JPH0677034A - Method of manufacturing compound ferrite magnetic particles - Google Patents

Method of manufacturing compound ferrite magnetic particles

Info

Publication number
JPH0677034A
JPH0677034A JP4227433A JP22743392A JPH0677034A JP H0677034 A JPH0677034 A JP H0677034A JP 4227433 A JP4227433 A JP 4227433A JP 22743392 A JP22743392 A JP 22743392A JP H0677034 A JPH0677034 A JP H0677034A
Authority
JP
Japan
Prior art keywords
ferrite
particles
magnetic powder
ferrite magnetic
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4227433A
Other languages
Japanese (ja)
Inventor
Takayuki Kimura
隆幸 木村
Kazuo Hashimoto
和生 橋本
Hirobumi Kimura
博文 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP4227433A priority Critical patent/JPH0677034A/en
Publication of JPH0677034A publication Critical patent/JPH0677034A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/112Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles with a skin

Landscapes

  • Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the title compound ferrite magnetic particles having excellent orientation, high saturated magnetization as well as minor temperature fluctuation in coercive force and low electric resistance of the particles by forming a specific spinel ferrite layer on the surface of specific particles. CONSTITUTION:A hexagonal system ferrite particles displaying hexagonal platy shape in the crystalline structure having the whole broad peak excluding those on 110 and 220 surfaces in X-ray diffraction spectrum using Kalpha rays of Cu are heat-treated in non-oxidative atmosphere at 100 deg.C-500 deg.C. Next, a spinel ferrite layer represented by a general formula of (M'O) Fe2O3 (where M' represents exceeding one kind of metallic elements selected out of Co, Ni, Zn, Cu, Mg, Mn and Fe(II) while 0<a<=1) is formed on the surface of the ferrite particles. Through these procedures, high saturated magnetization as well as minor temperature in coercive force and low electric resistance of the particles can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な複合フェライト
磁性粉の製造方法に関するものである。さらに詳しく
は、本発明は高密度記録用の磁気記録媒体に用いるのに
適した、保磁力が200〜2000Oeであり、従来のも
のと比較して飽和磁化が向上しており、さらに保磁力の
温度変化が小さく、かつ粉末の電気抵抗が小さい複合フ
ェライト磁性粉の製造方法に関するものである。近年、
磁気記録の高密度化の要求に伴い、マグネトプランバイ
ト型フェライト磁性粉を磁気記録媒体として用いる垂直
磁気記録方式の開発が進められており、DATテープ、
8ミリテープ、ハイビジョンテープ等の用途が考えられ
ている。垂直磁気記録方式に用いられるマグネトプラン
バイト型フェライト磁性粉としては、保磁力が適当な値
(200〜2000Oe)で、飽和磁化ができるだけ高
く、保磁力の温度変化が小さく、配向性の良いものが望
まれている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a new composite ferrite magnetic powder. More specifically, the present invention has a coercive force of 200 to 2000 Oe, which is suitable for use in a magnetic recording medium for high density recording, has improved saturation magnetization as compared with the conventional one, and has a coercive force The present invention relates to a method for producing a composite ferrite magnetic powder having a small temperature change and a low electric resistance of the powder. recent years,
Along with the demand for higher density magnetic recording, a perpendicular magnetic recording system using magnetoplumbite type ferrite magnetic powder as a magnetic recording medium is under development.
Applications such as 8 mm tape and high-definition tape are considered. As magnetoplumbite-type ferrite magnetic powder used in the perpendicular magnetic recording method, one having an appropriate coercive force (200 to 2000 Oe), high saturation magnetization, small temperature change of coercive force, and good orientation Is desired.

【0002】[0002]

【従来の技術およびその問題点】従来、マグネトプラン
バイト型フェライト磁性粉の製造方法としては、例えば
共沈法、ガラス結晶化法、水熱合成法等種々の方法が知
られており、ガラス結晶化法については、特公昭60-155
75号公報、水熱合成法については、例えば特開昭59-175
707号公報、特公昭60-12973号公報、特公昭60-15576号
公報、特開昭60-137002号公報等で提案されている。し
かしながら、前記いずれの方法においても得られるマグ
ネトプランバイト型フェライト磁性粉は、飽和磁化が6
0emu/g以下と低かったり、保磁力の温度変化が大きい
という欠点があった。一方、マグネトプランバイト型フ
ェライト磁性粉は、従来のCo-γ-Fe23に比べて粉末の
電気抵抗が大きいため、塗膜媒体にする場合に導電性物
質を多量に添加しなければならず、そのために電磁変換
特性が悪くなってしまうという問題があった。これらの
問題点を解決する方法として、特開昭62-139122号公
報、同62-139124号公報、同62-265122号公報、同63-144
118号公報及び同63-144119号公報には、フェライト磁性
粉の表面にスピネル型フェライトを被覆することが提案
されている。これにより得られるフェライト磁性粉は、
実際に前記種々の特性が改善されるものの、フェライト
磁性粉の表面に多量のスピネル型フェライトを被覆する
ために、粒子の配向性が悪くなり、塗膜にした場合の角
形比が小さくなってしまい、また、磁化容易軸がC軸か
らずれてしまうという問題があった。
2. Description of the Related Art Conventionally, various methods such as a coprecipitation method, a glass crystallization method, and a hydrothermal synthesis method are known as methods for producing magnetoplumbite type ferrite magnetic powder. About the chemical method, Japanese Patent Publication Sho 60-155
Japanese Patent Laid-Open No. 59-175, which is disclosed in JP-A-75-175
It is proposed in Japanese Patent No. 707, Japanese Patent Publication No. 60-12973, Japanese Patent Publication No. 60-15576, Japanese Patent Laid-Open No. 60-137002, and the like. However, the magnetoplumbite ferrite magnetic powder obtained by any of the above methods has a saturation magnetization of 6
There were drawbacks such as a low value of 0 emu / g or less and a large change in coercive force with temperature. On the other hand, the magnetoplumbite type ferrite magnetic powder has a higher electric resistance than the conventional Co-γ-Fe 2 O 3 , so that a large amount of conductive substance must be added when it is used as a coating medium. Therefore, there is a problem that the electromagnetic conversion characteristics are deteriorated. As a method for solving these problems, JP-A-62-139122, JP-A-62-139124, JP-A-62-265122, and JP-A-63-144.
In Japanese Patent No. 118 and Japanese Patent No. 63-144119, it is proposed to coat the surface of ferrite magnetic powder with spinel type ferrite. Ferrite magnetic powder obtained by this,
Although the above various characteristics are actually improved, since a large amount of spinel type ferrite is coated on the surface of the ferrite magnetic powder, the orientation of the particles is deteriorated and the squareness ratio when formed into a coating becomes small. There is also a problem that the easy axis of magnetization deviates from the C axis.

