JP2958370B2 - Method for producing composite ferrite magnetic powder - Google Patents

Method for producing composite ferrite magnetic powder

Info

Publication number
JP2958370B2
JP2958370B2 JP4227434A JP22743492A JP2958370B2 JP 2958370 B2 JP2958370 B2 JP 2958370B2 JP 4227434 A JP4227434 A JP 4227434A JP 22743492 A JP22743492 A JP 22743492A JP 2958370 B2 JP2958370 B2 JP 2958370B2
Authority
JP
Japan
Prior art keywords
magnetic powder
ferrite magnetic
ferrite
mol
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4227434A
Other languages
Japanese (ja)
Other versions
JPH0677035A (en
Inventor
隆幸 木村
和生 橋本
博文 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP4227434A priority Critical patent/JP2958370B2/en
Publication of JPH0677035A publication Critical patent/JPH0677035A/en
Application granted granted Critical
Publication of JP2958370B2 publication Critical patent/JP2958370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/112Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles with a skin

Landscapes

  • Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、新規な複合フェライト
磁性粉の製造方法に関するものである。さらに詳しく
は、本発明は高密度記録用の磁気記録媒体に用いるのに
適した、保磁力が200〜2000Oeであり、従来のも
のと比較して飽和磁化が向上しており、保磁力の温度変
化が小さく、粉末の電気抵抗が小さく、かつ粒子径が50
nm以下であり、板状比が5以上である複合フェライト
磁性粉の製造方法に関するものである。近年、磁気記録
の高密度化の要求に伴い、マグネトプランバイト型フェ
ライト磁性粉を磁気記録媒体として用いる垂直磁気記録
方式の開発が進められており、DATテープ、8ミリテ
ープ、ハイビジョンテープ等の用途が考えられている。
垂直磁気記録方式に用いられるマグネトプランバイト型
フェライト磁性粉としては、微粒子で保磁力が適当な値
(200〜2000Oe)で、飽和磁化ができるだけ高
く、保磁力の温度変化が小さく、しかも電気抵抗が小さ
く、配向性の良いものが望まれている。
The present invention relates to a method for producing a novel composite ferrite magnetic powder. More specifically, the present invention has a coercive force of 200 to 2000 Oe, which is suitable for use in a magnetic recording medium for high-density recording, has an improved saturation magnetization as compared with the conventional one, and has a temperature of coercive force. Small change, low electric resistance of powder, and particle size of 50
The present invention relates to a method for producing a composite ferrite magnetic powder having a thickness of not more than 5 nm and a tabular ratio of not less than 5. In recent years, with the demand for higher density of magnetic recording, development of a perpendicular magnetic recording system using a magnetoplumbite type ferrite magnetic powder as a magnetic recording medium has been promoted, and applications such as a DAT tape, an 8 mm tape, and a Hi-Vision tape have been made. It is considered.
The magnetoplumbite ferrite magnetic powder used in the perpendicular magnetic recording system is a fine particle having an appropriate coercive force (200 to 2000 Oe), a high saturation magnetization, a small temperature change of the coercive force, and a low electric resistance. What is small and has good orientation is desired.

【0002】[0002]

【従来の技術およびその問題点】従来、マグネトプラン
バイト型フェライト磁性粉の製造方法としては、例えば
共沈法、ガラス結晶化法、水熱合成法等種々の方法が知
られており、ガラス結晶化法については、特公昭60-155
75号公報、水熱合成法については、例えば特開昭59-175
707号公報、特公昭60-12973号公報、特公昭60-15576号
公報、特開昭60-137002号公報等で提案されている。し
かしながら、前記いずれの方法においても得られるマグ
ネトプランバイト型フェライト磁性粉は、飽和磁化が6
0emu/g以下と低かったり、保磁力の温度変化が大きい
という欠点があった。特に、高密度化に必要な粒子径が
50nm以下で均一な粒子形状を有し、かつ磁気的特性に
優れた微粒子を得ることは困難であった。一方、マグネ
トプランバイト型フェライト磁性粉は、従来のCo-γ-Fe
23に比べて粉末の電気抵抗が大きいため、塗膜媒体に
する場合に導電性物質を多量に添加しなければならず、
そのために電磁変換特性が悪くなってしまうという問題
があった。これらの問題点を解決する方法として、特開
昭62-139122号公報、同62-139124号公報、同62-265122
号公報、同63-144118号公報及び同63-144119号公報に
は、フェライト磁性粉の表面にスピネル型フェライトを
被覆することが提案されている。これにより得られるフ
ェライト磁性粉は、実際に前記種々の特性が改善される
ものの、フェライト磁性粉の表面に多量のスピネル型フ
ェライトを被覆するために、粒子の配向性が悪くなり、
塗膜にした場合の角形比が小さくなってしまい、また、
磁化容易軸がC軸からずれてしまうという問題があっ
た。
2. Description of the Related Art Conventionally, various methods for producing magnetoplumbite-type ferrite magnetic powder, such as a coprecipitation method, a glass crystallization method, and a hydrothermal synthesis method, are known. For the conversion method, see JP-B-60-155
No. 75, the hydrothermal synthesis method, for example, JP-A-59-175
No. 707, Japanese Patent Publication No. 60-12973, Japanese Patent Publication No. 60-15576, Japanese Patent Application Laid-Open No. 60-137002, and the like. However, the magnetoplumbite-type ferrite magnetic powder obtained by any of the above methods has a saturation magnetization of 6%.
There are drawbacks such as a low value of 0 emu / g or less and a large change in coercive force with temperature. In particular, the particle size required for high density
It was difficult to obtain fine particles having a uniform particle shape at 50 nm or less and excellent magnetic properties. On the other hand, magnetoplumbite-type ferrite magnetic powder is the same as conventional Co-γ-Fe
Since the electric resistance of the powder is larger than that of 2 O 3 , a large amount of a conductive substance must be added when forming a coating medium.
Therefore, there is a problem that the electromagnetic conversion characteristics deteriorate. As a method for solving these problems, JP-A-62-139122, JP-A-62-139124, and JP-A-62-265122
JP-A-63-144118 and JP-A-63-144119 propose to coat the surface of ferrite magnetic powder with spinel-type ferrite. Ferrite magnetic powder obtained by this, although the above-mentioned various properties are actually improved, since a large amount of spinel-type ferrite is coated on the surface of the ferrite magnetic powder, the orientation of the particles becomes poor,
The squareness ratio when formed into a coating film becomes small, and
There is a problem that the axis of easy magnetization deviates from the C axis.

