JPS59155106A - Manufacture of magnetic metal powder - Google Patents

Manufacture of magnetic metal powder

Info

Publication number
JPS59155106A
JPS59155106A JP58029780A JP2978083A JPS59155106A JP S59155106 A JPS59155106 A JP S59155106A JP 58029780 A JP58029780 A JP 58029780A JP 2978083 A JP2978083 A JP 2978083A JP S59155106 A JPS59155106 A JP S59155106A
Authority
JP
Japan
Prior art keywords
copper
iron
powder
added
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58029780A
Other languages
Japanese (ja)
Inventor
Shigeo Hirai
茂雄 平井
Akinari Hayashi
林 章禮
Toshinobu Sueyoshi
俊信 末吉
Katsunori Tashimo
田下 勝則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP58029780A priority Critical patent/JPS59155106A/en
Publication of JPS59155106A publication Critical patent/JPS59155106A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/061Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Paints Or Removers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve the oxidational stabilization of a surface protective film of the magnetic metal powder by a method wherein a liquid, which is the mixture of a copper-salt aqueous solution and a complexing agent, is added to powdery alkaline suspension having iron oxyhydroxide, ferrous oxide or metal iron as a main ingredient. CONSTITUTION:A liquid, consisting of a copper-salt aqueous solution and a complexing agent, is added to an alkaline suspension of the powder consisting of ironoxy hydroxide, ferrous oxide or metal iron as a main ingredient, the above is neutralized and a copper complex compound is adhered to the grain surface of the powder. This is reducibly processed by heat, and magnetic metal powder consisting of the magnetic metal powder composed of iron as a main ingredient and the magnetic metal powder consisting of a surface protective layer having copper formed on the grain surface as a main ingredient are obtained. When a complexing agent is added to the copper-salt aqueous solution, a water-soluble copper complex compound is formed, and as the compound is stable for alkali, no crystal deposition is generated when said compound is added to alkaline suspension, and crystal deposition is generated for the first time when the liquid is neutralized, thereby enabling to form a uniform surface protective layer.

Description

【発明の詳細な説明】 この発明は主に磁気記録用として有用な金属磁性粉末の
製造法に関すJS。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a method for producing metal magnetic powder mainly useful for magnetic recording.

鉄を主体とする金属磁性粉末は高保磁力を有し、高密度
記録用として賞月されているが、酸化物系磁性粉末に比
し酸化安定性に劣り、磁気特性が経日的に劣化しやすい
という欠点がある。この発明者らは、かかる欠点を回避
するために、オキシ水酸化鉄などの粉末のアルカリ性懸
濁液中に銅塩水溶液を添加して上記粉末の粒子表面に水
酸化銅を付着させ、ついて加熱還元処理することにより
、鉄を主体とする金属磁性粉末とその粒子表面に形成さ
れた銅を主体とする表面保護層とからなる金属磁性粉末
を得る方法をすでに提案している。
Metallic magnetic powder, mainly made of iron, has a high coercive force and is prized for high-density recording, but it has inferior oxidation stability compared to oxide-based magnetic powder, and its magnetic properties deteriorate over time. It has the disadvantage of being easy. In order to avoid such drawbacks, the inventors added a copper salt aqueous solution to an alkaline suspension of powder such as iron oxyhydroxide to adhere copper hydroxide to the particle surface of the powder, and then heated the powder. A method has already been proposed for obtaining a metal magnetic powder consisting of a metal magnetic powder mainly composed of iron and a surface protection layer mainly composed of copper formed on the surface of the particle by reduction treatment.