【0003】[0003]

【発明の目的】本発明の目的は、前記問題点を解決し、
微粒子で保磁力が200〜2000Oeであり、飽和磁化
が高く、さらに保磁力の温度変化が小さく、かつ粉末の
電気抵抗が小さく、配向性に優れた複合フェライト磁性
粉の製造方法を提供することにある。
The object of the present invention is to solve the above problems,
To provide a method for producing a composite ferrite magnetic powder which is fine particles and has a coercive force of 200 to 2000 Oe, a high saturation magnetization, a small change in coercive force with temperature, a low electric resistance of the powder, and an excellent orientation. is there.

【0004】[0004]

【問題点を解決するための手段】本発明は、CuのKα
線を用いたX線回折スペクトルにおける(110)面及
び(220)面のピークを除く全てのピークがブロード
である結晶構造を有し、かつ六角板状を呈する六方晶系
フェライト粒子を水に懸濁させ、これに、還元剤と、C
o,Ni,Zn,Mg,Mn及びCuから選ばれる一種以上の金属イオ
ン及びFe2+を含有する水溶液及びアルカリ水溶液を加
え、得られた混合懸濁液を非酸化性雰囲気中で50〜2
00℃で加熱処理した後、洗浄、濾過し、次いで、非酸
化性雰囲気中で100〜500℃で熱処理することを特
徴とする前記フェライト粒子表面に、一般式 a(M'O)
・Fe23 (ただし、M'はCo,Ni,Zn,Cu,Mg,Mn及びFe(II)
から選ばれる一種以上の金属元素であり、0<a≦1で
ある。)で表されるスピネルフェライト層が形成されて
いる複合フェライト磁性粉の製造方法に関する。
The present invention relates to Cu Kα
In the X-ray diffraction spectrum using X-rays, hexagonal ferrite particles having a hexagonal plate shape and having a crystal structure in which all peaks except the (110) plane and (220) plane are broad are suspended in water. Turbid, add reducing agent, C
An aqueous solution containing one or more metal ions selected from o, Ni, Zn, Mg, Mn and Cu and an aqueous solution containing Fe 2+ and an alkaline aqueous solution are added, and the resulting mixed suspension is added in an amount of 50 to 2 in a non-oxidizing atmosphere.
After heat treatment at 00 ° C., washing, filtration, and then heat treatment at 100 to 500 ° C. in a non-oxidizing atmosphere, the surface of the ferrite particles is characterized by the general formula a (M′O)
・ Fe 2 O 3 (However, M'is Co, Ni, Zn, Cu, Mg, Mn and Fe (II)
One or more metal elements selected from the following, and 0 <a ≦ 1. ) Relates to a method for producing a composite ferrite magnetic powder having a spinel ferrite layer formed therein.

【0005】本発明の複合フェライト磁性粉における、
核となるフェライト粒子は、図1に示すようにCuのK
α線を用いたX線回折スペクトルにおける(110)面
(2Θ=30.3°)及び(220)面(2Θ=62.9°)の
2つのピークだけが鋭く、他の全てのピークがブロード
である結晶構造を有する。そしてこれらのピーク位置は
図2に示すように従来知られているマグネトプランバイ
ト型フェライトのX線回折スペクトルのピーク位置とほ
ぼ一致している。本発明においては、上記のように結晶
構造を変化させることにより、従来のマグネトプランバ
イト型フェライトと比較して飽和磁化が向上し、さらに
保磁力の温度変化が小さいフェライト磁性粉が得られ
る。また、磁気記録の高密度化のために、粒子径が50n
m以下であることが好ましい。
In the composite ferrite magnetic powder of the present invention,
As shown in Fig. 1, the ferrite particles that serve as nuclei are Cu K
Crystal structure in which only two peaks of (110) plane (2Θ = 30.3 °) and (220) plane (2Θ = 62.9 °) are sharp and all other peaks are broad in X-ray diffraction spectrum using α rays Have. As shown in FIG. 2, these peak positions substantially coincide with the peak positions of the X-ray diffraction spectrum of the conventionally known magnetoplumbite ferrite. In the present invention, by changing the crystal structure as described above, the saturation magnetization is improved and the ferrite magnetic powder having a small change in coercive force with temperature is obtained as compared with the conventional magnetoplumbite type ferrite. Also, in order to increase the density of magnetic recording, the particle size is 50n.
It is preferably m or less.

【0006】このようなフェライト粒子は、以下の方法
により製造される。フェライト粒子を構成するA、Fe及
びMを含む溶液と水酸化アルカリとを、混合後の溶液中
の水酸化アルカリ濃度が3M以上となるように混合して
沈澱物を生成させ、該沈澱物を含むスラリを120〜3
00℃で水熱処理した後、沈澱物を含むスラリを洗浄
し、次いで、酸処理を行い、得られた沈澱物を700〜
950℃で焼成することにより、前記フェライト磁性粉
が得られる。Aは、 Ba、Sr、Ca及びPbから選ばれる一種
以上の元素である。Aの化合物としては、硝酸塩、塩化
物、水酸化物等が用いられる。Aの使用量は、Aの濃度
が0.03〜0.50Mの範囲になるようにするのが結晶性のよ
い粒子を得るうえで望ましい。
Such ferrite particles are manufactured by the following method. A solution containing A, Fe and M forming the ferrite particles and an alkali hydroxide are mixed so that the concentration of the alkali hydroxide in the solution after mixing is 3 M or more to form a precipitate, and the precipitate is formed. 120 to 3 containing slurry
After hydrothermal treatment at 00 ° C., the slurry containing the precipitate was washed and then treated with an acid to obtain a precipitate having a temperature of 700-700.
By firing at 950 ° C., the ferrite magnetic powder can be obtained. A is one or more elements selected from Ba, Sr, Ca and Pb. As the compound of A, nitrate, chloride, hydroxide and the like are used. The amount of A used is preferably such that the concentration of A is in the range of 0.03 to 0.50 M in order to obtain particles with good crystallinity.