【0003】[0003]

【発明の目的】本発明の目的は、前記問題点を解決し、
保磁力が200〜2000Oeであり、飽和磁化が高く、
保磁力の温度変化が小さく、粉末の電気抵抗が小さく、
かつ粒子径が50nm以下であり、板状比が5以上である
配向性に優れた複合フェライト磁性粉の製造方法を提供
することにある。
An object of the present invention is to solve the above problems,
The coercive force is 200-2000 Oe, the saturation magnetization is high,
The temperature change of coercive force is small, the electric resistance of powder is small,
Another object of the present invention is to provide a method for producing a composite ferrite magnetic powder having a particle diameter of 50 nm or less and a plate-like ratio of 5 or more and excellent in orientation.

【0004】[0004]

【問題点を解決するための手段】本発明は、 一般式
AO・n(Fe12-x-ySbxy18-z) (ただし、Aは、Ba、Sr、Ca及びPbから選ばれる一種以
上の元素を示し、Mは、Co,Ni,Zn,Cu,Mg,Mn,Fe(II),Si,
Ti,Zr,Sn,Ta,Nb,Mo,V及びWから選ばれる一種以上の元
素を示し、n=1.2〜3.0、x=0.01〜0.6、y=0.1〜4.
0、0<z<2の数値である。)で表されるフェライト
微粒子を水に懸濁させ、これに、還元剤と、Co,Ni,Zn,M
g,Mn及びCuから選ばれる一種以上の金属イオン及びFe2+
を含有する水溶液及びアルカリ水溶液を加え、得られた
混合懸濁液を非酸化性雰囲気中で50〜200℃で加熱
処理した後、洗浄、濾過し、次いで、非酸化性雰囲気中
で100〜500℃で熱処理することを特徴とする前記
一般式で表されるフェライト微粒子表面に、一般式 a
(M'O)・Fe23 (ただし、M'はCo,Ni,Zn,Cu,Mg,Mn及
びFe(II)から選ばれる一種以上の金属元素であり、0<
a≦1である。)で表されるスピネルフェライト層が形
成されている複合フェライト磁性粉の製造方法に関す
る。
[Means for Solving the Problems] The present invention provides a compound represented by the following general formula:
AO · n (Fe 12-xy Sb x M y O 18-z) ( however, A is indicated Ba, Sr, one or more elements selected from Ca and Pb, M is Co, Ni, Zn, Cu , Mg, Mn, Fe (II), Si,
Represents one or more elements selected from Ti, Zr, Sn, Ta, Nb, Mo, V and W, n = 1.2 to 3.0, x = 0.01 to 0.6, y = 0.1 to 4.
0, 0 <z <2. ) Is suspended in water, and a reducing agent, Co, Ni, Zn, M
One or more metal ions selected from g, Mn and Cu and Fe 2+
And an aqueous alkali solution is added, and the resulting mixed suspension is subjected to a heat treatment at 50 to 200 ° C. in a non-oxidizing atmosphere, followed by washing and filtration, and then 100 to 500 in a non-oxidizing atmosphere. A ferrite fine particle surface represented by the above general formula characterized by heat treatment at
(M′O) · Fe 2 O 3 (where M ′ is one or more metal elements selected from Co, Ni, Zn, Cu, Mg, Mn and Fe (II), and 0 <
a ≦ 1. The present invention relates to a method for producing a composite ferrite magnetic powder having a spinel ferrite layer represented by the formula (1).

【0005】本発明の複合フェライト磁性粉における、
核となるフェライト微粒子は、一般式 AO・n(Fe
12-x-ySbxy18-z) で表される。前記一般式における
Aは、Ba、Sr、Ca及びPbから選ばれる一種以上の元素を
示し、Mは、Co,Ni,Zn,Cu,Mg,Mn,Fe(II),Si,Ti,Zr,Sn,T
a,Nb,Mo,V及びWから選ばれる一種以上の元素を示し、
n=1.2〜3.0、好ましくは1.4〜2.5であり、x=0.01〜
0.6、好ましくは0.1〜0.4であり、y=0.1〜4.0の数値
である。また、zはMの平均原子価をmとした場合、z
=(3−m)y/2で表される数値であって、0<z<
2、好ましくは0.2<z<1.5である。本発明において
は、上記一般式に示すようにFeの一部をMで置換すると
ともに、nを1.2〜3.0の範囲とすることにより、従来の
マグネトプランバイト型フェライトと比較して飽和磁化
が向上し、保磁力の温度変化が小さいフェライト磁性粉
が得られる。さらに、Feの一部をSbで置換することによ
りフェライト磁性粉の粒子径を50nm以下、かつ、板状
比を5以上とすることができる。
In the composite ferrite magnetic powder of the present invention,
The ferrite fine particles serving as nuclei are represented by the general formula AOn (Fe
Represented by 12-xy Sb x M y O 18-z). A in the general formula represents one or more elements selected from Ba, Sr, Ca and Pb, and M represents Co, Ni, Zn, Cu, Mg, Mn, Fe (II), Si, Ti, Zr, Sn, T
a, Nb, Mo, represents one or more elements selected from V and W,
n = 1.2-3.0, preferably 1.4-2.5, x = 0.01-
0.6, preferably 0.1 to 0.4, and y = 0.1 to 4.0. Z is z when the average valence of M is m.
= (3-m) y / 2, where 0 <z <
2, preferably 0.2 <z <1.5. In the present invention, the saturation magnetization is improved as compared with the conventional magnetoplumbite ferrite by substituting a part of Fe with M as shown in the above general formula and setting n in the range of 1.2 to 3.0. As a result, a ferrite magnetic powder having a small change in coercive force with temperature can be obtained. Further, by substituting a part of Fe with Sb, the particle diameter of the ferrite magnetic powder can be 50 nm or less and the plate ratio can be 5 or more.

