sintered magnet
US20180151276A1 (en) * 2016-11-28 2018-05-31 Ningbo Co-Star Materials Hi-Tech Co., Ltd. Rare earth-cobalt-based composite magnetic material
JP2018088516A (en) * 2016-11-28 2018-06-07 寧波科星材料科技有限公司Ningbo Co−star Materials Hi−Tech Co., Ltd. Composite magnetic material
US10535451B2 (en) * 2016-11-28 2020-01-14 Ningbo Co-Star Materials Hi-Tech Co., Ltd. Rare earth-cobalt-based composite magnetic material

Similar Documents

Publication Publication Date Title
JP7418598B2 (en) Heavy rare earth alloys, neodymium iron boron permanent magnet materials, raw materials and manufacturing methods
JPH01219143A (en) Sintered permanent magnet material and its production
JPH0518242B2 (en)
JPS63317643A (en) Production of rare earth-iron permanent magnetic material
JPH0316762B2 (en)
JPH02128404A (en) Manufacture of rare-earth permanent magnet
JPH06188113A (en) Manufacture of permanent magnet composed mainly of ndfeb
JPS63241141A (en) Ferromagnetic alloy
JPH0146574B2 (en)
JPS61253805A (en) Rare-earth permanent magnet
JPH0535211B2 (en)
JPH0320044B2 (en)
JPS62181403A (en) Permanent magnet
JPH0316763B2 (en)
JPS6365742B2 (en)
JPH0347563B2 (en)
JP2632025B2 (en) Rare earth permanent magnet material
JPS58153306A (en) Manufacture of rare earth metal magnet
JPS62158852A (en) Permanent magnet material
JPH0757913A (en) Production of rare earth permanent magnet
JPS601808A (en) Permanent magnet
JP2986598B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPH05234732A (en) Rare earth element bonded magnet
JPH0620007B2 (en) Permanent magnet manufacturing method
JPS58108706A (en) Rare earth permanent magnet material