【0007】Feの化合物としては、硝酸塩、塩化物等が
用いられる。Feの使用量はAが1グラム原子に対して8
〜12グラム原子が好ましい。Feの量が少なすぎると、
フェライト磁性粉の生成量が少なく、結晶性も悪くな
る。またFeの量が多すぎるとヘマタイトが副生したり、
またフェライト磁性粉の粒子が大きくなり、磁気特性も
劣ってくる。Mは、Co,Ni,Zn,Cu,Mg,Mn,Fe(II),Bi,Si,T
i,Zr,Sn,Ta,Nb,Mo, V及びWから選ばれる一種以上の元
素である。Mの化合物としては、塩化物、硝酸塩、アン
モニウム塩等が用いられる。水酸化アルカリとしては、
水酸化ナトリウム、水酸化カリウム等が用いられる。水
酸化アルカリの使用量は水酸化アルカリを混合した後の
溶液中の水酸化アルカリ濃度が3M以上となる量が必要
であり、4〜8Mの範囲が好ましい。水酸化アルカリの
量が少なすぎると粒子が大きくなったり、粒度分布が広
くなったり、またヘマタイトが生成する。また水酸化ア
ルカリを過度に多くするのは経済的でない。
As the Fe compound, nitrates, chlorides and the like are used. The amount of Fe used is 8 for 1 gram atom of A.
~ 12 gram atoms are preferred. If the amount of Fe is too small,
The amount of ferrite magnetic powder produced is small and the crystallinity is poor. If the amount of Fe is too large, hematite may be a byproduct,
In addition, the particles of the ferrite magnetic powder become large, and the magnetic properties become poor. M is Co, Ni, Zn, Cu, Mg, Mn, Fe (II), Bi, Si, T
It is one or more elements selected from i, Zr, Sn, Ta, Nb, Mo, V and W. As the compound of M, chloride, nitrate, ammonium salt and the like are used. As alkali hydroxide,
Sodium hydroxide, potassium hydroxide or the like is used. The amount of alkali hydroxide used is required to be such that the alkali hydroxide concentration in the solution after mixing the alkali hydroxide is 3 M or more, and preferably in the range of 4 to 8 M. If the amount of alkali hydroxide is too small, the particles become large, the particle size distribution becomes broad, and hematite is formed. Also, it is not economical to increase the amount of alkali hydroxide excessively.

【0008】前記A、Fe及びMを含む溶液と水酸化アル
カリとを混合する方法については、特に制限はないが、
例えばA、Fe及びMを含む溶液に、水酸化アルカリの水
溶液を添加する方法がある。次いで、得られた沈澱物を
含むスラリを水熱処理することにより、微細な結晶が生
成、沈澱する。水熱処理の温度は120〜300℃であ
る。温度が低すぎると結晶の生成が充分でなく、また温
度が高すぎると最終的に得られるフェライト粉末の粒径
が大きくなるので好ましくない。水熱処理時間は普通、
0.5〜20時間程度であり、水熱処理には通常、オートク
レーブが採用される。
The method for mixing the solution containing A, Fe and M with the alkali hydroxide is not particularly limited,
For example, there is a method of adding an aqueous solution of alkali hydroxide to a solution containing A, Fe and M. Then, the slurry containing the obtained precipitate is subjected to a hydrothermal treatment to generate and precipitate fine crystals. The temperature of hydrothermal treatment is 120 to 300 ° C. If the temperature is too low, the formation of crystals will not be sufficient, and if the temperature is too high, the particle size of the ferrite powder finally obtained will be large, such being undesirable. Hydrothermal treatment time is normal,
It takes about 0.5 to 20 hours, and an autoclave is usually used for hydrothermal treatment.

【0009】本発明においては、前記水熱処理の前に、
沈澱物を含むスラリを50℃以下の温度で0.5〜48時間
熟成した後、Biを含む溶液を添加してもよい。Biの添加
量は、Fe及びMの合計量に対して、1〜5モル%、好ま
しくは2〜4モル%である。Biを添加することにより、
フェライト磁性粉の粒子径を50nm以下、かつ、板状比
を5以下とすることができる。次に、水熱処理により生
成した微細な結晶の沈澱物を水洗して、遊離のアルカリ
分を除去した後、沈澱物を含むスラリを酸処理する。酸
処理には、硝酸、塩酸などの無機酸、酢酸、プロピオン
酸などの有機酸などを用いることができる。酸処理によ
り、微粒子中の主にA成分が一部溶出していく。その割
合は、酸処理の酸の添加量、温度、時間等の条件により
制御することができる。
In the present invention, before the hydrothermal treatment,
The slurry containing the precipitate may be aged at a temperature of 50 ° C. or lower for 0.5 to 48 hours, and then the solution containing Bi may be added. The amount of Bi added is 1 to 5 mol%, preferably 2 to 4 mol%, based on the total amount of Fe and M. By adding Bi,
The particle size of the ferrite magnetic powder can be 50 nm or less, and the plate ratio can be 5 or less. Next, the precipitate of fine crystals produced by the hydrothermal treatment is washed with water to remove free alkali components, and then the slurry containing the precipitate is treated with an acid. For the acid treatment, inorganic acids such as nitric acid and hydrochloric acid and organic acids such as acetic acid and propionic acid can be used. Due to the acid treatment, the component A mainly in the fine particles is partially eluted. The ratio can be controlled by the conditions such as the addition amount of acid in the acid treatment, temperature and time.