この方法で得られる金属磁性粉末は銅を主体とする表面
保護層によって酸化安定性が向上し、経日的な磁気特性
の劣化の低いものとなる。この発明は、上記提案に係る
方法をさらに改良して酸化安定性により一段とすぐれる
金属磁性粉末を得ることを目的としてなされたイ)ので
、特に前記提案法における銅塩水溶液に錯化剤を加えた
ことをもつとも大きな特徴とするものである0 すなわち、この発明は、オキシ水酸化鉄、酸化鉄または
゛金属鉄を主体とする粉末のアルカリ性懸濁液中に銅塩
水溶液に錯化剤を加えてなる液を添加したのち中和して
上記粉末の粒子表面に銅錯化合物を付着させ、ついで加
熱還元処理して鉄を主体とする金属磁性粉末とその粒子
表面に形成された銅を主体とする表面保護層とからなる
金属磁性粉末を得ることを特徴とする金属磁性粉末の製
造法に係るものである。
The metal magnetic powder obtained by this method has improved oxidation stability due to the surface protective layer mainly composed of copper, and has low deterioration of magnetic properties over time. This invention was made with the aim of further improving the method proposed above to obtain a metal magnetic powder with even better oxidation stability. 0 That is, this invention is characterized by adding a complexing agent to an aqueous copper salt solution in an alkaline suspension of powder mainly composed of iron oxyhydroxide, iron oxide, or metallic iron. After adding a liquid consisting of iron, the powder is neutralized to adhere a copper complex compound to the particle surface of the powder, and then heated and reduced to form a metal magnetic powder mainly composed of iron and copper formed on the particle surface. The present invention relates to a method for producing a metal magnetic powder, which is characterized by obtaining a metal magnetic powder comprising a surface protective layer.

この発明において銅塩水溶液に錯化剤を加えると水溶性
の銅錯化合物が形成さね、この化合物はアルカリに対し
て安定なためオキシ水酸化鉄などの粉末のアルカリ性懸
濁液に添加した時点では結、晶析用せず、これに炭酸ガ
スなどを吹き込んで液を中和したときに初めて結晶析出
して上記粉末の・粒子表面に付着する。このように析出
付着する銅錯化合物は粒子表面に対して非常に均一な被
膜性を有しているため、これを最終的に加熱還元処理し
て形成される銅を主体とする表面保護層も均一なものと
なり、これが酸化安定性により好結果をもたらすもので
ある。
In this invention, when a complexing agent is added to a copper salt aqueous solution, a water-soluble copper complex compound is formed, and since this compound is stable against alkali, when it is added to an alkaline suspension of powder such as iron oxyhydroxide, However, it is not used for crystallization, but only when the liquid is neutralized by blowing carbon dioxide gas etc. into it, crystals precipitate and adhere to the surface of the particles of the powder. The copper complex compound that deposits and adheres in this way has a very uniform coating on the particle surface, so a surface protective layer mainly composed of copper is also formed by final heat reduction treatment. It becomes homogeneous, which leads to better oxidative stability.

この発明において出発原料として使用するオギシ水酸化
鉄、酸化鉄または金属鉄を主体とする粉末としては、た
とえばα−F eool−1,p−F eoOH。
Examples of the powder mainly composed of iron hydroxide, iron oxide, or metallic iron used as a starting material in this invention include α-Feool-1, p-FeoOH.

7 F e 0011− (1! F e 203−7
 F e 203− F e 304およびこわらの中
間型に相当するもの並びに金属鉄のほか、これらにNi
 、Go 、Cr 、Mn 、MW、Ca、Zn、Sn
、Siなどの金属成分が含まれたものが挙げられ、特に
針状性の良いものが好ましく用いられる。
7 Fe 0011- (1! Fe 203-7
In addition to F e 203- F e 304 and those corresponding to the intermediate type of Kowara, and metal iron, Ni
, Go, Cr, Mn, MW, Ca, Zn, Sn
Examples include those containing metal components such as , Si, etc., and those with good acicularity are particularly preferably used.