【0006】このようなフェライト微粒子は、以下の方
法により製造される。フェライト微粒子を構成するA、
Fe、Sb及びMを含む溶液と水酸化アルカリとを、混合後
の溶液中の水酸化アルカリ濃度が3M以上となるように
混合して沈澱物を生成させ、該沈澱物を含むスラリを1
20〜300℃で水熱処理した後、沈澱物を含むスラリ
を洗浄し、次いで、該スラリにCo,Ni,Zn,Mg,Mn及びCuか
ら選ばれる一種以上の金属イオン及びFe2+を含有する水
溶液及びアルカリ水溶液を加え、得られた混合懸濁液を
50〜200℃で加熱処理した後、得られた沈澱物を7
00〜950℃で焼成することにより、前記フェライト
微粒子が得られる。Aの化合物としては、硝酸塩、塩化
物、水酸化物等が用いられる。Aの使用量は、Aの濃度
が0.03〜0.50Mの範囲になるようにするのが結晶性のよ
い粒子を得るうえで望ましい。
[0006] Such ferrite fine particles are produced by the following method. A constituting ferrite fine particles,
The solution containing Fe, Sb, and M and the alkali hydroxide are mixed so that the concentration of the alkali hydroxide in the mixed solution becomes 3 M or more to form a precipitate, and the slurry containing the precipitate is mixed with one solution.
After hydrothermal treatment at 20 to 300 ° C., the slurry containing the precipitate is washed, and the slurry contains one or more metal ions selected from Co, Ni, Zn, Mg, Mn and Cu, and Fe 2+ . An aqueous solution and an aqueous alkali solution were added, and the resulting mixed suspension was heated at 50 to 200 ° C.
By baking at 00 to 950 ° C., the ferrite fine particles are obtained. As the compound of A, nitrates, chlorides, hydroxides and the like are used. The use amount of A is desirably set so that the concentration of A is in the range of 0.03 to 0.50 M in order to obtain particles having good crystallinity.

【0007】Feの化合物としては、硝酸塩、塩化物等が
用いられる。Feの使用量はAが1グラム原子に対して8
〜12グラム原子が好ましい。Feの量が少なすぎると、
フェライト磁性粉の生成量が少なく、結晶性も悪くな
る。またFeの量が多すぎるとヘマタイトが副生したり、
またフェライト磁性粉の粒子が大きくなり、磁気特性も
劣ってくる。Sbの化合物としては、塩化物等が用いられ
る。Mの化合物としては、塩化物、硝酸塩、アンモニウ
ム塩等が用いられる。水酸化アルカリとしては、水酸化
ナトリウム、水酸化カリウム等が用いられる。水酸化ア
ルカリの使用量は水酸化アルカリを混合した後の溶液中
の水酸化アルカリ濃度が3M以上となる量が必要であ
り、4〜8Mの範囲が好ましい。水酸化アルカリの量が
少なすぎると粒子が大きくなったり、粒度分布が広くな
ったり、またヘマタイトが生成する。また水酸化アルカ
リを過度に多くするのは経済的でない。前記A、Fe、Sb
及びMを含む溶液と水酸化アルカリとを混合する方法に
ついては、特に制限はないが、例えばA、Fe、Sb及びM
を含む溶液に、水酸化アルカリの水溶液を添加する方法
がある。
As the Fe compound, nitrates, chlorides and the like are used. The amount of Fe used is 8 for 1 gram atom.
~ 12 gram atoms are preferred. If the amount of Fe is too small,
The amount of ferrite magnetic powder generated is small, and the crystallinity also deteriorates. If the amount of Fe is too large, hematite is produced as a by-product,
In addition, the particles of the ferrite magnetic powder become large, and the magnetic properties become poor. Chloride or the like is used as the Sb compound. As the compound of M, chloride, nitrate, ammonium salt and the like are used. As the alkali hydroxide, sodium hydroxide, potassium hydroxide or the like is used. The amount of the alkali hydroxide used must be such that the alkali hydroxide concentration in the solution after mixing the alkali hydroxide is 3 M or more, and is preferably in the range of 4 to 8 M. If the amount of the alkali hydroxide is too small, the particles become large, the particle size distribution becomes wide, and hematite is generated. It is not economical to use an excessive amount of alkali hydroxide. A, Fe, Sb
The method of mixing the solution containing Al and M with the alkali hydroxide is not particularly limited. For example, A, Fe, Sb and M
There is a method of adding an aqueous solution of an alkali hydroxide to a solution containing

【0008】次いで、得られた沈澱物を含むスラリを水
熱処理することにより、微細な結晶が生成、沈澱する。
水熱処理の温度は120〜300℃である。温度が低す
ぎると結晶の生成が充分でなく、また温度が高すぎると
最終的に得られるフェライト粉末の粒径が大きくなるの
で好ましくない。水熱処理時間は普通、0.5〜20時間程
度であり、水熱処理には通常、オートクレーブが採用さ
れる。次に、水熱処理により生成した微細な結晶の沈澱
物を水洗して、遊離のアルカリ分を除去した後、該スラ
リにCo,Ni,Zn,Mg,Mn及びCuから選ばれる一種以上の金属
イオン及びFe2+を含有する水溶液及びアルカリ水溶液を
加え、得られた混合懸濁液を50〜200℃で加熱処理
する。Co,Ni,Zn,Mg,Mn及びCuの化合物としては、それら
の硝酸塩、塩化物、硫酸塩等の水に可溶なものが用いら
れ、Feの化合物としては、硫酸第一鉄、塩化第一鉄が一
般に用いられる。次いで、得られた沈澱物を水洗後、焼
成することによりフェライト微粒子が得られる。
Next, the slurry containing the obtained precipitate is subjected to a hydrothermal treatment, whereby fine crystals are formed and precipitated.
The temperature of the hydrothermal treatment is 120 to 300 ° C. If the temperature is too low, the formation of crystals is not sufficient, and if the temperature is too high, the particle size of the finally obtained ferrite powder is undesirably large. The hydrothermal treatment time is usually about 0.5 to 20 hours, and an autoclave is usually employed for the hydrothermal treatment. Next, the precipitate of fine crystals generated by the hydrothermal treatment is washed with water to remove free alkali, and then the slurry is coated with one or more metal ions selected from Co, Ni, Zn, Mg, Mn and Cu. And an aqueous solution containing Fe 2+ and an alkaline aqueous solution are added, and the resulting mixed suspension is heated at 50 to 200 ° C. As compounds of Co, Ni, Zn, Mg, Mn and Cu, those soluble in water such as nitrates, chlorides and sulfates are used, and as compounds of Fe, ferrous sulfate and ferric chloride are used. One iron is commonly used. Next, the obtained precipitate is washed with water and then fired to obtain ferrite fine particles.