【0010】次いで、得られた沈澱物を水洗後、焼成す
ることによりフェライト磁性粉が得られる。焼成におい
ては、予め得られた沈澱物に融剤を混合することが好ま
しい。融剤としては、塩化ナトリウム、塩化バリウム、
塩化カリウム、塩化ストロンチウムおよびフッ化ナトリ
ウムのうち少なくとも一種が用いられる。融剤の使用量
は沈澱物(乾燥物基準)に対して、10〜180重量
%、特に30〜120重量%が好ましい。融剤の量が少
なすぎると粒子の焼結が起こり、また多すぎても多くし
たことによる利点はなく、経済的でない。沈澱物と融剤
の混合方法は特に制限はなく、例えば沈澱物のスラリに
融剤を加えて湿式混合した後、スラリを乾燥してもよ
く、あるいは沈澱物を乾燥した後、融剤を加えて乾式混
合してもよい。焼成温度は700〜950℃、好ましく
は800〜930℃である。温度が低すぎると結晶化が
進まず、飽和磁化が低くなる。また温度が高すぎると粒
子が大きくなったり、焼結が起こるので好ましくない。
焼成時間は10分〜30時間程度が適当である。
Then, the obtained precipitate is washed with water and then fired to obtain a ferrite magnetic powder. In the calcination, it is preferable to mix a flux with the precipitate obtained in advance. As the flux, sodium chloride, barium chloride,
At least one of potassium chloride, strontium chloride and sodium fluoride is used. The amount of the flux used is preferably 10 to 180% by weight, more preferably 30 to 120% by weight, based on the precipitate (dry matter basis). If the amount of the flux is too small, the particles will sinter, and if the amount is too large, there will be no advantage due to the increased amount and it will not be economical. The method of mixing the precipitate and the flux is not particularly limited, and for example, the flux may be added to the slurry of the precipitate and wet-mixed, and then the slurry may be dried, or the precipitate may be dried and then the flux is added. You may dry-mix. The firing temperature is 700 to 950 ° C, preferably 800 to 930 ° C. If the temperature is too low, crystallization does not proceed and the saturation magnetization becomes low. On the other hand, if the temperature is too high, particles become large and sintering occurs, which is not preferable.
A firing time of about 10 minutes to 30 hours is suitable.

【0011】本発明の複合フェライト磁性粉は、前記フ
ェライト粒子表面に、一般式a(M'O)・Fe23 (ただ
し、M'はCo,Ni,Zn,Cu,Mg,Mn及びFe(II)から選ばれる一
種以上の金属元素であり、0<a≦1である。)で表さ
れるスピネルフェライト層が形成されている。本発明の
複合フェライト磁性粉は、前記フェライト粒子を水に懸
濁させ、これに、還元剤と、Co,Ni,Zn,Mg,Mn及びCuから
選ばれる一種以上の金属イオン及びFe 2+を含有する水溶
液及びアルカリ水溶液を加え、得られた混合懸濁液を非
酸化性雰囲気中で50〜200℃で加熱処理した後、洗
浄、濾過し、次いで、非酸化性雰囲気中で100〜50
0℃で熱処理することにより得られる。
The composite ferrite magnetic powder of the present invention comprises
General formula a (M'O) ・ Fe on the surface of the elite particles2O3(However
M'is one selected from Co, Ni, Zn, Cu, Mg, Mn and Fe (II).
It is a metal element of at least one kind, and 0 <a ≦ 1. )
A spinel ferrite layer is formed. Of the present invention
The composite ferrite magnetic powder suspends the ferrite particles in water.
It was made turbid by adding reducing agent and Co, Ni, Zn, Mg, Mn and Cu.
One or more selected metal ions and Fe 2+Water containing
Solution and alkaline aqueous solution are added, and the resulting mixed suspension is
After heat treatment at 50 to 200 ° C in an oxidizing atmosphere, wash
Clean, filter, then 100-50 in non-oxidizing atmosphere
Obtained by heat treatment at 0 ° C.

【0012】スピネルフェライト層の形成は、まず、フ
ェライト粒子を水に十分に分散して、懸濁溶液を作製
し、これに非酸化性雰囲気中で、還元剤を添加し、さら
に前記金属イオンの水溶液を加え、次いでアルカリ水溶
液を加えて水酸化物を微粒子表面に被着させる。あるい
は、前記金属イオンの水溶液とアルカリ水溶液の添加順
序を逆にしてもよい。Co,Ni,Zn,Mg,Mn及びCuから選ばれ
る一種以上の金属イオンとFe2+との比率は、モル比で
1:2〜20、特に1:3〜12が好ましい。還元剤と
しては、アルデヒド類、ハイドロキノン、ヒドラジン、
ギ酸等の有機系還元剤や、H2、CO等の無機系還元剤が使
用される。
To form the spinel ferrite layer, first, ferrite particles are sufficiently dispersed in water to prepare a suspension solution, and a reducing agent is added to the suspension solution in a non-oxidizing atmosphere. An aqueous solution is added and then an alkaline aqueous solution is added to deposit the hydroxide on the surface of the fine particles. Alternatively, the order of adding the metal ion aqueous solution and the alkaline aqueous solution may be reversed. The molar ratio of one or more metal ions selected from Co, Ni, Zn, Mg, Mn and Cu to Fe 2+ is preferably 1: 2 to 20, and particularly preferably 1: 3 to 12. As the reducing agent, aldehydes, hydroquinone, hydrazine,
An organic reducing agent such as formic acid or an inorganic reducing agent such as H 2 or CO is used.

【0013】次いで、得られた混合懸濁液を非酸化性雰
囲気中で50〜200℃で加熱処理する。加熱処理によ
り、スピネルフェライト層が微粒子表面に形成される。
加熱処理は、50〜200℃で行うが、特に、50〜1
20℃の低い温度で行うことにより、得られる粒子の塗
膜における配向性が向上し、角形比が良くなる。加熱処
理が不十分であるとスピネルフェライトの生成量が少な
くなり、また、過度に行うと特性が改善されない。前記
スピネルフェライト層の割合は、フェライト粒子に対し
て、5〜30重量%、好ましくは10〜20重量%であ
る。この範囲よりも少ないと、飽和磁化が高く、保磁力
の温度変化が小さく、かつ粉末の電気抵抗が小さいもの
が得られず、また、この範囲よりも多くなると、粒子の
配向性が悪くなり、垂直磁気異方性が悪くなる。
Next, the obtained mixed suspension is heat-treated at 50 to 200 ° C. in a non-oxidizing atmosphere. The heat treatment forms a spinel ferrite layer on the surface of the fine particles.
The heat treatment is performed at 50 to 200 ° C., especially 50 to 1
By carrying out at a low temperature of 20 ° C., the orientation of the obtained particles in the coating film is improved and the squareness ratio is improved. If the heat treatment is insufficient, the amount of spinel ferrite produced will be small, and if it is excessively performed, the characteristics will not be improved. The proportion of the spinel ferrite layer is 5 to 30% by weight, preferably 10 to 20% by weight, based on the ferrite particles. If it is less than this range, the saturation magnetization is high, the change in coercive force with temperature is small, and the electric resistance of the powder cannot be obtained, and if it is more than this range, the orientation of the particles deteriorates, Perpendicular magnetic anisotropy deteriorates.