この発明では、まず上記粉末のP f−] 11以上の
アルカリ性懸濁液を調製し、これに硫酸銅、硝酸銅、塩
化銅なとの銅塩の水溶液に錯化剤を加えてなる液を添加
する。上記錯化剤きしてはクエン酸、酒石酸などのアル
カリ金属塩が用いられ、予めその水溶液を調製しておき
こわを銅塩水溶液と混合する。この混合により速やかに
相当する銅錯化合物が形成され、この化合物はアルカリ
性懸濁液に添加後も安定に溶存する。
In this invention, first, an alkaline suspension of the above-mentioned powder with a P f-] of 11 or more is prepared, and a solution obtained by adding a complexing agent to an aqueous solution of a copper salt such as copper sulfate, copper nitrate, or copper chloride is added to the suspension. Added. As the complexing agent, an alkali metal salt such as citric acid or tartaric acid is used, and an aqueous solution thereof is prepared in advance and the mixture is mixed with an aqueous copper salt solution. By this mixing, a corresponding copper complex compound is rapidly formed, and this compound is stably dissolved in the alkaline suspension even after being added.

つぎに、アルカリ性懸濁液中に炭酸ガスを吹き込むかあ
るいは塩酸などの酸を加えて液を中和すると、前記銅錯
化合物が結晶析出してオキシ水酸化鉄などの粉末の粒子
表面に付着する。この付着量は、金属鉄に対し金属銅換
算で0.1〜10重量係重量るようにするのがよい。
Next, when carbon dioxide gas is blown into the alkaline suspension or acid such as hydrochloric acid is added to neutralize the liquid, the copper complex compound crystallizes and adheres to the surface of the powder particles such as iron oxyhydroxide. . It is preferable that the amount of the coating be 0.1 to 10% by weight relative to metallic iron in terms of metallic copper.

なお、上記銅錯化合物を付着させたのちあるいは付着さ
せる際に、アルカリ性懸濁液中にオルトけい酸ナトリウ
ム、メタけい酸ナトリウム、メタけい酸カリウム、種々
の組成の水ガラスの如き水溶性けい酸塩や、また各種の
水溶性アルミニウム塩を添加し、銅錯化合物の場合と同
様に中和析出させて粉末表面に前記銅錯化合物と共にけ
い酸やアルミニウム化合物を沈着させることが好ましい
特にけい酸被膜は、後の工程での加熱還元処理に際して
、粉末粒子相互間の焼結を防ぎ、出発原料の粒子形状(
針状性)を保つ働きを有しているため、最終的に得られ
る金属磁性粉末の磁気特性に好結果を与える。その付着
量としては、金属鉄Cこ対するけい素原子換算重量が0
.1〜15重量係重量るようにするのが望ましい。
In addition, after or during the deposition of the copper complex compound, water-soluble silicic acids such as sodium orthosilicate, sodium metasilicate, potassium metasilicate, and water glass of various compositions are added to the alkaline suspension. In particular, it is preferable to add a salt or various water-soluble aluminum salts and neutralize and precipitate the same as in the case of copper complex compounds to deposit silicic acid or aluminum compounds on the powder surface together with the copper complex compounds, especially a silicic acid coating. prevents sintering between powder particles during the heat reduction treatment in the subsequent process, and improves the particle shape of the starting material (
Since it has the function of maintaining the acicularity (acicularity), it gives good results to the magnetic properties of the finally obtained metal magnetic powder. As for the amount of adhesion, the weight of silicon atom equivalent to metal iron C is 0.
.. It is desirable that the weight is 1 to 15% by weight.