【0009】焼成においては、予め得られた沈澱物に融
剤を混合することが好ましい。融剤としては、塩化ナト
リウム、塩化バリウム、塩化カリウム、塩化ストロンチ
ウムおよびフッ化ナトリウムのうち少なくとも一種が用
いられる。融剤の使用量は沈澱物(乾燥物基準)に対し
て、10〜180重量%、特に30〜120重量%が好
ましい。融剤の量が少なすぎると粒子の焼結が起こり、
また多すぎても多くしたことによる利点はなく、経済的
でない。沈澱物と融剤の混合方法は特に制限はなく、例
えば沈澱物のスラリに融剤を加えて湿式混合した後、ス
ラリを乾燥してもよく、あるいは沈澱物を乾燥した後、
融剤を加えて乾式混合してもよい。焼成温度は700〜
950℃、好ましくは800〜930℃である。温度が
低すぎると結晶化が進まず、飽和磁化が低くなる。また
温度が高すぎると粒子が大きくなったり、焼結が起こる
ので好ましくない。焼成時間は10分〜30時間程度が
適当である。
In the firing, it is preferable to mix a flux with the precipitate obtained in advance. As the flux, at least one of sodium chloride, barium chloride, potassium chloride, strontium chloride and sodium fluoride is used. The amount of the flux used is preferably 10 to 180% by weight, particularly preferably 30 to 120% by weight, based on the precipitate (dry matter basis). If the amount of the flux is too small, sintering of the particles occurs,
If it is too much, there is no advantage from doing so and it is not economical. The method of mixing the precipitate and the flux is not particularly limited.For example, after adding a flux to the slurry of the precipitate and wet-mixing, the slurry may be dried, or after drying the precipitate,
A flux may be added and dry-mixed. Firing temperature is 700 ~
The temperature is 950 ° C, preferably 800 to 930 ° C. If the temperature is too low, crystallization does not proceed and the saturation magnetization decreases. If the temperature is too high, the particles become large and sintering occurs, which is not preferable. The firing time is suitably about 10 minutes to 30 hours.

【0010】本発明の複合フェライト磁性粉は、前記フ
ェライト微粒子表面に、一般式a(M'O)・Fe23 (ただ
し、M'はCo,Ni,Zn,Cu,Mg,Mn及びFe(II)から選ばれる一
種以上の金属元素であり、0<a≦1である。)で表さ
れるスピネルフェライト層が形成されている。本発明の
複合フェライト磁性粉は、前記フェライト微粒子を水に
懸濁させ、これに、還元剤と、Co,Ni,Zn,Mg,Mn及びCuか
ら選ばれる一種以上の金属イオン及びFe2+を含有する水
溶液及びアルカリ水溶液を加え、得られた混合懸濁液を
非酸化性雰囲気中で50〜200℃で加熱処理した後、
洗浄、濾過し、次いで、非酸化性雰囲気中で100〜5
00℃で熱処理することにより得られる。
The composite ferrite magnetic powder of the present invention is characterized in that the surface of the ferrite fine particles has a general formula a (M'O) .Fe 2 O 3 (where M 'is Co, Ni, Zn, Cu, Mg, Mn and Fe A spinel ferrite layer represented by (II) is one or more metal elements and 0 <a ≦ 1.) The composite ferrite magnetic powder of the present invention is obtained by suspending the ferrite fine particles in water, and adding thereto a reducing agent, one or more metal ions selected from Co, Ni, Zn, Mg, Mn and Cu, and Fe 2+ . After adding the aqueous solution and the alkaline aqueous solution containing, and heating the resulting mixed suspension at 50 to 200 ° C. in a non-oxidizing atmosphere,
Wash, filter, then 100-5 in non-oxidizing atmosphere
It is obtained by heat treatment at 00 ° C.

【0011】スピネルフェライト層の形成は、まず、フ
ェライト微粒子を水に十分に分散して、懸濁溶液を作製
し、これに非酸化性雰囲気中で、還元剤を添加し、さら
に前記金属イオンの水溶液を加え、次いでアルカリ水溶
液を加えて水酸化物を微粒子表面に被着させる。あるい
は、前記金属イオンの水溶液とアルカリ水溶液の添加順
序を逆にしてもよい。Co,Ni,Zn,Mg,Mn及びCuから選ばれ
る一種以上の金属イオンとFe2+との比率は、モル比で
1:2〜20、特に1:3〜12が好ましい。還元剤と
しては、アルデヒド類、ハイドロキノン、ヒドラジン、
ギ酸等の有機系還元剤や、H2、CO等の無機系還元剤が使
用される。次いで、得られた混合懸濁液を非酸化性雰囲
気中で50〜200℃で加熱処理する。
To form the spinel ferrite layer, first, ferrite fine particles are sufficiently dispersed in water to prepare a suspension solution, a reducing agent is added thereto in a non-oxidizing atmosphere, and An aqueous solution is added, and then an aqueous alkali solution is added to cause the hydroxide to adhere to the surface of the fine particles. Alternatively, the order of adding the aqueous solution of metal ions and the aqueous alkali solution may be reversed. The molar ratio of one or more metal ions selected from Co, Ni, Zn, Mg, Mn and Cu to Fe 2+ is preferably from 1: 2 to 20, particularly preferably from 1: 3 to 12. As the reducing agent, aldehydes, hydroquinone, hydrazine,
An organic reducing agent such as formic acid or an inorganic reducing agent such as H 2 or CO is used. Next, the obtained mixed suspension is heated at 50 to 200 ° C. in a non-oxidizing atmosphere.

【0012】加熱処理により、スピネルフェライト層が
微粒子表面に形成される。加熱処理は、50〜200℃
で行うが、特に、50〜120℃の低い温度で行うこと
により、得られる粒子の塗膜における配向性が向上し、
角形比が良くなる。加熱処理が不十分であるとスピネル
フェライトの生成量が少なくなり、また、過度に行うと
特性が改善されない。前記スピネルフェライト層の割合
は、フェライト微粒子に対して、5〜30重量%、好ま
しくは10〜20重量%である。この範囲よりも少ない
と、飽和磁化が高く、保磁力の温度変化が小さく、かつ
粉末の電気抵抗が小さいものが得られず、また、この範
囲よりも多くなると、粒子の配向性が悪くなり、垂直磁
気異方性が悪くなる。
By the heat treatment, a spinel ferrite layer is formed on the surface of the fine particles. Heat treatment is 50-200 ° C
In particular, by performing at a low temperature of 50 to 120 ° C., the orientation of the obtained particles in the coating film is improved,
The squareness ratio is improved. Insufficient heat treatment reduces the amount of spinel ferrite produced, while excessive heat treatment does not improve the properties. The proportion of the spinel ferrite layer is 5 to 30% by weight, preferably 10 to 20% by weight, based on the ferrite fine particles. If it is less than this range, the saturation magnetization is high, the temperature change of the coercive force is small, and the electric resistance of the powder is not small, and if it is more than this range, the orientation of the particles becomes poor, Perpendicular magnetic anisotropy deteriorates.