【0014】また、本発明においては、前記スピネルフ
ェライト層に、該スピネルフェライトを構成する金属元
素の酸化物を一部含有してもよい。次に、得られた粉末
を非酸化性雰囲気中で100〜500℃、好ましくは1
50〜400℃で熱処理する。非酸化性雰囲気として
は、窒素、ヘリウム等の不活性ガス、又は真空中が好ま
しい。本発明においては、前記フェライト粒子を用いる
ことにより、該フェライト粒子表面に三次元的規則性を
もってスピネルフェライト層が形成される。これによ
り、飽和磁化が高く、保磁力の温度変化が小さく、電気
抵抗が小さく、配向性の優れた複合フェライト磁性粉が
得られ、さらに、この磁性粉を非酸化性雰囲気中で熱処
理することにより、改善された種々の特性の経時劣化を
防ぐことができる。
Further, in the present invention, the spinel ferrite layer may partially contain an oxide of a metal element constituting the spinel ferrite. Then, the obtained powder is heated to 100 to 500 ° C., preferably 1 in a non-oxidizing atmosphere.
Heat treatment is performed at 50 to 400 ° C. The non-oxidizing atmosphere is preferably an inert gas such as nitrogen or helium, or in vacuum. In the present invention, by using the ferrite particles, a spinel ferrite layer is formed on the surface of the ferrite particles with a three-dimensional regularity. As a result, a composite ferrite magnetic powder having a high saturation magnetization, a small change in coercive force with temperature, a small electric resistance, and an excellent orientation can be obtained. Furthermore, by subjecting this magnetic powder to a heat treatment in a non-oxidizing atmosphere, In addition, it is possible to prevent deterioration of various improved characteristics over time.

【0015】[0015]

【実施例】以下に実施例および比較例を示し、さらに詳
しく本発明について説明する。 実施例1 硝酸第二鉄3.251mol、硝酸コバルト0.184mol、四塩化チ
タン0.061mol及び硝酸亜鉛0.184molを、脱イオン水1800
mlに溶解し、別に、水酸化バリウム0.460mol及びカセイ
ソーダ37molを脱イオン水2000mlに溶解し、両溶液を混
合して沈澱物を生成させた。次に、生成した沈澱物を含
むスラリを20℃で6時間熟成した後、硝酸ビスマス0.
092molを2N-HNO3溶液50mlに溶解した溶液を添加した。
得られた沈澱物を含むスラリをオートクレーブに入れ、
140℃で6時間水熱処理を行った。次いで得られた沈澱
物を十分に水洗した後、酢酸100mlを加えて0.2N溶液と
し、80℃で2時間処理した。得られた沈澱物を十分に水
洗した後、濾過、乾燥し、これに融剤としてNaClとBaCl
2・2H2Oの重量比が1:1の混合物を沈澱物に対して100
重量%加えて混合した。この混合物を窒素雰囲気下で86
0℃で2時間焼成した。得られた焼成物を水で十分洗浄
した後、濾過、乾燥してフェライト磁性粉を得た。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples. Example 1 Ferric nitrate 3.251 mol, cobalt nitrate 0.184 mol, titanium tetrachloride 0.061 mol and zinc nitrate 0.184 mol, deionized water 1800
Then, 0.460 mol of barium hydroxide and 37 mol of caustic soda were dissolved in 2000 ml of deionized water, and both solutions were mixed to form a precipitate. Next, the slurry containing the formed precipitate was aged at 20 ° C. for 6 hours, and then bismuth nitrate was adjusted to 0.
A solution of 092 mol dissolved in 50 ml of 2N-HNO 3 solution was added.
The slurry containing the obtained precipitate was placed in an autoclave,
Hydrothermal treatment was performed at 140 ° C. for 6 hours. Then, the obtained precipitate was thoroughly washed with water, 100 ml of acetic acid was added to make a 0.2N solution, and the mixture was treated at 80 ° C for 2 hours. The precipitate obtained was washed thoroughly with water, filtered and dried. NaCl and BaCl were used as fluxing agents.
The weight ratio of 2 · 2H 2 O is 1: 100 relative to the mixture the precipitate of 1
% By weight was added and mixed. This mixture was added under a nitrogen atmosphere to 86
It was baked at 0 ° C. for 2 hours. The obtained fired product was thoroughly washed with water, filtered and dried to obtain ferrite magnetic powder.

【0016】得られたフェライト磁性粉のX線回折スペ
クトルは図1に示すように、2Θ=30.3°及び2Θ=6
2.9°の2つのピークだけが鋭く、他の全てのピークが
ブロードであった。また、このフェライト磁性粉の特性
は、 粒子径 0.042 μm 板状比 3.5 保磁力 460 Oe 飽和磁化 64.4 emu/g 保磁力の温度変化 0.2 Oe/℃ 粉末の成形体の電気抵抗 1.2×107 Ω・cm であった。
The X-ray diffraction spectrum of the obtained ferrite magnetic powder is, as shown in FIG. 1, 2Θ = 30.3 ° and 2Θ = 6.
Only two peaks at 2.9 ° were sharp and all other peaks were broad. The characteristics of this ferrite magnetic powder are as follows: particle size 0.042 μm Plate ratio 3.5 Coercive force 460 Oe Saturation magnetization 64.4 emu / g Temperature change of coercive force 0.2 Oe / ° C Electric resistance of powder compact 1.2 × 10 7 Ω ・It was cm.

【0017】このフェライト磁性粉100gを水1000mlに懸
濁させ、ヒドラジン0.0189molを添加し、これに、別に
水200mlに塩化コバルト0.027molと塩化第一鉄0.162mol
とを溶解した溶液を加えて十分に混合した後、カセイソ
ーダ1.7molを水300mlに溶解した溶液を加え、120℃で窒
素雰囲気中で熟成し、フェライト微粒子表面にスピネル
フェライト層を15重量%形成した。次いで、得られた
スラリを洗浄、濾過後、粉末を窒素雰囲気中で、400℃
で1時間熱処理した。得られた複合フェライト磁性粉の
特性は、 保磁力 660 Oe 飽和磁化 68.8 emu/g 保磁力の温度変化 -0.6 Oe/℃ 粉末の成形体の電気抵抗 1.2×104 Ω・cm であった。
100 g of this ferrite magnetic powder was suspended in 1000 ml of water, and 0.0189 mol of hydrazine was added, to which 200 ml of water was separately added 0.027 mol of cobalt chloride and 0.162 mol of ferrous chloride.
After adding a solution in which and were dissolved and thoroughly mixed, a solution in which 1.7 mol of caustic soda was dissolved in 300 ml of water was added and aged in a nitrogen atmosphere at 120 ° C to form a spinel ferrite layer of 15% by weight on the surface of the ferrite fine particles. . Then, the obtained slurry is washed and filtered, and the powder is heated to 400 ° C. in a nitrogen atmosphere.
And heat treated for 1 hour. The characteristics of the obtained composite ferrite magnetic powder were coercive force 660 Oe, saturation magnetization 68.8 emu / g, temperature change of coercive force -0.6 Oe / ° C, and electric resistance of the powder compact was 1.2 × 10 4 Ω · cm.