上記の如く銅錯化合物および好ましくはけい酸被膜など
を付着形成したのち、加熱還元処理するが1通常はこの
還元処理に先立って300〜1.000℃の温度で加熱
処理するのがよい。°水酸化物はこの加熱処理で酸化物
とされる。加熱処理後の加熱還元処理は一般には水素ガ
ス中300〜600℃の温度で実施され、出発原料がオ
キシ水酸化鉄ないし酸化鉄を主体とするものであるとき
はこれが鉄を主体とする粉末に還元されると共にその表
面に付着された前記銅錯化合物が金属銅に還元され、出
発原料が金属鉄などからなるときはその表面に付着され
た銅錯化合物が同様に還元される。
After depositing the copper complex compound and preferably the silicic acid coating as described above, a heat reduction treatment is performed, but it is usually preferable to carry out a heat treatment at a temperature of 300 to 1,000° C. prior to this reduction treatment. °The hydroxide is converted into an oxide by this heat treatment. Thermal reduction treatment after heat treatment is generally carried out at a temperature of 300 to 600°C in hydrogen gas, and when the starting material is mainly composed of iron oxyhydroxide or iron oxide, it is converted into powder mainly composed of iron. While being reduced, the copper complex compound attached to its surface is reduced to metallic copper, and when the starting material is made of metallic iron, the copper complex compound attached to its surface is similarly reduced.

このようにして得られる金属磁性粉末は鉄を主体とする
金属磁性粉末とその粒子表面に形成された銅を主体とす
る表面保護層とからなるものであり、この保護層が非常
に均一で寸だ薄膜状であることから酸化安定性により一
段とすぐれたものとなると共に初期の磁気特性にも良好
な結果が得られる。
The metal magnetic powder obtained in this way consists of a metal magnetic powder mainly composed of iron and a surface protective layer mainly composed of copper formed on the particle surface, and this protective layer is extremely uniform and dimensional. Since it is in the form of a thin film, it has better oxidation stability and good initial magnetic properties.

なお、このようにして得られるこの発明の金属磁性粉末
は、その酸化安定性の一層の向上を図るため6乙前述し
た加熱還元処理後にトルエンなどの有機溶媒中に分散さ
せてこれに空気を吹き込むなどの方法によって粉末表面
に微細な酸化被膜を設けるのが望ましい。
In addition, in order to further improve the oxidation stability of the metal magnetic powder of the present invention obtained in this way, after the heat reduction treatment described above, it is dispersed in an organic solvent such as toluene, and air is blown into the powder. It is desirable to provide a fine oxide film on the powder surface by a method such as the following.

以下に、この発明の実施例を記載してより具体的に説明
する。
EXAMPLES Below, examples of the present invention will be described in more detail.

実施例1 平均粒子径0.5μm、軸比15のα−オギシ水酸化鉄
粉101を含有するアルカリ性懸濁液(pF111以上
)800mtをかくはんしながらこれに02モルの硫酸
銅水溶液24.8ml (Fe に対してCuが5市量
係に相当)と0.2モルのクエン酸ナトリウム水溶液2
4.8mtとを混合した混合液を添加した。これをかく
はんしながら炭酸ガスを吹き込み液のPI″lが8以下
となる寸で中和してα−オギシ水酸化鉄の粒子表面に銅
とクエン酸との錯化合物を析出付着させた。
Example 1 24.8 ml of an aqueous 0.2 mol copper sulfate solution was added to 800 mt of an alkaline suspension (pF 111 or higher) containing α-Ogishi iron hydroxide powder 101 with an average particle size of 0.5 μm and an axial ratio of 15 while stirring. Cu is equivalent to 5 parts of Fe) and 0.2 mol of sodium citrate aqueous solution 2
A mixed solution of 4.8 mt was added. While stirring, carbon dioxide gas was blown into the solution to neutralize it to a level where the PI''l of the solution was 8 or less, and a complex compound of copper and citric acid was precipitated and adhered to the surface of the α-iron hydroxide particles.