【0013】また、本発明においては、前記スピネルフ
ェライト層に、該スピネルフェライトを構成する金属元
素の酸化物を一部含有してもよい。次に、得られた粉末
を非酸化性雰囲気中で100〜500℃、好ましくは1
50〜400℃で熱処理する。非酸化性雰囲気として
は、窒素、ヘリウム等の不活性ガス、又は真空中が好ま
しい。本発明においては、前記一般式で表されるフェラ
イト微粒子を用いることにより、該フェライト微粒子表
面に三次元的規則性をもってスピネルフェライト層が形
成される。これにより、飽和磁化が高く、保磁力の温度
変化が小さく、電気抵抗が小さく、配向性の優れた複合
フェライト磁性粉が得られ、さらに、この磁性粉を非酸
化性雰囲気中で熱処理することにより、改善された種々
の特性の経時劣化を防ぐことができる。
In the present invention, the spinel ferrite layer may partially contain an oxide of a metal element constituting the spinel ferrite. Next, the obtained powder is placed in a non-oxidizing atmosphere at 100 to 500 ° C., preferably 1 to 500 ° C.
Heat treatment at 50 to 400 ° C. The non-oxidizing atmosphere is preferably an inert gas such as nitrogen or helium, or a vacuum. In the present invention, by using the ferrite fine particles represented by the above general formula, a spinel ferrite layer is formed on the surface of the ferrite fine particles with three-dimensional regularity. As a result, a composite ferrite magnetic powder having a high saturation magnetization, a small change in coercive force with temperature, a small electric resistance, and an excellent orientation can be obtained. In addition, it is possible to prevent the deterioration of various characteristics over time.

【0014】[0014]

【実施例】以下に実施例および比較例を示し、さらに詳
しく本発明について説明する。 実施例1 塩化第二鉄2.519mol、三塩化アンチモン0.061mol、塩化
コバルト0.061mol、塩化ニッケル0.061mol、四塩化チタ
ン0.123mol及び塩化亜鉛0.123molを、脱イオン水1800ml
に溶解し、別に、水酸化バリウム0.368mol及びカセイソ
ーダ36molを脱イオン水2000mlに溶解し、両溶液を混合
して沈澱物を生成させた。得られた沈澱物を含むスラリ
をオートクレーブに入れ、140℃で6時間水熱処理を行
った。次いで得られた沈澱物を十分に水洗した後、該ス
ラリに、水200mlに塩化コバルト0.061mol、塩化亜鉛0.1
22mol及び塩化第一鉄0.549molを溶解した溶液を加えて
十分に混合した後、カセイソーダ1.7molを水300mlに溶
解した溶液を加え、80℃で熟成した。次に、得られた沈
澱物を十分に水洗した後、濾過、乾燥し、これに融剤と
してNaClとBaCl2・2H2Oの重量比が1:1の混合物を沈澱
物に対して100重量%加えて混合した。この混合物を窒
素雰囲気下で860℃で2時間焼成した。得られた焼成物
を水で十分洗浄した後、濾過、乾燥してフェライト磁性
粉を得た。
The present invention will be described in more detail with reference to the following Examples and Comparative Examples. Example 1 2.519 mol of ferric chloride, 0.061 mol of antimony trichloride, 0.061 mol of cobalt chloride, 0.061 mol of nickel chloride, 0.123 mol of titanium tetrachloride and 0.123 mol of zinc chloride were added to 1800 ml of deionized water.
Separately, 0.368 mol of barium hydroxide and 36 mol of caustic soda were dissolved in 2000 ml of deionized water, and the two solutions were mixed to form a precipitate. The resulting slurry containing the precipitate was placed in an autoclave and subjected to a hydrothermal treatment at 140 ° C. for 6 hours. Then, the obtained precipitate was sufficiently washed with water, and then, in the slurry, 0.061 mol of cobalt chloride and 0.1 ml of zinc chloride in 200 ml of water.
After a solution in which 22 mol and 0.549 mol of ferrous chloride were dissolved was added and mixed well, a solution in which 1.7 mol of sodium hydroxide was dissolved in 300 ml of water was added, and the mixture was aged at 80 ° C. Next, the obtained precipitate is sufficiently washed with water, filtered and dried, and a mixture of NaCl and BaCl 2 .2H 2 O at a weight ratio of 1: 1 as a flux is added to the precipitate in an amount of 100% by weight. % And mixed. The mixture was calcined at 860 ° C. for 2 hours under a nitrogen atmosphere. The obtained fired product was sufficiently washed with water, filtered and dried to obtain a ferrite magnetic powder.

【0015】得られたフェライト磁性粉は組成分析の結
果、 BaO・1.6(Fe10.0Sb0.2Co0.4Ni0.2Zn0.8Ti0.4O17.5) であった。また、このフェライト磁性粉の特性は、 粒子径 0.046 μm 板状比 6.8 保磁力 540 Oe 飽和磁化 64.4 emu/g 保磁力の温度変化 0.2 Oe/℃ であった。 粉末の成形体の電気抵抗 1.2×107 Ω・cm であった。このフェライト磁性粉100gを水1000mlに懸濁
させ、ヒドラジン0.0189molを添加し、これに、別に水2
00mlに塩化コバルト0.027molと塩化第一鉄0.162molとを
溶解した溶液を加えて十分に混合した後、カセイソーダ
1.7molを水300mlに溶解した溶液を加え、120℃で窒素雰
囲気中で熟成し、フェライト微粒子表面にスピネルフェ
ライト層を15重量%形成した。次いで、得られたスラ
リを洗浄、濾過後、粉末を窒素雰囲気中で、400℃で1
時間熱処理した。得られた複合フェライト磁性粉の特性
は、 保磁力 760 Oe 飽和磁化 68.4 emu/g 保磁力の温度変化 -0.7 Oe/℃ 粉末の成形体の電気抵抗 1.4×104 Ω・cm であった。
As a result of composition analysis, the obtained ferrite magnetic powder was found to be BaO.1.6 (Fe 10.0 Sb 0.2 Co 0.4 Ni 0.2 Zn 0.8 Ti 0.4 O 17.5 ). The ferrite magnetic powder had a particle size of 0.046 μm, a plate ratio of 6.8, a coercive force of 540 Oe, a saturation magnetization of 64.4 emu / g, and a temperature change of coercive force of 0.2 Oe / ° C. The electric resistance of the powder compact was 1.2 × 10 7 Ω · cm. 100 g of this ferrite magnetic powder was suspended in 1000 ml of water, and 0.0189 mol of hydrazine was added thereto.
After adding a solution obtained by dissolving 0.027 mol of cobalt chloride and 0.162 mol of ferrous chloride in 00 ml and mixing well,
A solution prepared by dissolving 1.7 mol in 300 ml of water was added, and the mixture was aged in a nitrogen atmosphere at 120 ° C. to form a spinel ferrite layer at 15% by weight on the surface of the ferrite fine particles. Next, the obtained slurry was washed and filtered, and the powder was dried at 400 ° C. for 1 hour in a nitrogen atmosphere.
Heat treated for hours. The properties of the obtained composite ferrite magnetic powder were as follows: coercive force 760 Oe Saturation magnetization 68.4 emu / g Temperature change of coercive force -0.7 Oe / ° C Electric resistance of the powder compact was 1.4 × 10 4 Ω · cm.