【0018】実施例2 硝酸第二鉄3.251mol、硝酸コバルト0.368mol及び塩化チ
タン0.061molを、脱イオン水1800mlに溶解し、別に、水
酸化バリウム0.460mol及びカセイソーダ37molを、脱イ
オン水2000mlに溶解し、両溶液を混合して沈澱物を生成
させた。次に、生成した沈澱物を含むスラリを20℃で
6時間熟成した後、硝酸ビスマス0.092molを2N-HNO3
液50mlに溶解した溶液を添加した。得られた沈澱物を含
むスラリをオートクレーブに入れ、140℃で6時間水熱
処理を行った。次いで得られた沈澱物を十分に水洗した
後、硝酸を加えて0.1N溶液とし、70℃で3時間処理し
た。得られた沈澱物を十分に水洗した後、濾過、乾燥
し、これに融剤としてNaClとBaCl2・2H2Oの重量比が1:
1の混合物を沈澱物に対して100重量%加えて混合し
た。この混合物を窒素雰囲気下で870℃で2時間焼成し
た。得られた焼成物を水で十分洗浄した後、濾過、乾燥
してフェライト磁性粉を得た。
Example 2 3.251 mol of ferric nitrate, 0.368 mol of cobalt nitrate and 0.061 mol of titanium chloride were dissolved in 1800 ml of deionized water, and separately, 0.460 mol of barium hydroxide and 37 mol of caustic soda were dissolved in 2000 ml of deionized water. The two solutions were mixed to form a precipitate. Next, the slurry containing the formed precipitate was aged at 20 ° C. for 6 hours, and then a solution prepared by dissolving 0.092 mol of bismuth nitrate in 50 ml of 2N-HNO 3 solution was added. The slurry containing the obtained precipitate was placed in an autoclave and hydrothermally treated at 140 ° C. for 6 hours. Then, the obtained precipitate was thoroughly washed with water, nitric acid was added to make a 0.1 N solution, and the mixture was treated at 70 ° C. for 3 hours. The precipitate obtained was washed thoroughly with water, filtered and dried, and the weight ratio of NaCl to BaCl 2 .2H 2 O as a flux was 1: 1.
100% by weight of the mixture of 1 was added and mixed. The mixture was calcined under a nitrogen atmosphere at 870 ° C. for 2 hours. The obtained fired product was thoroughly washed with water, filtered and dried to obtain ferrite magnetic powder.

【0019】得られたフェライト磁性粉のX線回折スペ
クトルは、2Θ=30.3°及び2Θ=62.9°の2つのピー
クだけが鋭く、他の全てのピークがブロードであった。
また、このフェライト磁性粉の特性は、 粒子径 0.040 μm 板状比 3.7 保磁力 450 Oe 飽和磁化 62.6 emu/g 保磁力の温度変化 0.3 Oe/℃ 粉末の成形体の電気抵抗 1.4×107 Ω・cm であった。このフェライト磁性粉を用いて、実施例1と
同様にしてフェライト微粒子表面にスピネルフェライト
層を形成した。得られた複合フェライト磁性粉の特性
は、 保磁力 670 Oe 飽和磁化 67.8 emu/g 保磁力の温度変化 -0.6 Oe/℃ 粉末の成形体の電気抵抗 1.1×104 Ω・cm であった。
In the X-ray diffraction spectrum of the obtained ferrite magnetic powder, only two peaks at 2Θ = 30.3 ° and 2Θ = 62.9 ° were sharp, and all other peaks were broad.
The characteristics of this ferrite magnetic powder are as follows: particle size 0.040 μm Plate ratio 3.7 Coercive force 450 Oe Saturation magnetization 62.6 emu / g Coercive force temperature change 0.3 Oe / ° C Electric resistance of powder compact 1.4 × 10 7 Ω ・It was cm. Using this ferrite magnetic powder, a spinel ferrite layer was formed on the surface of ferrite fine particles in the same manner as in Example 1. The properties of the obtained composite ferrite magnetic powder were coercive force 670 Oe, saturation magnetization 67.8 emu / g, coercive force temperature change -0.6 Oe / ° C, and electric resistance of the powder compact was 1.1 × 10 4 Ω · cm.

【0020】実施例3 実施例1において、硝酸ビスマスを添加しなかったほか
は、実施例1と同様にしてフェライト磁性粉を得た。得
られたフェライト磁性粉のX線回折スペクトルは、2Θ
=30.3°及び2Θ=62.9°の2つのピークだけが鋭く、
他の全てのピークがブロードであった。また、このフェ
ライト磁性粉の特性は、 粒子径 0.062 μm 板状比 7.5 保磁力 450 Oe 飽和磁化 64.2 emu/g 保磁力の温度変化 0.2 Oe/℃ 粉末の成形体の電気抵抗 1.4×107 Ω・cm であった。このフェライト磁性粉を用いて、実施例1と
同様にしてフェライト微粒子表面にスピネルフェライト
層を形成した。得られた複合フェライト磁性粉の特性
は、 保磁力 670 Oe 飽和磁化 68.1 emu/g 保磁力の温度変化 -0.6 Oe/℃ 粉末の成形体の電気抵抗 1.1×104 Ω・cm であった。
Example 3 A ferrite magnetic powder was obtained in the same manner as in Example 1 except that bismuth nitrate was not added. The X-ray diffraction spectrum of the obtained ferrite magnetic powder is 2θ.
= Only two peaks at 30.3 ° and 2Θ = 62.9 ° are sharp,
All other peaks were broad. The characteristics of this ferrite magnetic powder are as follows: particle size 0.062 μm Plate-like ratio 7.5 Coercive force 450 Oe Saturation magnetization 64.2 emu / g Temperature change of coercive force 0.2 Oe / ° C Electric resistance of powder compact 1.4 × 10 7 Ω ・It was cm. Using this ferrite magnetic powder, a spinel ferrite layer was formed on the surface of ferrite fine particles in the same manner as in Example 1. The characteristics of the obtained composite ferrite magnetic powder were coercive force 670 Oe, saturation magnetization 68.1 emu / g, coercive force temperature change -0.6 Oe / ° C, and the electric resistance of the powder compact was 1.1 × 10 4 Ω · cm.