つぎに、錯化合物が付着されたα−オキシ水酸化鉄粉を
水洗、乾燥したのち・空気中300℃の温度で2時間加
熱処理して酸化鉄粉とした。この酸化鉄粉を再び80(
’1mtの水に懸濁させ、これに1モル/lのオルトけ
い酸ソーダ(Na4SiO4)水溶液ismzを添加混
合したのち炭酸ガスを吹き込みPH8以下に中和した。
Next, the α-oxyhydroxide powder to which the complex compound was attached was washed with water, dried, and then heat-treated in air at a temperature of 300° C. for 2 hours to obtain iron oxide powder. Add this iron oxide powder to 80% (
The suspension was suspended in 1 mt of water, and a 1 mol/l aqueous solution of sodium orthosilicate (Na4SiO4) ismz was added thereto and mixed, and then carbon dioxide gas was blown in to neutralize the pH to 8 or lower.

しかるのち、懸濁物を水洗、乾燥したのち空気中800
℃の温度で2時間加熱処理し、ついでこれを水素気流中
500℃で2時間加熱還元処理した。還元物をトルエン
中に浸漬しかくはんしながら空気を吹き込んで微細な酸
化被膜を形成した。
After that, the suspended matter was washed with water and dried, and then 800%
℃ for 2 hours, and then heated and reduced in a hydrogen stream at 500℃ for 2 hours. The reduced product was immersed in toluene and air was blown into it while stirring to form a fine oxide film.

このようにして得られたこの発明の金属磁性粉末は、平
均粒子径が9.3μm、軸比が10、飽和磁化量が13
1 emu /’ ?、保磁力が1475エルステツド
、角型が0.52であった。
The metal magnetic powder of the present invention thus obtained has an average particle diameter of 9.3 μm, an axial ratio of 10, and a saturation magnetization of 13.
1 emu/'? The coercive force was 1475 oersted, and the square shape was 0.52.

実施例2 0.2モルの硫酸銅水溶液と0.2モルのクエン酸ナト
リウム水溶液との混合液を使用する代りに、0.1モル
の硫酸銅水溶液24.8mt(Feに対してCuが2,
5車量係)と0,1モルの酒石酸ナトリウム水溶液24
.8mtとの混合液を用いた以外は、実施例1と全く同
様にしてこの発明の金属磁性粉末をつくった。この粉末
の平均粒子径は0.3μm、軸比は1’ O−飽和磁化
量は1308mu/l’、保磁力は1500エルステツ
ド、角型は0,52であった。
Example 2 Instead of using a mixed solution of 0.2 mol copper sulfate aqueous solution and 0.2 mol sodium citrate aqueous solution, 24.8 mt of 0.1 mol copper sulfate aqueous solution (24.8 mt of 0.1 mol copper sulfate aqueous solution (Cu: 2 ,
5) and 0.1 mol sodium tartrate aqueous solution 24
.. A metal magnetic powder of the present invention was produced in exactly the same manner as in Example 1, except that a mixed solution with 8mt was used. This powder had an average particle diameter of 0.3 μm, an axial ratio of 1' O-saturation magnetization of 1308 mu/l', a coercive force of 1500 oersted, and a square shape of 0.52.

実施例3 平均粒子径0.5μm1 軸比15のα−オギン水酸化
鉄粉1− 、o fを含有するアルカリ性懸濁液(PI
(11以上)soomzをかくはんしながらこれに01
モルの硫酸銅水溶液24.8 mlと0.1モルのクエ
ン酸ナトリウム水溶液24.8mtとの混合液を添加し
た。ついて、1モル/lのオルトけい酸ソーダ水溶液x
smtを添加混合し、これに3規定の塩酸を徐々に添加
して液のp Hを4〜5とした0 しかるのち、懸濁物を水洗、乾燥したのち、空気中80
0℃の温度で2時間加熱処理し、さらに水素気流中50
0℃で2時間加熱還元処理した。
Example 3 An alkaline suspension (PI
(11 or more) 01 to this while stirring soomz
A mixture of 24.8 ml of a molar aqueous copper sulfate solution and 24.8 mt of a 0.1 molar aqueous sodium citrate solution was added. Then, 1 mol/l sodium orthosilicate aqueous solution x
smt was added and mixed, and 3N hydrochloric acid was gradually added to this to adjust the pH of the liquid to 4 to 5.Then, the suspension was washed with water, dried, and then dissolved in air at 80C.
Heat treated at a temperature of 0°C for 2 hours, and then heated for 50 hours in a hydrogen stream.
Heat reduction treatment was performed at 0°C for 2 hours.