【0016】実施例2 塩化第二鉄2.639mol、三塩化アンチモン0.061mol、塩化
コバルト0.061mol、塩化ニッケル0.061mol、四塩化チタ
ン0.061mol及び塩化亜鉛0.061molを、脱イオン水1800ml
に溶解し、別に、水酸化バリウム0.368mol及びカセイソ
ーダ36molを、脱イオン水2000mlに溶解し、両溶液を混
合して沈澱物を生成させた。得られた沈澱物を含むスラ
リをオートクレーブに入れ、140℃で6時間水熱処理を
行った。次いで得られた沈澱物を十分に水洗した後、該
スラリに、水200mlに塩化コバルト0.061mol、塩化亜鉛
0.123mol及び塩化第一鉄0.552molを溶解した溶液を加え
て十分に混合した後、カセイソーダ1.7molを水300mlに
溶解した溶液を加え、80℃で熟成した。次に、得られた
沈澱物を十分に水洗した後、濾過、乾燥し、これに融剤
としてNaClとBaCl2・2H2Oの重量比が1:1の混合物を沈
澱物に対して100重量%加えて混合した。この混合物を
窒素雰囲気下で870℃で2時間焼成した。得られた焼成
物を水で十分洗浄した後、濾過、乾燥してフェライト磁
性粉を得た。
Example 2 2.639 mol of ferric chloride, 0.061 mol of antimony trichloride, 0.061 mol of cobalt chloride, 0.061 mol of nickel chloride, 0.061 mol of titanium tetrachloride and 0.061 mol of zinc chloride were added to 1800 ml of deionized water.
Separately, 0.368 mol of barium hydroxide and 36 mol of caustic soda were dissolved in 2000 ml of deionized water, and both solutions were mixed to form a precipitate. The resulting slurry containing the precipitate was placed in an autoclave and subjected to a hydrothermal treatment at 140 ° C. for 6 hours. Next, the obtained precipitate was sufficiently washed with water, and then, in the slurry, 0.061 mol of cobalt chloride, 200 ml of water and zinc chloride were added.
After a solution in which 0.123 mol of ferrous chloride and 0.552 mol of ferrous chloride were dissolved was added and mixed well, a solution in which 1.7 mol of sodium hydroxide was dissolved in 300 ml of water was added, and the mixture was aged at 80 ° C. Next, the obtained precipitate is sufficiently washed with water, filtered and dried, and a mixture of NaCl and BaCl 2 .2H 2 O at a weight ratio of 1: 1 as a flux is added to the precipitate in an amount of 100% by weight. % And mixed. The mixture was calcined at 870 ° C. for 2 hours under a nitrogen atmosphere. The obtained fired product was sufficiently washed with water, filtered and dried to obtain a ferrite magnetic powder.

【0017】得られたフェライト磁性粉は組成分析の結
果、 BaO・2.0(Fe10.4Sb0.2Co0.4Ni0.2Zn0.6Ti0.2O17.5) であった。また、このフェライト磁性粉の特性は、 粒子径 0.045 μm 板状比 6.9 保磁力 530 Oe 飽和磁化 63.3 emu/g 保磁力の温度変化 0.3 Oe/℃ 粉末の成形体の電気抵抗 1.4×107 Ω・cm であった。このフェライト磁性粉を用いて、実施例1と
同様にしてフェライト微粒子表面にスピネルフェライト
層を形成した。得られた複合フェライト磁性粉の特性
は、 保磁力 770 Oe 飽和磁化 68.1 emu/g 保磁力の温度変化 -0.6 Oe/℃ 粉末の成形体の電気抵抗 1.1×104 Ω・cm であった。
As a result of composition analysis, the obtained ferrite magnetic powder was BaO.2.0 (Fe 10.4 Sb 0.2 Co 0.4 Ni 0.2 Zn 0.6 Ti 0.2 O 17.5 ). The characteristics of the ferrite magnetic powder are as follows: particle diameter 0.045 μm plate ratio 6.9 coercive force 530 Oe saturation magnetization 63.3 emu / g temperature change of coercive force 0.3 Oe / ° C Electric resistance of powder compact 1.4 × 10 7 Ω · cm. Using this ferrite magnetic powder, a spinel ferrite layer was formed on the surface of the ferrite fine particles in the same manner as in Example 1. The properties of the obtained composite ferrite magnetic powder were as follows: the coercive force was 770 Oe, the saturation magnetization was 68.1 emu / g, and the temperature change of the coercive force was -0.6 Oe / ° C. The electric resistance of the powder compact was 1.1 × 10 4 Ω · cm.

【0018】比較例1 硝酸第二鉄3.129mol、硝酸コバルト0.123mol、硝酸ニッ
ケル0.061mol、四塩化チタン0.123mol及び硝酸亜鉛0.24
5molを、脱イオン水1800mlに溶解し、別に、水酸化バリ
ウム0.460mol及びカセイソーダ37molを脱イオン水2000m
lに溶解し、両溶液を混合して沈澱物を生成させた。得
られた沈澱物を含むスラリをオートクレーブに入れ、14
0℃で6時間水熱処理を行った。次に、得られた沈澱物
を十分に水洗した後、濾過、乾燥し、これに融剤として
NaClとBaCl2・2H2Oの重量比が1:1の混合物を沈澱物に
対して100重量%加えて混合した。この混合物を窒素雰
囲気下で860℃で2時間焼成した。得られた焼成物を水
で十分洗浄した後、濾過、乾燥してフェライト磁性粉を
得た。
Comparative Example 1 3.129 mol of ferric nitrate, 0.123 mol of cobalt nitrate, 0.061 mol of nickel nitrate, 0.123 mol of titanium tetrachloride and 0.24 mol of zinc nitrate
5 mol was dissolved in 1800 ml of deionized water, and separately, 0.460 mol of barium hydroxide and 37 mol of caustic soda were added to 2000 m of deionized water.
and mixed both solutions to form a precipitate. The slurry containing the obtained precipitate was placed in an autoclave, and 14
Hydrothermal treatment was performed at 0 ° C. for 6 hours. Next, the obtained precipitate is sufficiently washed with water, filtered, dried, and then used as a flux.
A mixture having a weight ratio of 1: 1 between NaCl and BaCl 2 .2H 2 O was added to 100% by weight of the precipitate and mixed. The mixture was calcined at 860 ° C. for 2 hours under a nitrogen atmosphere. The obtained fired product was sufficiently washed with water, filtered and dried to obtain a ferrite magnetic powder.