【0021】実施例4 実施例2において、硝酸ビスマスを添加しなかったほか
は、実施例2と同様にしてフェライト磁性粉を得た。得
られたフェライト磁性粉のX線回折スペクトルは、2Θ
=30.3°及び2Θ=62.9°の2つのピークだけが鋭く、
他の全てのピークがブロードであった。また、このフェ
ライト磁性粉の特性は、 粒子径 0.070 μm 板状比 6.7 保磁力 440 Oe 飽和磁化 62.2 emu/g 保磁力の温度変化 0.3 Oe/℃ 粉末の成形体の電気抵抗 1.4×107 Ω・cm であった。このフェライト磁性粉を用いて、実施例1と
同様にしてフェライト微粒子表面にスピネルフェライト
層を形成した。得られた複合フェライト磁性粉の特性
は、 保磁力 670 Oe 飽和磁化 67.6 emu/g 保磁力の温度変化 -0.6 Oe/℃ 粉末の成形体の電気抵抗 1.9×104 Ω・cm であった。
Example 4 Ferrite magnetic powder was obtained in the same manner as in Example 2 except that bismuth nitrate was not added. The X-ray diffraction spectrum of the obtained ferrite magnetic powder is 2θ.
= Only two peaks at 30.3 ° and 2Θ = 62.9 ° are sharp,
All other peaks were broad. The characteristics of this ferrite magnetic powder are as follows: particle size 0.070 μm Plate ratio 6.7 Coercive force 440 Oe Saturation magnetization 62.2 emu / g Coercive force temperature change 0.3 Oe / ° C Electric resistance of powder compact 1.4 × 10 7 Ω ・It was cm. Using this ferrite magnetic powder, a spinel ferrite layer was formed on the surface of ferrite fine particles in the same manner as in Example 1. The properties of the obtained composite ferrite magnetic powder were a coercive force of 670 Oe, a saturation magnetization of 67.6 emu / g, and a change of coercive force with temperature of -0.6 Oe / ° C. The electric resistance of the powder compact was 1.9 × 10 4 Ω · cm.

【0022】比較例1 実施例3において、酸処理を行わなかったほかは、実施
例3と同様にしてフェライト磁性粉を得た。得られたフ
ェライト磁性粉のX線回折スペクトルを図2に示す。ま
た、このフェライト磁性粉の特性は、 粒子径 0.061 μm 板状比 7.7 保磁力 460 Oe 飽和磁化 58.2 emu/g 保磁力の温度変化 2.9 Oe/℃ 粉末の成形体の電気抵抗 1.4×107 Ω・cm であった。このフェライト磁性粉を用いて、還元剤を添
加しなかったほかは実施例1と同様にしてフェライト微
粒子表面にスピネルフェライト層を形成した。得られた
複合フェライト磁性粉の特性は、 保磁力 570 Oe 飽和磁化 60.1 emu/g 保磁力の温度変化 1.6 Oe/℃ 粉末の成形体の電気抵抗 6.1×106 Ω・cm であった。
Comparative Example 1 Ferrite magnetic powder was obtained in the same manner as in Example 3, except that the acid treatment was not performed. The X-ray diffraction spectrum of the obtained ferrite magnetic powder is shown in FIG. The characteristics of this ferrite magnetic powder are as follows: particle size 0.061 μm Plate-like ratio 7.7 Coercive force 460 Oe Saturation magnetization 58.2 emu / g Coercive force temperature change 2.9 Oe / ° C Electric resistance of powder compact 1.4 × 10 7 Ω ・It was cm. Using this ferrite magnetic powder, a spinel ferrite layer was formed on the surface of ferrite fine particles in the same manner as in Example 1 except that no reducing agent was added. The characteristics of the obtained composite ferrite magnetic powder were a coercive force of 570 Oe, a saturation magnetization of 60.1 emu / g, and a change of coercive force with temperature of 1.6 Oe / ° C. The electric resistance of the powder compact was 6.1 × 10 6 Ω · cm.

【0023】比較例2 実施例4において、酸処理を行わなかったほかは、実施
例4と同様にしてフェライト磁性粉を得た。得られたフ
ェライト磁性粉の特性は、 粒子径 0.072 μm 板状比 6.5 保磁力 410 Oe 飽和磁化 56.1 emu/g 保磁力の温度変化 3.2 Oe/℃ 粉末の成形体の電気抵抗 1.4×107 Ω・cm であった。このフェライト磁性粉を用いて、還元剤を添
加しなかったほかは実施例1と同様にしてフェライト微
粒子表面にスピネルフェライト層を形成した。得られた
複合フェライト磁性粉の特性は、 保磁力 530 Oe 飽和磁化 58.1 emu/g 保磁力の温度変化 1.6 Oe/℃ 粉末の成形体の電気抵抗 5.8×106 Ω・cm であった。
Comparative Example 2 A ferrite magnetic powder was obtained in the same manner as in Example 4, except that the acid treatment was not carried out. The characteristics of the obtained ferrite magnetic powder are as follows: particle size 0.072 μm Plate-like ratio 6.5 Coercive force 410 Oe Saturation magnetization 56.1 emu / g Temperature change of coercive force 3.2 Oe / ° C Electric resistance of powder compact 1.4 × 10 7 Ω ・It was cm. Using this ferrite magnetic powder, a spinel ferrite layer was formed on the surface of ferrite fine particles in the same manner as in Example 1 except that no reducing agent was added. The characteristics of the obtained composite ferrite magnetic powder were coercive force 530 Oe, saturation magnetization 58.1 emu / g, coercive force temperature change 1.6 Oe / ° C, and the electric resistance of the powder compact was 5.8 × 10 6 Ω · cm.