還元物をトルエン中に浸漬しかくはんしながら空気を吹
き込んで微細な酸化被膜を形成した。
The reduced product was immersed in toluene and air was blown into it while stirring to form a fine oxide film.

このようにして得られたこの発明の金属磁性粉末は、そ
の平均粒子径が0.3μm1 軸比が10゜飽和磁化量
が127 emu /17’、保磁力が1490エルス
テツド、角型が0.52であった。
The metal magnetic powder of the present invention thus obtained has an average particle diameter of 0.3 μm, an axial ratio of 10°, a saturation magnetization of 127 emu/17', a coercive force of 1490 oersted, and a square shape of 0.52. Met.

実施例4 市販の金属鉄粉(平均粒子径0.35μm、軸比10 
) 6.3 ?を含有するアルカリ性懸濁液CPH11
以上)500mtを出発原料とした以外は、実施例3と
同様にしてこの発明の金属磁性粉末を得た。この粉末の
平均粒子径は0.30μm、軸比は8%飽和磁化量は1
32emu/グ、保磁力は1520エルステツド、角型
は(1,52であった。
Example 4 Commercially available metallic iron powder (average particle size 0.35 μm, axial ratio 10
) 6.3? Alkaline suspension containing CPH11
The metal magnetic powder of the present invention was obtained in the same manner as in Example 3 except that 500 mt (above) was used as the starting material. The average particle diameter of this powder is 0.30μm, the axial ratio is 8%, and the saturation magnetization is 1
It was 32 emu/g, the coercive force was 1520 Oersted, and the square shape was (1.52).

比較例1 0.2モルの硫酸銅水溶液と0.2モルのクエン酸ナト
リウム水溶液との混合液を使用する代りに、0.2モル
の硫酸銅水溶液24.8mtを徐々に添加し、かつ添加
後の炭酸ガスの吹き込み中和を行なわなかった以外は、
実施例1と同様にして金属磁性粉末を得た。この粉末の
平均粒子径は0.3μm、軸比は10%飽和磁化量は]
、 34 emu 、/ f、 保磁力は1440エル
ステツド、角型は0.52であった。
Comparative Example 1 Instead of using a mixture of 0.2 mol copper sulfate aqueous solution and 0.2 mol sodium citrate aqueous solution, 24.8 mt of 0.2 mol copper sulfate aqueous solution was gradually added, and Except that the subsequent neutralization by blowing carbon dioxide gas was not carried out.
Metal magnetic powder was obtained in the same manner as in Example 1. The average particle diameter of this powder is 0.3 μm, the axial ratio is 10%, and the saturation magnetization is]
, 34 emu, / f, coercive force was 1440 oersted, and square shape was 0.52.

比較例2 0.1モルの硫酸銅水溶液と0.1モルのクエン酸ナト
リウム水溶液との混合液を使用する代りに、0.1モル
の硫酸銅水溶液24.8 mlを徐々に添加するように
した以外は、実施例3と同様にして金属磁性粉末を得た
。この粉末の平均粒子径は0.3μm、軸比は】0.飽
和磁化量は130 emu /ffb保磁力は1490
エルステツド、角型は0.51であった。
Comparative Example 2 Instead of using a mixture of 0.1 mol copper sulfate aqueous solution and 0.1 mol sodium citrate aqueous solution, 24.8 ml of 0.1 mol copper sulfate aqueous solution was gradually added. A metal magnetic powder was obtained in the same manner as in Example 3 except for the following. The average particle diameter of this powder is 0.3 μm, and the axial ratio is ]0. Saturation magnetization is 130 emu/ffb coercive force is 1490
Ersted and square shape were 0.51.