【0019】得られたフェライト磁性粉は組成分析の結
果、 BaO・0.99(Fe10.2Co0.4Ni0.2Zn0.8Ti0.4O17.5) であった。また、このフェライト磁性粉の特性は、 粒子径 0.061 μm 板状比 7.7 保磁力 560 Oe 飽和磁化 60.2 emu/g 保磁力の温度変化 2.3 Oe/℃ 粉末の成形体の電気抵抗 1.8×107 Ω・cm であった。このフェライト磁性粉を用いて、還元剤を添
加しなかったほかは実施例1と同様にしてフェライト微
粒子表面にスピネルフェライト層を形成した。得られた
複合フェライト磁性粉の特性は、 保磁力 650 Oe 飽和磁化 62.3 emu/g 保磁力の温度変化 1.6 Oe/℃ 粉末の成形体の電気抵抗 5.6×106 Ω・cm であった。
As a result of composition analysis, the obtained ferrite magnetic powder was found to be BaO · 0.99 (Fe 10.2 Co 0.4 Ni 0.2 Zn 0.8 Ti 0.4 O 17.5 ). The characteristics of the ferrite magnetic powder are as follows: particle size 0.061 μm plate ratio 7.7 coercive force 560 Oe saturation magnetization 60.2 emu / g temperature change of coercive force 2.3 Oe / ° C Electric resistance of powder compact 1.8 × 10 7 Ω · cm. Using this ferrite magnetic powder, a spinel ferrite layer was formed on the surface of ferrite fine particles in the same manner as in Example 1 except that no reducing agent was added. The characteristics of the obtained composite ferrite magnetic powder were as follows: coercive force 650 Oe Saturation magnetization 62.3 emu / g Temperature change of coercive force 1.6 Oe / ° C Electric resistance of the powder compact was 5.6 × 10 6 Ω · cm.

【0020】比較例2 硝酸第二鉄3.252mol、硝酸コバルト0.123mol、硝酸ニッ
ケル0.061mol、四塩化チタン0.061mol及び硝酸亜鉛0.18
4molを、脱イオン水1800mlに溶解し、別に、水酸化バリ
ウム0.460mol及びカセイソーダ37molを、脱イオン水200
0mlに溶解し、両溶液を混合して沈澱物を生成させた。
得られた沈澱物を含むスラリをオートクレーブに入れ、
140℃で6時間水熱処理を行った。次に、得られた沈澱
物を十分に水洗した後、濾過、乾燥し、これに融剤とし
てNaClとBaCl2・2H2Oの重量比が1:1の混合物を沈澱物
に対して100重量%加えて混合した。この混合物を窒素
雰囲気下で870℃で2時間焼成した。得られた焼成物を
水で十分洗浄した後、濾過、乾燥してフェライト磁性粉
を得た。
Comparative Example 2 3.252 mol of ferric nitrate, 0.123 mol of cobalt nitrate, 0.061 mol of nickel nitrate, 0.061 mol of titanium tetrachloride and 0.18 mol of zinc nitrate
4 mol are dissolved in 1800 ml of deionized water, and separately 0.460 mol of barium hydroxide and 37 mol of caustic soda are added to 200 ml of deionized water.
0 ml and both solutions were mixed to form a precipitate.
Put the slurry containing the obtained precipitate in an autoclave,
Hydrothermal treatment was performed at 140 ° C. for 6 hours. Next, the obtained precipitate is sufficiently washed with water, filtered and dried, and a mixture of NaCl and BaCl 2 .2H 2 O at a weight ratio of 1: 1 as a flux is added to the precipitate in an amount of 100% by weight. % And mixed. The mixture was calcined at 870 ° C. for 2 hours under a nitrogen atmosphere. The obtained fired product was sufficiently washed with water, filtered and dried to obtain a ferrite magnetic powder.

【0021】得られたフェライト磁性粉は組成分析の結
果、 BaO・1.0(Fe10.6Co0.4Ni0.2Zn0.6Ti0.2O17.5) であった。また、得られたフェライト磁性粉の特性は、 粒子径 0.066 μm 板状比 7.8 保磁力 540 Oe 飽和磁化 60.1 emu/g 保磁力の温度変化 2.4 Oe/℃ 粉末の成形体の電気抵抗 1.9×107 Ω・cm であった。このフェライト磁性粉を用いて、還元剤を添
加しなかったほかは実施例1と同様にしてフェライト微
粒子表面にスピネルフェライト層を形成した。得られた
複合フェライト磁性粉の特性は、 保磁力 660 Oe 飽和磁化 61.8 emu/g 保磁力の温度変化 1.7 Oe/℃ 粉末の成形体の電気抵抗 6.9×106 Ω・cm であった。
As a result of composition analysis, the obtained ferrite magnetic powder was found to be BaO · 1.0 (Fe 10.6 Co 0.4 Ni 0.2 Zn 0.6 Ti 0.2 O 17.5 ). The characteristics of the obtained ferrite magnetic powder are as follows: particle diameter 0.066 μm plate ratio 7.8 coercive force 540 Oe saturation magnetization 60.1 emu / g temperature change of coercive force 2.4 Oe / ° C Electric resistance of powder compact 1.9 × 10 7 Ω · cm 2. Using this ferrite magnetic powder, a spinel ferrite layer was formed on the surface of ferrite fine particles in the same manner as in Example 1 except that no reducing agent was added. The characteristics of the obtained composite ferrite magnetic powder were as follows: coercive force 660 Oe Saturation magnetization 61.8 emu / g Temperature change of coercive force 1.7 Oe / ° C Electric resistance of the powder compact was 6.9 × 10 6 Ω · cm.