【0024】[0024]

【発明の効果】本発明により得られる複合フェライト磁
性粉は、飽和磁化が従来のものと比較して飛躍的に向上
しており、さらに保磁力の温度変化が小さく、粉末の電
気抵抗が小さく、分散性に優れ、高密度記録用の磁気記
録材料として好適に用いられる。
EFFECT OF THE INVENTION The composite ferrite magnetic powder obtained by the present invention has dramatically improved saturation magnetization as compared with the conventional one, and further has a small change in coercive force with temperature and a small electric resistance of the powder. It has excellent dispersibility and is suitable for use as a magnetic recording material for high density recording.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の実施例1で得られたフェライ
ト磁性粉のX線回折スペクトルを表す図である。
FIG. 1 is a diagram showing an X-ray diffraction spectrum of a ferrite magnetic powder obtained in Example 1 of the present invention.

【図2】図2は、本発明の比較例1で得られたフェライ
ト磁性粉のX線回折スペクトルを表す図である。
FIG. 2 is a diagram showing an X-ray diffraction spectrum of the ferrite magnetic powder obtained in Comparative Example 1 of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 CuのKα線を用いたX線回折スペクト
ルにおける(110)面及び(220)面のピークを除
く全てのピークがブロードである結晶構造を有し、かつ
六角板状を呈する六方晶系フェライト粒子を水に懸濁さ
せ、これに、還元剤と、Co,Ni,Zn,Mg,Mn及びCuから選ば
れる一種以上の金属イオン及びFe2+を含有する水溶液及
びアルカリ水溶液を加え、得られた混合懸濁液を非酸化
性雰囲気中で50〜200℃で加熱処理した後、洗浄、
濾過し、次いで、非酸化性雰囲気中で100〜500℃
で熱処理することを特徴とする前記フェライト粒子表面
に、一般式 a(M'O)・Fe23 (ただし、M'はCo,Ni,Z
n,Cu,Mg,Mn及びFe(II)から選ばれる一種以上の金属元素
であり、0<a≦1である。)で表されるスピネルフェ
ライト層が形成されている複合フェライト磁性粉の製造
方法。
1. A hexagonal plate having a hexagonal plate-like structure having a crystal structure in which all peaks except broad peaks of (110) plane and (220) plane in an X-ray diffraction spectrum using Kα ray of Cu are broad. Crystalline ferrite particles are suspended in water, to which a reducing agent and an aqueous solution containing at least one metal ion selected from Co, Ni, Zn, Mg, Mn and Cu and Fe 2+ and an alkaline aqueous solution are added. The obtained mixed suspension is heat-treated at 50 to 200 ° C. in a non-oxidizing atmosphere and then washed,
Filter, then 100-500 ° C in non-oxidizing atmosphere
The surface of the ferrite particles is characterized by being heat-treated with the general formula a (M'O) .Fe 2 O 3 (where M'is Co, Ni, Z
One or more metal elements selected from n, Cu, Mg, Mn and Fe (II), and 0 <a ≦ 1. The manufacturing method of the composite ferrite magnetic powder in which the spinel ferrite layer represented by this is formed.
【請求項2】 フェライト粒子の粒子径が50nm以下で
あり、板状比が5以下である請求項1の複合フェライト
磁性粉の製造方法。
2. The method for producing a composite ferrite magnetic powder according to claim 1, wherein the ferrite particles have a particle diameter of 50 nm or less and a plate ratio of 5 or less.
JP4227433A 1992-08-26 1992-08-26 Method of manufacturing compound ferrite magnetic particles Pending JPH0677034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4227433A JPH0677034A (en) 1992-08-26 1992-08-26 Method of manufacturing compound ferrite magnetic particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4227433A JPH0677034A (en) 1992-08-26 1992-08-26 Method of manufacturing compound ferrite magnetic particles

Publications (1)

Publication Number Publication Date
JPH0677034A true JPH0677034A (en) 1994-03-18

Family

ID=16860787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4227433A Pending JPH0677034A (en) 1992-08-26 1992-08-26 Method of manufacturing compound ferrite magnetic particles

Country Status (1)

Country Link
JP (1) JPH0677034A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119029A (en) * 2010-11-30 2012-06-21 Toda Kogyo Corp Magnetic particle powder
AU2012307084B2 (en) * 2011-09-06 2014-12-11 Anaeco Limited Apparatus for the passage and conveyance of compressible material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119029A (en) * 2010-11-30 2012-06-21 Toda Kogyo Corp Magnetic particle powder
AU2012307084B2 (en) * 2011-09-06 2014-12-11 Anaeco Limited Apparatus for the passage and conveyance of compressible material

Similar Documents

Publication Publication Date Title
EP0346123B1 (en) Plate-like composite ferrite particles for magnetic recording and process for producing the same
US4778734A (en) Barium ferrite magnetic powder and magnetic recording medium containing the same
JPH0677034A (en) Method of manufacturing compound ferrite magnetic particles
KR960002626B1 (en) Process for producing microcrystalline co/ti-substituted barium ferrite platelets
JPH0717385B2 (en) Method for producing composite ferrite magnetic powder
JP2958369B2 (en) Method for producing composite ferrite magnetic powder
JP2958370B2 (en) Method for producing composite ferrite magnetic powder
JP2946375B2 (en) Method for producing composite ferrite magnetic powder
JPH05326237A (en) Composite ferrite magnetic powder and production thereof
JP2946374B2 (en) Method for producing composite ferrite magnetic powder
JPH0672718A (en) Production of multiple ferrite magnetic powder
JPH0661031A (en) Composite ferrite magnetic powder and manufacture thereof
JPH0677031A (en) Manufacture of composite ferrite magnetic powder
JPH0677032A (en) Manufacture of composite ferrite magnetic powder
JPH04362019A (en) Ferritic magnetic powder and its production
KR960011787B1 (en) Proces for preparing ferromagnetic fine particles for magnetic recording
JPH04362020A (en) Ferritic magnetic powder and its production
JPH05326236A (en) Composite ferrite magnetic powder and production thereof
JPH0661030A (en) Composite ferrite magnetic powder and manufacture thereof
JPH05326235A (en) Magnetic ferrite powder and production thereof
JPH05319831A (en) Ferrite magnetic powder and its production
JPH04362021A (en) Ferrite magnetic powder and its production
JPH0669013A (en) Ferrite magnetic particle
JPH01310511A (en) Laminar compound ferrite fine powder for magnetic recording and manufacture of it
JPH05326234A (en) Ferrite magnetic powder and production thereof