比較例3 α−オシシ水酸化鉄粉の粒子表面に銅とクエン酸との錯
化合物を析出形成する工程およびその後の水洗、乾燥、
加熱処理〔酸化鉄粉とする〕工程を省いた以外は、実施
例1と全く同様にして金属磁性粉末を得た。この粉末の
平均粒子径は0.3μm。
Comparative Example 3 Step of depositing and forming a complex compound of copper and citric acid on the particle surface of α-oxidized iron hydroxide powder, subsequent washing with water, drying,
A metal magnetic powder was obtained in exactly the same manner as in Example 1, except that the heat treatment step (to form iron oxide powder) was omitted. The average particle size of this powder was 0.3 μm.

軸比は10、飽和磁化量は12gemu/l、  保磁
力は1530エルステツド、角型は0.52であった。
The axial ratio was 10, the saturation magnetization was 12 gemu/l, the coercive force was 1530 oersted, and the square shape was 0.52.

上記各実施例および比較例に係る金属磁性粉末を60℃
%90係1f−1の雰囲気中に7日間放置したのちの飽
和磁化量の劣化率:〔(初期の飽和磁化量−経口後の飽
和磁化量)/初期の飽和磁化量〕X10n91.を調べ
た結果は、下記のとおりであつた。
The metal magnetic powder according to each of the above examples and comparative examples was heated at 60°C.
Deterioration rate of saturation magnetization after being left in an atmosphere of %90 coefficient 1f-1 for 7 days: [(initial saturation magnetization - saturation magnetization after oral administration)/initial saturation magnetization] X10n91. The results of the investigation were as follows.

飽和磁化量の劣化率 実施例1        4.3 % 実施例2        4.6 係 実施例3        4.8 % 実施例4       4.8 % 比較例1       4,8 係 比較例25・1 係 比較例3        ’10.9  %上記の結果
から明らかなようC乙この発明の金属磁性粉末は酸化安
定性によりすぐ、れ経日保存後の磁気特性の低下が少な
いものであることがわかる。
Deterioration rate of saturation magnetization Example 1 4.3% Example 2 4.6 Example 3 4.8% Example 4 4.8% Comparative example 1 4.8 Comparative example 25.1 Comparative example 3 '10.9% As is clear from the above results, the metal magnetic powder of the present invention has excellent oxidation stability and shows little deterioration in magnetic properties after storage over time.

Claims (1)

【特許請求の範囲】[Claims] (1)オキシ水酸化鉄、酸化鉄または金属鉄を主体とす
る粉末のアルカリ性懸濁液中に銅塩水溶液に錯化剤を加
えてなる液を添加したのち中和して上記粉末の粒子表面
に銅錯化合物を付着させ・ついで加熱還元処理して鉄を
主体とする金属磁性粉末とその粒子表面に形成された銅
を主体とする表面保護層とからなる金属磁性粉末を得る
ことを特徴とする金属磁性粉末の製造法。
(1) A solution prepared by adding a complexing agent to an aqueous copper salt solution is added to an alkaline suspension of powder mainly composed of iron oxyhydroxide, iron oxide, or metallic iron, and then neutralized to surface the particles of the powder. A copper complex compound is attached to the particle, and then heat reduction treatment is performed to obtain a metal magnetic powder consisting of a metal magnetic powder mainly composed of iron and a surface protective layer mainly composed of copper formed on the surface of the particle. A method for producing metal magnetic powder.
JP58029780A 1983-02-23 1983-02-23 Manufacture of magnetic metal powder Pending JPS59155106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58029780A JPS59155106A (en) 1983-02-23 1983-02-23 Manufacture of magnetic metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58029780A JPS59155106A (en) 1983-02-23 1983-02-23 Manufacture of magnetic metal powder

Publications (1)

Publication Number Publication Date
JPS59155106A true JPS59155106A (en) 1984-09-04

Family

ID=12285526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58029780A Pending JPS59155106A (en) 1983-02-23 1983-02-23 Manufacture of magnetic metal powder

Country Status (1)

Country Link
JP (1) JPS59155106A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160905A (en) * 1985-01-09 1986-07-21 Hitachi Maxell Ltd Magnetic metal powder
EP0255816A2 (en) * 1986-08-04 1988-02-10 Treibacher Chemische Werke Aktiengesellschaft Preparation process for corrosion resistant magnetic permanent powder used in magnet manufacturing; permanent magnets produced from permanent magnet powder and their manufacturing method
CN105440814A (en) * 2015-12-23 2016-03-30 巢湖诺信建材机械装备有限公司 Bottom layer protective coating on air cannon nozzle
CN108620581A (en) * 2018-04-16 2018-10-09 北京科技大学 A kind of method that the printing of 3D gels prepares magnesium alloy product

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160905A (en) * 1985-01-09 1986-07-21 Hitachi Maxell Ltd Magnetic metal powder
JPH0578926B2 (en) * 1985-01-09 1993-10-29 Hitachi Maxell
EP0255816A2 (en) * 1986-08-04 1988-02-10 Treibacher Chemische Werke Aktiengesellschaft Preparation process for corrosion resistant magnetic permanent powder used in magnet manufacturing; permanent magnets produced from permanent magnet powder and their manufacturing method
EP0255816A3 (en) * 1986-08-04 1988-12-21 Treibacher Chemische Werke Aktiengesellschaft Preparation process for corrosion resistant magnetic permanent powder used in magnet manufacturing; permanent magnets produced from permanent magnet powder and their manufacturing method
CN105440814A (en) * 2015-12-23 2016-03-30 巢湖诺信建材机械装备有限公司 Bottom layer protective coating on air cannon nozzle
CN108620581A (en) * 2018-04-16 2018-10-09 北京科技大学 A kind of method that the printing of 3D gels prepares magnesium alloy product
CN108620581B (en) * 2018-04-16 2019-06-04 北京科技大学 A kind of method that the printing of 3D gel prepares magnesium alloy product

Similar Documents

Publication Publication Date Title
JPS59155106A (en) Manufacture of magnetic metal powder
JPH0420241B2 (en)
JPS6021307A (en) Production of ferromagnetic metallic powder
JPS6217364B2 (en)
JPS59157205A (en) Production of metallic magnetic powder
JPH0270003A (en) Method for treating ferromagnetic iron powder
JPS5919168B2 (en) Manufacturing method of metal magnetic powder
JP2958370B2 (en) Method for producing composite ferrite magnetic powder
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JPS5931003A (en) Metal magnetic powder and manufacture thereof
JPS6122604A (en) Magnetic metal powder and manufacture thereof
JPS59157204A (en) Manufacture of ferromagnetic metallic fine particle
JPS59170209A (en) Production of magnetic metallic powder for magnetic recording
JP2958369B2 (en) Method for producing composite ferrite magnetic powder
JPH0323224A (en) Production of complex-type ferritic magnetic powder
JPS6163921A (en) Magnetic powder and its production
JP2677278B2 (en) Magnetic iron oxide powder for magnetic recording and manufacturing method thereof
JPS63140005A (en) Production of fine ferromagnetic metal particle powder
JPS58159311A (en) Manufacture of metallic magnetic powder
JPS61160905A (en) Magnetic metal powder
JPS59170202A (en) Magnetic metallic powder and its production
JPS59153810A (en) Production of ferromagnetic fine metallic particle
JPS62219902A (en) Manufacture of metal magnetic powder
JPS58161927A (en) Manufacture of magnetic powder
JPS5918605A (en) Manufacture of corrosion-proof iron powder for magnetic recording