【0022】[0022]

【発明の効果】本発明により得られる複合フェライト磁
性粉は、飽和磁化が従来のものと比較して飛躍的に向上
しており、保磁力の温度変化が小さく、粉末の電気抵抗
が小さく、かつ粒子径が50nm以下で、板状比が5以上
であるので、高密度記録用の磁気記録材料として好適に
用いられる。
The composite ferrite magnetic powder obtained by the present invention has a significantly improved saturation magnetization as compared with the conventional one, a small change in coercive force with temperature, a small electric resistance of the powder, and Since the particle diameter is 50 nm or less and the plate ratio is 5 or more, it is suitably used as a magnetic recording material for high-density recording.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式 AO・n(Fe12-x-ySbx
y18-z) (ただし、Aは、Ba、Sr、Ca及びPbから選ばれる一種以
上の元素を示し、Mは、Co,Ni,Zn,Cu,Mg,Mn,Fe(II),Si,
Ti,Zr,Sn,Ta,Nb,Mo,V及びWから選ばれる一種以上の元
素を示し、n=1.2〜3.0、x=0.01〜0.6、y=0.1〜4.
0、0<z<2の数値である。)で表されるフェライト
微粒子を水に懸濁させ、これに、還元剤と、Co,Ni,Zn,M
g,Mn及びCuから選ばれる一種以上の金属イオン及びFe2+
を含有する水溶液及びアルカリ水溶液を加え、得られた
混合懸濁液を非酸化性雰囲気中で50〜200℃で加熱
処理した後、洗浄、濾過し、次いで、非酸化性雰囲気中
で100〜500℃で熱処理することを特徴とする前記
一般式で表されるフェライト微粒子表面に、一般式 a
(M'O)・Fe23 (ただし、M'はCo,Ni,Zn,Cu,Mg,Mn及
びFe(II)から選ばれる一種以上の金属元素であり、0<
a≦1である。)で表されるスピネルフェライト層が形
成されている複合フェライト磁性粉の製造方法。
[Claim 1] The general formula AOn · (Fe 12-xy Sb x M
y O 18-z ) (where A represents one or more elements selected from Ba, Sr, Ca and Pb, and M represents Co, Ni, Zn, Cu, Mg, Mn, Fe (II), Si ,
Represents one or more elements selected from Ti, Zr, Sn, Ta, Nb, Mo, V and W, n = 1.2 to 3.0, x = 0.01 to 0.6, y = 0.1 to 4.
0, 0 <z <2. ) Is suspended in water, and a reducing agent, Co, Ni, Zn, M
One or more metal ions selected from g, Mn and Cu and Fe 2+
And an aqueous alkali solution is added, and the resulting mixed suspension is subjected to a heat treatment at 50 to 200 ° C. in a non-oxidizing atmosphere, followed by washing and filtration, and then 100 to 500 in a non-oxidizing atmosphere. A ferrite fine particle surface represented by the above general formula characterized by heat treatment at
(M′O) · Fe 2 O 3 (where M ′ is one or more metal elements selected from Co, Ni, Zn, Cu, Mg, Mn and Fe (II), and 0 <
a ≦ 1. A method for producing a composite ferrite magnetic powder in which a spinel ferrite layer represented by () is formed.
【請求項2】 フェライト磁性粉の粒子径が50nm以下
であり、板状比が5以上である請求項1の複合フェライ
ト磁性粉の製造方法。
2. The method for producing a composite ferrite magnetic powder according to claim 1, wherein the particle diameter of the ferrite magnetic powder is 50 nm or less and the plate ratio is 5 or more.
JP4227434A 1992-08-26 1992-08-26 Method for producing composite ferrite magnetic powder Expired - Fee Related JP2958370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4227434A JP2958370B2 (en) 1992-08-26 1992-08-26 Method for producing composite ferrite magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4227434A JP2958370B2 (en) 1992-08-26 1992-08-26 Method for producing composite ferrite magnetic powder

Publications (2)

Publication Number Publication Date
JPH0677035A JPH0677035A (en) 1994-03-18
JP2958370B2 true JP2958370B2 (en) 1999-10-06

Family

ID=16860804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4227434A Expired - Fee Related JP2958370B2 (en) 1992-08-26 1992-08-26 Method for producing composite ferrite magnetic powder

Country Status (1)

Country Link
JP (1) JP2958370B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5692766B1 (en) * 2014-01-20 2015-04-01 パウダーテック株式会社 Ferrite carrier core material and ferrite carrier for electrophotographic developer using ferrite particles having outer shell structure, and electrophotographic developer using the ferrite carrier

Also Published As

Publication number Publication date
JPH0677035A (en) 1994-03-18

Similar Documents

Publication Publication Date Title
EP0346123B1 (en) Plate-like composite ferrite particles for magnetic recording and process for producing the same
JP2958370B2 (en) Method for producing composite ferrite magnetic powder
JP2958369B2 (en) Method for producing composite ferrite magnetic powder
JP2946375B2 (en) Method for producing composite ferrite magnetic powder
JP2946374B2 (en) Method for producing composite ferrite magnetic powder
JPH0247209A (en) Production of fine platy barium ferrite powder
JPH0717385B2 (en) Method for producing composite ferrite magnetic powder
US4664947A (en) Multi-layer process for cobalt treatment of ferromagnetic oxides
JPH0420241B2 (en)
JPH0677034A (en) Method of manufacturing compound ferrite magnetic particles
JPH0661030A (en) Composite ferrite magnetic powder and manufacture thereof
JPH04362019A (en) Ferritic magnetic powder and its production
JPH0672718A (en) Production of multiple ferrite magnetic powder
JPH05326236A (en) Composite ferrite magnetic powder and production thereof
JPH0614486B2 (en) Plate-shaped composite ferrite fine particle powder for magnetic recording and method for producing the same
JPH0661031A (en) Composite ferrite magnetic powder and manufacture thereof
JP2547000B2 (en) Ferromagnetic fine powder for magnetic recording
JPH05326237A (en) Composite ferrite magnetic powder and production thereof
JPS59155106A (en) Manufacture of magnetic metal powder
JPH0434902A (en) Preparation of needle alloy magnetic powder
JP2651795B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPH04362020A (en) Ferritic magnetic powder and its production
JPH05319831A (en) Ferrite magnetic powder and its production
JPH0677032A (en) Manufacture of composite ferrite magnetic powder
JPH0669013A (en) Ferrite magnetic particle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees