JPH04362020A - Ferritic magnetic powder and its production - Google Patents

Ferritic magnetic powder and its production

Info

Publication number
JPH04362020A
JPH04362020A JP3165269A JP16526991A JPH04362020A JP H04362020 A JPH04362020 A JP H04362020A JP 3165269 A JP3165269 A JP 3165269A JP 16526991 A JP16526991 A JP 16526991A JP H04362020 A JPH04362020 A JP H04362020A
Authority
JP
Japan
Prior art keywords
magnetic powder
precipitate
ferrite magnetic
mol
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3165269A
Other languages
Japanese (ja)
Inventor
Takayuki Kimura
隆幸 木村
Kazuo Hashimoto
和生 橋本
Hirobumi Kimura
博文 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP3165269A priority Critical patent/JPH04362020A/en
Publication of JPH04362020A publication Critical patent/JPH04362020A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To offer ferritic magnetic powder remarkably improved in saturation magnetization compared to that of the conventional one, furthermore small in the temp. change of coercive force, excellent in dispersibility and usable as the magnetic recording material for high density recording. CONSTITUTION:This is ferritic magnetic powder having features of being expressed by a general formula AO.n(Fe12-XMx(O18-z) (where A denotes one or more kinds of elements selected from Ba, Sr, Ca and Pb and M denotes one or more kinds of elements selected from Co, Ni, Zn, Cu, Mg, Mn, Fe(II), Bi, Si, Ti, Zr, Sn, Ta, Nb, Mo, V and W as well as the numerical value of n=1.2 to 3.0, x=0>l to 4.0 and 0<z<2 is satisfied) and constituted of hexagonal system ferritic grains showing a hexagonal sheet shape.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、新規なフェライト磁性
粉及びその製造方法に関するものである。さらに詳しく
は、本発明は高密度記録用の磁気記録媒体に用いるのに
適した、保磁力が200〜2000Oeであり、従来の
ものと比較して飽和磁化が向上しており、さらに保磁力
の温度変化が小さいフェライト磁性粉及びその製造方法
に関するものである。近年、磁気記録の高密度化の要求
に伴い、マグネトプランバイト型フェライト磁性粉を磁
気記録媒体として用いる垂直磁気記録方式の開発が進め
られており、DATテープ、8ミリテープ、ハイビジョ
ンテープ等の用途が考えられている。垂直磁気記録方式
に用いられるマグネトプランバイト型フェライト磁性粉
としては、保磁力が適当な値(200〜2000Oe)
で、飽和磁化ができるだけ高く、保磁力の温度変化が小
さく、配向性の良いものが望まれている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel ferrite magnetic powder and a method for producing the same. More specifically, the present invention has a coercive force of 200 to 2000 Oe, which is suitable for use in magnetic recording media for high-density recording, and has improved saturation magnetization compared to conventional ones. The present invention relates to a ferrite magnetic powder that exhibits small temperature changes and a method for producing the same. In recent years, with the demand for higher density magnetic recording, the development of a perpendicular magnetic recording method using magnetoplumbite-type ferrite magnetic powder as a magnetic recording medium has been progressing, and it has been used for applications such as DAT tape, 8 mm tape, and high-definition tape. It is considered. The magnetoplumbite type ferrite magnetic powder used in the perpendicular magnetic recording system has a coercive force of an appropriate value (200 to 2000 Oe).
Therefore, it is desired that the saturation magnetization is as high as possible, the coercive force changes little with temperature, and the orientation is good.

【0002】0002

【従来の技術およびその問題点】従来、マグネトプラン
バイト型フェライト磁性粉の製造方法としては、例えば
共沈法、ガラス結晶化法、水熱合成法等種々の方法が知
られており、ガラス結晶化法については、特公昭60−
15575号公報、水熱合成法については、例えば特開
昭59−175707 号公報、特公昭60−1297
3号公報、特公昭60−15576号公報、特開昭60
−137002 号公報等で提案されている。しかしな
がら、前記いずれの方法においても得られるマグネトプ
ランバイト型フェライト磁性粉は、飽和磁化が60em
u/g 以下と低かったり、保磁力の温度変化が大きい
という欠点があった。
[Prior art and its problems] Conventionally, various methods have been known for producing magnetoplumbite type ferrite magnetic powder, such as coprecipitation, glass crystallization, and hydrothermal synthesis. Regarding the conversion law, the special public interest law of 1983
Regarding the hydrothermal synthesis method, see Japanese Patent Application Laid-open No. 59-175707 and Japanese Patent Publication No. 60-1297.
Publication No. 3, Japanese Patent Publication No. 15576/1983, Japanese Patent Application Publication No. 1983
This is proposed in Publication No.-137002, etc. However, the magnetoplumbite type ferrite magnetic powder obtained by any of the above methods has a saturation magnetization of 60 em.
There were disadvantages in that the coercive force was low at less than u/g and the coercive force varied greatly with temperature.

【0003】0003

【発明の目的】本発明の目的は、前記問題点を解決し、
微粒子で保磁力が200〜2000Oeであり、飽和磁
化が高く、さらに保磁力の温度変化が小さく、配向性に
優れたフェライト磁性粉及びその製造方法を提供するこ
とにある。
[Object of the invention] The object of the present invention is to solve the above problems,
The object of the present invention is to provide a ferrite magnetic powder that is fine particles, has a coercive force of 200 to 2000 Oe, has a high saturation magnetization, has a small change in coercive force with temperature, and has excellent orientation, and a method for producing the same.

【0004】0004

【問題点を解決するための手段】本発明は、一般式  
AO・n(Fe12−xMx O18−z)(ただし、
Aは、Ba、Sr、Ca及びPbから選ばれる一種以上
の元素を示し、Mは、Co,Ni,Zn,Cu,Mg,
Mn,Fe(II),Bi,Si,Ti,Zr,Sn,
Ta,Nb,Mo, V及びWから選ばれる一種以上の
元素を示し、n= 1.2〜3.0 、x= 0.1〜
4.0 、0<z<2の数値である。)で表され、かつ
六角板状を呈する六方晶系フェライト粒子であることを
特徴とするフェライト磁性粉に関する。本発明のフェラ
イト磁性粉は、一般式  AO・n(Fe12−xMx
 O18−z) で表される。前記一般式におけるAは
、Ba、Sr、Ca及びPbから選ばれる一種以上の元
素を示し、Mは、Co,Ni,Zn,Cu,Mg,Mn
,Fe(II),Bi,Si,Ti,Zr,Sn,Ta
,Nb,Mo, V及びWから選ばれる一種以上の元素
を示し、n= 1.2〜3.0 、好ましくは 1.4
〜2.5 であり、x= 0.1〜4.0 の数値であ
る。また、zはMの平均原子価をmとした場合、z=(
3−m)x/2で表される数値であって、0<z<2、
好ましくは 0.2<z<1.5 である。本発明にお
いては、上記一般式に示すようにFeの一部をMで置換
するとともに、nを 1.2〜3.0 の範囲とするこ
とにより、従来のマグネトプランバイト型フェライトと
比較して飽和磁化が向上し、保磁力の温度変化が小さい
フェライト磁性粉が得られる。また、磁気記録の高密度
化のために、粒子径が50nm以下であることが好まし
い。
[Means for solving the problems] The present invention provides the general formula
AO・n(Fe12-xMx O18-z) (However,
A represents one or more elements selected from Ba, Sr, Ca and Pb, and M represents Co, Ni, Zn, Cu, Mg,
Mn, Fe(II), Bi, Si, Ti, Zr, Sn,
Indicates one or more elements selected from Ta, Nb, Mo, V and W, n = 1.2 ~ 3.0, x = 0.1 ~
4.0, a numerical value of 0<z<2. ) and is characterized by being hexagonal ferrite particles having a hexagonal plate shape. The ferrite magnetic powder of the present invention has the general formula AO・n(Fe12-xMx
O18-z) A in the general formula represents one or more elements selected from Ba, Sr, Ca and Pb, and M represents Co, Ni, Zn, Cu, Mg, Mn.
, Fe(II), Bi, Si, Ti, Zr, Sn, Ta
, Nb, Mo, V and W, and n = 1.2 to 3.0, preferably 1.4.
~2.5, and x=0.1~4.0. In addition, when z is the average valence of M, z=(
3-m) A numerical value expressed as x/2, where 0<z<2,
Preferably 0.2<z<1.5. In the present invention, as shown in the above general formula, by replacing a part of Fe with M and setting n in the range of 1.2 to 3.0, compared to the conventional magnetoplumbite type ferrite, Ferrite magnetic powder with improved saturation magnetization and small temperature change in coercive force can be obtained. Further, in order to increase the density of magnetic recording, it is preferable that the particle diameter is 50 nm or less.

【0005】本発明のフェライト磁性粉は、以下の方法
により製造される。フェライト磁性粉を構成するA、F
e及びMを含む溶液と水酸化アルカリとを、混合後の溶
液中の水酸化アルカリ濃度が3M以上となるように混合
して沈澱物を生成させ、該沈澱物を含むスラリを120
〜300℃で水熱処理した後、沈澱物を含むスラリを洗
浄し、次いで、該スラリにCo,Ni,Zn,Mg,M
n及びCuから選ばれる一種以上の金属イオン及びFe
2+を含有する水溶液及びアルカリ水溶液を加え、得ら
れた混合懸濁液を50〜200℃で加熱処理した後、得
られた沈澱物を700〜950℃で焼成することにより
、前記フェライト磁性粉が得られる。Aの化合物として
は、硝酸塩、塩化物、水酸化物等が用いられる。Aの使
用量は、Aの濃度が0.03〜0.50Mの範囲になる
ようにするのが結晶性のよい粒子を得るうえで望ましい
。Feの化合物としては、硝酸塩、塩化物等が用いられ
る。Feの使用量はAが1グラム原子に対して8〜12
グラム原子が好ましい。Feの量が少なすぎると、フェ
ライト磁性粉の生成量が少なく、結晶性も悪くなる。ま
たFeの量が多すぎるとヘマタイトが副生したり、また
フェライト磁性粉の粒子が大きくなり、磁気特性も劣っ
てくる。Mの化合物としては、塩化物、硝酸塩、アンモ
ニウム塩等が用いられる。水酸化アルカリとしては、水
酸化ナトリウム、水酸化カリウム等が用いられる。水酸
化アルカリの使用量は水酸化アルカリを混合した後の溶
液中の水酸化アルカリ濃度が3M以上となる量が必要で
あり、4〜8Mの範囲が好ましい。水酸化アルカリの量
が少なすぎると粒子が大きくなったり、粒度分布が広く
なったり、またヘマタイトが生成する。また水酸化アル
カリを過度に多くするのは経済的でない。 前記A、Fe及びMを含む溶液と水酸化アルカリとを混
合する方法については、特に制限はないが、例えばA、
Fe及びMを含む溶液に、水酸化アルカリの水溶液を添
加する方法がある。
The ferrite magnetic powder of the present invention is produced by the following method. A and F that constitute ferrite magnetic powder
A solution containing e and M and alkali hydroxide are mixed to form a precipitate such that the alkali hydroxide concentration in the mixed solution is 3M or more, and the slurry containing the precipitate is heated to 120%
After hydrothermal treatment at ~300°C, the slurry containing the precipitate is washed, and then Co, Ni, Zn, Mg, M
One or more metal ions selected from n and Cu and Fe
2+-containing aqueous solution and alkaline aqueous solution are added, the resulting mixed suspension is heat-treated at 50 to 200°C, and the resulting precipitate is fired at 700 to 950°C to form the ferrite magnetic powder. can get. As the compound A, nitrates, chlorides, hydroxides, etc. are used. In order to obtain particles with good crystallinity, it is desirable to use the amount of A such that the concentration of A is in the range of 0.03 to 0.50M. As the Fe compound, nitrates, chlorides, etc. are used. The amount of Fe used is 8 to 12 A per 1 gram atom.
Gram atoms are preferred. If the amount of Fe is too small, the amount of ferrite magnetic powder produced will be small and the crystallinity will be poor. Furthermore, if the amount of Fe is too large, hematite will be produced as a by-product, and the particles of ferrite magnetic powder will become large, resulting in poor magnetic properties. As the compound M, chloride, nitrate, ammonium salt, etc. are used. As the alkali hydroxide, sodium hydroxide, potassium hydroxide, etc. are used. The amount of alkali hydroxide used must be such that the alkali hydroxide concentration in the solution after mixing the alkali hydroxide is 3M or more, and is preferably in the range of 4 to 8M. If the amount of alkali hydroxide is too small, the particles become large, the particle size distribution becomes wide, and hematite is generated. Further, it is not economical to increase the amount of alkali hydroxide excessively. There are no particular restrictions on the method of mixing the solution containing A, Fe, and M with the alkali hydroxide, but for example, A,
There is a method of adding an aqueous alkali hydroxide solution to a solution containing Fe and M.

【0006】次いで、得られた沈澱物を含むスラリを水
熱処理することにより、微細な結晶が生成、沈澱する。 水熱処理の温度は120〜300℃である。温度が低す
ぎると結晶の生成が充分でなく、また温度が高すぎると
最終的に得られるフェライト粉末の粒径が大きくなるの
で好ましくない。水熱処理時間は普通、0.5 〜20
時間程度であり、水熱処理には通常、オートクレーブが
採用される。本発明においては、前記水熱処理の前に、
沈澱物を含むスラリを50℃以下の温度で0.5 〜4
8時間熟成した後、Biを含む溶液を添加してもよい。 Biの添加量は、Fe及びMの合計量に対して、1〜5
モル%、好ましくは2〜4モル%である。Biを添加す
ることにより、フェライト磁性粉の粒子径を50nm以
下、かつ、板状比を5以下とすることができる。
[0006] Next, the slurry containing the obtained precipitate is hydrothermally treated to generate and precipitate fine crystals. The temperature of the hydrothermal treatment is 120 to 300°C. If the temperature is too low, crystal formation will not be sufficient, and if the temperature is too high, the particle size of the ferrite powder ultimately obtained will become large, which is not preferable. Hydrothermal treatment time is usually 0.5 to 20
The hydrothermal treatment typically takes an autoclave. In the present invention, before the hydrothermal treatment,
The slurry containing the precipitate is heated to 0.5 to 4 at a temperature below 50°C.
After aging for 8 hours, a solution containing Bi may be added. The amount of Bi added is 1 to 5 with respect to the total amount of Fe and M.
mol %, preferably 2 to 4 mol %. By adding Bi, the particle size of the ferrite magnetic powder can be made 50 nm or less, and the plate ratio can be made 5 or less.

【0007】次に、水熱処理により生成した微細な結晶
の沈澱物を水洗して、遊離のアルカリ分を除去した後、
該スラリにCo,Ni,Zn,Mg,Mn及びCuから
選ばれる一種以上の金属イオン及びFe2+を含有する
水溶液及びアルカリ水溶液を加え、得られた混合懸濁液
を50〜200℃で加熱処理する。Co,Ni,Zn,
Mg,Mn及びCuの化合物としては、それらの硝酸塩
、塩化物、硫酸塩等の水に可溶なものが用いられ、Fe
の化合物としては、硫酸第一鉄、塩化第一鉄が一般に用
いられる。次いで、得られた沈澱物を水洗後、焼成する
ことによりフェライト磁性粉が得られる。 焼成においては、予め得られた沈澱物に融剤を混合する
ことが好ましい。融剤としては、塩化ナトリウム、塩化
バリウム、塩化カリウム、塩化ストロンチウムおよびフ
ッ化ナトリウムのうち少なくとも一種が用いられる。融
剤の使用量は沈澱物(乾燥物基準)に対して、10〜1
80重量%、特に30〜120重量%が好ましい。融剤
の量が少なすぎると粒子の焼結が起こり、また多すぎて
も多くしたことによる利点はなく、経済的でない。沈澱
物と融剤の混合方法は特に制限はなく、例えば沈澱物の
スラリに融剤を加えて湿式混合した後、スラリを乾燥し
てもよく、あるいは沈澱物を乾燥した後、融剤を加えて
乾式混合してもよい。焼成温度は700〜950℃、好
ましくは800〜930℃である。温度が低すぎると結
晶化が進まず、飽和磁化が低くなる。また温度が高すぎ
ると粒子が大きくなったり、焼結が起こるので好ましく
ない。焼成時間は10分〜30時間程度が適当である。
Next, after washing the fine crystal precipitate produced by the hydrothermal treatment with water to remove free alkali,
An aqueous solution and an alkaline aqueous solution containing one or more metal ions selected from Co, Ni, Zn, Mg, Mn, and Cu and Fe2+ are added to the slurry, and the resulting mixed suspension is heat-treated at 50 to 200 °C. . Co, Ni, Zn,
As compounds of Mg, Mn and Cu, those soluble in water such as their nitrates, chlorides, and sulfates are used, and Fe
As the compound, ferrous sulfate and ferrous chloride are generally used. Next, the obtained precipitate is washed with water and then fired to obtain ferrite magnetic powder. In the calcination, it is preferable to mix a flux into the precipitate obtained in advance. As the flux, at least one of sodium chloride, barium chloride, potassium chloride, strontium chloride, and sodium fluoride is used. The amount of flux used is 10 to 1
80% by weight, especially 30-120% by weight is preferred. If the amount of flux is too small, sintering of the particles will occur, and if it is too large, there will be no benefit from increasing the amount and it is not economical. There are no particular restrictions on the method of mixing the precipitate and flux; for example, a flux may be added to a slurry of the precipitate, wet-mixed, and then the slurry may be dried, or a flux may be added after drying the precipitate. It may be dry mixed. The firing temperature is 700-950°C, preferably 800-930°C. If the temperature is too low, crystallization will not proceed and the saturation magnetization will become low. Furthermore, if the temperature is too high, the particles become large and sintering occurs, which is not preferable. Appropriate firing time is about 10 minutes to 30 hours.

【0008】[0008]

【実施例】以下に実施例および比較例を示し、さらに詳
しく本発明について説明する。 実施例1 硝酸第二鉄2.580mol、硝酸コバルト0.061
mol、硝酸ニッケル0.061mol、四塩化チタン
0.123mol及び硝酸亜鉛0.123molを、脱
イオン水1800mlに溶解し、別に、水酸化バリウム
0.368mol及びカセイソーダ36mol を脱イ
オン水2000mlに溶解し、両溶液を混合して沈澱物
を生成させた。次に、生成した沈澱物を含むスラリを2
0℃で6時間熟成した後、硝酸ビスマス0.092mo
lを脱イオン水50mlに溶解した溶液を添加した。得
られた沈澱物を含むスラリをオートクレーブに入れ、 
140℃で6時間水熱処理を行った。次いで得られた沈
澱物を十分に水洗した後、該スラリに、水200ml 
に塩化コバルト0.061mol、塩化亜鉛0.122
mol及び塩化第一鉄0.549molを溶解した溶液
を加えて十分に混合した後、カセイソーダ1.7mol
を水300ml に溶解した溶液を加え、80℃で熟成
した。得られた沈澱物を十分に水洗した後、濾過、乾燥
し、これに融剤としてNaClとBaCl2 ・2H2
Oの重量比が1:1の混合物を沈澱物に対して 100
重量%加えて混合した。この混合物を窒素雰囲気下で 
860℃で2時間焼成した。得られた焼成物を水で十分
洗浄した後、濾過、乾燥してフェライト磁性粉を得た。 得られたフェライト磁性粉は組成分析の結果、BaO 
・1.6(Fe10.2Co0.4Ni0.2Zn0.
8Ti0.4O17.5)であった。また、このフェラ
イト磁性粉の特性は、 粒子径      0.043 μm 板状比      3.8 保磁力      560 Oe 飽和磁化  64.5 emu/g 保磁力の温度変化  0.2 Oe/℃であった。
[Examples] The present invention will be explained in more detail by showing Examples and Comparative Examples below. Example 1 Ferric nitrate 2.580 mol, cobalt nitrate 0.061
0.061 mol of nickel nitrate, 0.123 mol of titanium tetrachloride and 0.123 mol of zinc nitrate were dissolved in 1800 ml of deionized water, and separately, 0.368 mol of barium hydroxide and 36 mol of caustic soda were dissolved in 2000 ml of deionized water. Both solutions were mixed to form a precipitate. Next, the slurry containing the generated precipitate was
After aging at 0°C for 6 hours, 0.092 mo of bismuth nitrate
1 in 50 ml of deionized water was added. The resulting slurry containing the precipitate was placed in an autoclave;
Hydrothermal treatment was performed at 140°C for 6 hours. Next, after thoroughly washing the obtained precipitate with water, 200 ml of water was added to the slurry.
0.061 mol of cobalt chloride, 0.122 mol of zinc chloride
After adding a solution containing 0.549 mol of ferrous chloride and 0.549 mol of ferrous chloride and mixing thoroughly, add 1.7 mol of caustic soda.
A solution of 300 ml of water was added, and the mixture was aged at 80°C. After thoroughly washing the obtained precipitate with water, it was filtered and dried, and NaCl and BaCl2 .2H2 were added as fluxing agents to the precipitate.
Add a mixture of O to precipitate in a weight ratio of 1:1 to 100
% by weight and mixed. This mixture was heated under nitrogen atmosphere.
It was baked at 860°C for 2 hours. The obtained fired product was thoroughly washed with water, filtered and dried to obtain ferrite magnetic powder. As a result of compositional analysis, the obtained ferrite magnetic powder was found to contain BaO
・1.6 (Fe10.2Co0.4Ni0.2Zn0.
8Ti0.4O17.5). Further, the characteristics of this ferrite magnetic powder were as follows: Particle diameter: 0.043 μm Plate ratio: 3.8 Coercive force: 560 Oe Saturation magnetization: 64.5 emu/g Temperature change in coercive force: 0.2 Oe/°C.

【0009】実施例2 硝酸第二鉄2.700mol、硝酸コバルト0.061
mol、硝酸ニッケル0.061mol、四塩化チタン
0.061mol及び硝酸亜鉛0.061molを、脱
イオン水1800mlに溶解し、別に、水酸化バリウム
0.368mol及びカセイソーダ36mol を、脱
イオン水2000mlに溶解し、両溶液を混合して沈澱
物を生成させた。 次に、生成した沈澱物を含むスラリを20℃で6時間熟
成した後、硝酸ビスマス0.092molを脱イオン水
50mlに溶解した溶液を添加した。得られた沈澱物を
含むスラリをオートクレーブに入れ、 140℃で6時
間水熱処理を行った。次いで得られた沈澱物を十分に水
洗した後、該スラリに、水200ml に塩化コバルト
0.061mol、塩化亜鉛0.123mol及び塩化
第一鉄0.552molを溶解した溶液を加えて十分に
混合した後、カセイソーダ1.7molを水300ml
 に溶解した溶液を加え、80℃で熟成した。得られた
沈澱物を十分に水洗した後、濾過、乾燥し、これに融剤
としてNaClとBaCl2 ・2H2Oの重量比が1
:1の混合物を沈澱物に対して 100重量%加えて混
合した。この混合物を窒素雰囲気下で 870℃で2時
間焼成した。得られた焼成物を水で十分洗浄した後、濾
過、乾燥してフェライト磁性粉を得た。得られたフェラ
イト磁性粉は組成分析の結果、BaO ・2.0(Fe
10.6Co0.4Ni0.2Zn0.6Ti0.2O
17.5)であった。また、このフェライト磁性粉の特
性は、 粒子径      0.045 μm 板状比      3.9 保磁力      560 Oe 飽和磁化    63.4 emu/g保磁力の温度変
化  0.3 Oe/℃であった。
Example 2 Ferric nitrate 2.700 mol, cobalt nitrate 0.061
0.061 mol of nickel nitrate, 0.061 mol of titanium tetrachloride, and 0.061 mol of zinc nitrate were dissolved in 1800 ml of deionized water, and separately, 0.368 mol of barium hydroxide and 36 mol of caustic soda were dissolved in 2000 ml of deionized water. , both solutions were mixed to form a precipitate. Next, the slurry containing the generated precipitate was aged at 20° C. for 6 hours, and then a solution of 0.092 mol of bismuth nitrate dissolved in 50 ml of deionized water was added. The slurry containing the obtained precipitate was placed in an autoclave and subjected to hydrothermal treatment at 140°C for 6 hours. Next, the obtained precipitate was thoroughly washed with water, and a solution of 0.061 mol of cobalt chloride, 0.123 mol of zinc chloride, and 0.552 mol of ferrous chloride dissolved in 200 ml of water was added to the slurry and thoroughly mixed. After that, add 1.7 mol of caustic soda to 300 ml of water.
A solution dissolved in was added, and the mixture was aged at 80°C. The obtained precipitate was thoroughly washed with water, filtered and dried, and a flux of NaCl and BaCl2.2H2O was added at a weight ratio of 1.
:1 was added in an amount of 100% by weight based on the precipitate and mixed. This mixture was calcined at 870° C. for 2 hours under a nitrogen atmosphere. The obtained fired product was thoroughly washed with water, filtered and dried to obtain ferrite magnetic powder. As a result of compositional analysis, the obtained ferrite magnetic powder was found to contain BaO 2.0 (Fe
10.6Co0.4Ni0.2Zn0.6Ti0.2O
17.5). Further, the characteristics of this ferrite magnetic powder were as follows: Particle size: 0.045 μm Plate ratio: 3.9 Coercive force: 560 Oe Saturation magnetization: 63.4 emu/g Temperature change in coercive force: 0.3 Oe/°C.

【0010】実施例3 実施例1において、硝酸ビスマスを添加しなかったほか
は、実施例1と同様にしてフェライト磁性粉を得た。得
られたフェライト磁性粉は組成分析の結果、BaO ・
1.6(Fe10.2Co0.4Ni0.2Zn0.8
Ti0.4O17.5)であった。また、このフェライ
ト磁性粉の特性は、 粒子径      0.063 μm 板状比  7.8 保磁力      550 Oe 飽和磁化    64.3 emu/g保磁力の温度変
化  0.2 Oe/℃であった。
Example 3 Ferrite magnetic powder was obtained in the same manner as in Example 1 except that bismuth nitrate was not added. As a result of compositional analysis, the obtained ferrite magnetic powder was found to contain BaO.
1.6 (Fe10.2Co0.4Ni0.2Zn0.8
Ti0.4O17.5). Further, the characteristics of this ferrite magnetic powder were as follows: Particle size: 0.063 μm Plate ratio: 7.8 Coercive force: 550 Oe Saturation magnetization: 64.3 emu/g Temperature change in coercive force: 0.2 Oe/°C.

【0011】実施例4 実施例2において、硝酸ビスマスを添加しなかったほか
は、実施例2と同様にしてフェライト磁性粉を得た。得
られたフェライト磁性粉は組成分析の結果、BaO ・
2.0(Fe10.6Co0.4Ni0.2Zn0.6
Ti0.2O17.5)であった。また、このフェライ
ト磁性粉の特性は、 粒子径      0.065 μm 板状比  7.9 保磁力      550 Oe 飽和磁化    63.1 emu/g保磁力の温度変
化  0.3 Oe/℃であった。
Example 4 Ferrite magnetic powder was obtained in the same manner as in Example 2 except that bismuth nitrate was not added. As a result of compositional analysis, the obtained ferrite magnetic powder was found to contain BaO.
2.0 (Fe10.6Co0.4Ni0.2Zn0.6
Ti0.2O17.5). Further, the characteristics of this ferrite magnetic powder were as follows: Particle size: 0.065 μm Plate ratio: 7.9 Coercive force: 550 Oe Saturation magnetization: 63.1 emu/g Temperature change in coercive force: 0.3 Oe/°C.

【0012】比較例1 硝酸第二鉄3.129mol、硝酸コバルト0.123
mol、硝酸ニッケル0.061mol、四塩化チタン
0.123mol及び硝酸亜鉛0.245molを、脱
イオン水1800mlに溶解し、別に、水酸化バリウム
0.460mol及びカセイソーダ37mol を脱イ
オン水2000mlに溶解し、両溶液を混合して沈澱物
を生成させた。得られた沈澱物を含むスラリをオートク
レーブに入れ、 140℃で6時間水熱処理を行った。 次に、得られた沈澱物を十分に水洗した後、濾過、乾燥
し、これに融剤としてNaClとBaCl2 ・2H2
Oの重量比が1:1の混合物を沈澱物に対して 100
重量%加えて混合した。この混合物を窒素雰囲気下で 
860℃で2時間焼成した。得られた焼成物を水で十分
洗浄した後、濾過、乾燥してフェライト磁性粉を得た。 得られたフェライト磁性粉は組成分析の結果、BaO 
・0.99(Fe10.2Co0.4Ni0.2Zn0
.8Ti0.4O17.5)であった。また、このフェ
ライト磁性粉の特性は、粒子径      0.061
 μm 板状比      7.7 保磁力      560 Oe 飽和磁化    60.2 emu/g保磁力の温度変
化  2.3 Oe/℃であった。
Comparative Example 1 Ferric nitrate 3.129 mol, cobalt nitrate 0.123
0.061 mol of nickel nitrate, 0.123 mol of titanium tetrachloride and 0.245 mol of zinc nitrate were dissolved in 1800 ml of deionized water, and separately, 0.460 mol of barium hydroxide and 37 mol of caustic soda were dissolved in 2000 ml of deionized water. Both solutions were mixed to form a precipitate. The slurry containing the obtained precipitate was placed in an autoclave and subjected to hydrothermal treatment at 140°C for 6 hours. Next, the obtained precipitate was thoroughly washed with water, filtered and dried, and NaCl and BaCl2 .2H2 were added as fluxing agents.
Add a mixture of O to precipitate in a weight ratio of 1:1 to 100
% by weight and mixed. This mixture was heated under nitrogen atmosphere.
It was baked at 860°C for 2 hours. The obtained fired product was thoroughly washed with water, filtered and dried to obtain ferrite magnetic powder. As a result of compositional analysis, the obtained ferrite magnetic powder was found to contain BaO
・0.99 (Fe10.2Co0.4Ni0.2Zn0
.. 8Ti0.4O17.5). In addition, the characteristics of this ferrite magnetic powder are that the particle size is 0.061
μm Plate ratio 7.7 Coercive force 560 Oe Saturation magnetization 60.2 emu/g Temperature change in coercive force 2.3 Oe/°C.

【0013】比較例2 硝酸第二鉄3.252mol、硝酸コバルト0.123
mol、硝酸ニッケル0.061mol、四塩化チタン
0.061mol及び硝酸亜鉛0.184molを、脱
イオン水1800mlに溶解し、別に、水酸化バリウム
0.460mol及びカセイソーダ37mol を、脱
イオン水2000mlに溶解し、両溶液を混合して沈澱
物を生成させた。 得られた沈澱物を含むスラリをオートクレーブに入れ、
 140℃で6時間水熱処理を行った。次に、得られた
沈澱物を十分に水洗した後、濾過、乾燥し、これに融剤
としてNaClとBaCl2 ・2H2Oの重量比が1
:1の混合物を沈澱物に対して 100重量%加えて混
合した。この混合物を窒素雰囲気下で 870℃で2時
間焼成した。得られた焼成物を水で十分洗浄した後、濾
過、乾燥してフェライト磁性粉を得た。得られたフェラ
イト磁性粉は組成分析の結果、BaO ・1.0(Fe
10.6Co0.4Ni0.2Zn0.6Ti0.2O
17.5)得られたフェライト磁性粉の特性は、 粒子径      0.066 μm 板状比      7.8 保磁力      540 Oe 飽和磁化    60.1 emu/g保磁力の温度変
化  2.4 Oe/℃であった。
Comparative Example 2 Ferric nitrate 3.252 mol, cobalt nitrate 0.123
0.061 mol of nickel nitrate, 0.061 mol of titanium tetrachloride, and 0.184 mol of zinc nitrate were dissolved in 1800 ml of deionized water, and separately, 0.460 mol of barium hydroxide and 37 mol of caustic soda were dissolved in 2000 ml of deionized water. , both solutions were mixed to form a precipitate. The resulting slurry containing the precipitate was placed in an autoclave;
Hydrothermal treatment was performed at 140°C for 6 hours. Next, the obtained precipitate was thoroughly washed with water, filtered and dried, and a flux of NaCl and BaCl2.2H2O was added in a weight ratio of 1.
:1 was added in an amount of 100% by weight based on the precipitate and mixed. This mixture was calcined at 870° C. for 2 hours under a nitrogen atmosphere. The obtained fired product was thoroughly washed with water, filtered and dried to obtain ferrite magnetic powder. As a result of compositional analysis, the obtained ferrite magnetic powder was found to contain BaO 1.0 (Fe
10.6Co0.4Ni0.2Zn0.6Ti0.2O
17.5) The properties of the obtained ferrite magnetic powder are as follows: Particle size: 0.066 μm Plate ratio: 7.8 Coercive force: 540 Oe Saturation magnetization: 60.1 emu/g Temperature change in coercive force: 2.4 Oe/℃ there were.

【0014】[0014]

【発明の効果】本発明により得られるフェライト磁性粉
は、飽和磁化が従来のものと比較して飛躍的に向上して
おり、さらに保磁力の温度変化が小さく、分散性に優れ
、高密度記録用の磁気記録材料として好適に用いられる
Effects of the Invention The ferrite magnetic powder obtained by the present invention has dramatically improved saturation magnetization compared to conventional ones, has small temperature change in coercive force, has excellent dispersibility, and is capable of high-density recording. It is suitably used as a magnetic recording material for.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  一般式  AO・n(Fe12−xM
x O18−z)(ただし、Aは、Ba、Sr、Ca及
びPbから選ばれる一種以上の元素を示し、Mは、Co
,Ni,Zn,Cu,Mg,Mn,Fe(II),Bi
,Si,Ti,Zr,Sn,Ta,Nb,Mo, V及
びWから選ばれる一種以上の元素を示し、n= 1.2
〜3.0 、x= 0.1〜4.0 、0<z<2の数
値である。)で表され、かつ六角板状を呈する六方晶系
フェライト粒子であることを特徴とするフェライト磁性
粉。
[Claim 1] General formula AO・n(Fe12-xM
xO18-z) (However, A represents one or more elements selected from Ba, Sr, Ca, and Pb, and M represents Co.
, Ni, Zn, Cu, Mg, Mn, Fe(II), Bi
, Si, Ti, Zr, Sn, Ta, Nb, Mo, V and W, n = 1.2
~3.0, x=0.1~4.0, 0<z<2. ), and is characterized by being hexagonal ferrite particles having a hexagonal plate shape.
【請求項2】  フェライト磁性粉の粒子径が50nm
以下であり、板状比が5以下である請求項1のフェライ
ト磁性粉。
[Claim 2] The particle size of the ferrite magnetic powder is 50 nm.
2. The ferrite magnetic powder according to claim 1, wherein the ferrite magnetic powder has a plate ratio of 5 or less.
【請求項3】  フェライト磁性粉を構成する各元素を
含む溶液と水酸化アルカリとを、混合後の溶液中の水酸
化アルカリ濃度が3M以上となるように混合して沈澱物
を生成させ、該沈澱物を含むスラリを120〜300℃
で水熱処理した後、沈澱物を含むスラリを洗浄し、次い
で、該スラリにCo,Ni,Zn,Mg,Mn及びCu
から選ばれる一種以上の金属イオン及びFe2+を含有
する水溶液及びアルカリ水溶液を加え、得られた混合懸
濁液を50〜200℃で加熱処理した後、得られた沈澱
物を700〜950℃で焼成することを特徴とする請求
項1のフェライト磁性粉の製造方法。
3. A solution containing each element constituting the ferrite magnetic powder and an alkali hydroxide are mixed so that the alkali hydroxide concentration in the mixed solution is 3M or more to form a precipitate. The slurry containing the precipitate is heated to 120-300℃.
After hydrothermal treatment with
Add an aqueous solution containing one or more metal ions selected from Fe2+ and an alkaline aqueous solution, heat-treat the resulting mixed suspension at 50 to 200°C, and then sinter the resulting precipitate at 700 to 950°C. The method for producing ferrite magnetic powder according to claim 1, characterized in that:
【請求項4】  フェライト磁性粉を構成する各元素を
含む溶液と水酸化アルカリとを、混合後の溶液中の水酸
化アルカリ濃度が3M以上となるように混合して沈澱物
を生成させ、熟成した後、Biを含む溶液を添加し、該
沈澱物を含むスラリを120〜300℃で水熱処理した
後、沈澱物を含むスラリを洗浄し、次いで、該スラリに
Co,Ni,Zn,Mg,Mn及びCuから選ばれる一
種以上の金属イオン及びFe2+を含有する水溶液及び
アルカリ水溶液を加え、得られた混合懸濁液を50〜2
00℃で加熱処理した後、得られた沈澱物を700〜9
50℃で焼成することを特徴とする請求項2のフェライ
ト磁性粉の製造方法。
4. A solution containing each element constituting the ferrite magnetic powder and an alkali hydroxide are mixed so that the alkali hydroxide concentration in the mixed solution is 3M or more to form a precipitate, and then aged. After that, a solution containing Bi is added, and the slurry containing the precipitate is hydrothermally treated at 120 to 300°C, the slurry containing the precipitate is washed, and then Co, Ni, Zn, Mg, An aqueous solution and an alkaline aqueous solution containing one or more metal ions selected from Mn and Cu and Fe2+ are added, and the resulting mixed suspension is
After heat treatment at 00°C, the resulting precipitate was heated to 700-9
3. The method for producing ferrite magnetic powder according to claim 2, wherein the ferrite magnetic powder is fired at 50°C.
JP3165269A 1991-06-11 1991-06-11 Ferritic magnetic powder and its production Pending JPH04362020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3165269A JPH04362020A (en) 1991-06-11 1991-06-11 Ferritic magnetic powder and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3165269A JPH04362020A (en) 1991-06-11 1991-06-11 Ferritic magnetic powder and its production

Publications (1)

Publication Number Publication Date
JPH04362020A true JPH04362020A (en) 1992-12-15

Family

ID=15809126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3165269A Pending JPH04362020A (en) 1991-06-11 1991-06-11 Ferritic magnetic powder and its production

Country Status (1)

Country Link
JP (1) JPH04362020A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048823A1 (en) * 2009-10-20 2011-04-28 Dowaエレクトロニクス株式会社 Hexagonal ferrite magnetic powder for magnetic recording, process for production thereof, and magnetic recording media using the powder
JP2011178654A (en) * 2010-01-29 2011-09-15 Dowa Electronics Materials Co Ltd Hexagonal ferrite magnetic powder for magnetic recording, production method therefor, and magnetic recording medium prepared by using the powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285015A (en) * 1991-03-13 1992-10-09 Toshiba Corp Manufacture of hexagonal ferrite for magnetic recording

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285015A (en) * 1991-03-13 1992-10-09 Toshiba Corp Manufacture of hexagonal ferrite for magnetic recording

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048823A1 (en) * 2009-10-20 2011-04-28 Dowaエレクトロニクス株式会社 Hexagonal ferrite magnetic powder for magnetic recording, process for production thereof, and magnetic recording media using the powder
US8801956B2 (en) 2009-10-20 2014-08-12 Dowa Electronics Materials Co., Ltd. Hexagonal crystal ferrite magnetic powder for magnetic recording, method for producing the same, and magnetic recording medium using the powder
JP2011178654A (en) * 2010-01-29 2011-09-15 Dowa Electronics Materials Co Ltd Hexagonal ferrite magnetic powder for magnetic recording, production method therefor, and magnetic recording medium prepared by using the powder

Similar Documents

Publication Publication Date Title
US4529524A (en) Process for producing plate-like barium ferrite particles for magnetic recording
KR960002626B1 (en) Process for producing microcrystalline co/ti-substituted barium ferrite platelets
JPH04362020A (en) Ferritic magnetic powder and its production
JPS63233017A (en) Magnetic powder of barium ferrite and its production
JPH0717385B2 (en) Method for producing composite ferrite magnetic powder
JPH05319831A (en) Ferrite magnetic powder and its production
JPH04362019A (en) Ferritic magnetic powder and its production
JP2958369B2 (en) Method for producing composite ferrite magnetic powder
JP2958370B2 (en) Method for producing composite ferrite magnetic powder
JPH0677034A (en) Method of manufacturing compound ferrite magnetic particles
JPH0669013A (en) Ferrite magnetic particle
JPS63170221A (en) Barium ferrite magnetic powder and its production
JPH05326234A (en) Ferrite magnetic powder and production thereof
JP2946374B2 (en) Method for producing composite ferrite magnetic powder
JPH0432005B2 (en)
JPH04362021A (en) Ferrite magnetic powder and its production
JPH05326235A (en) Magnetic ferrite powder and production thereof
JPS62138330A (en) Production of magnetic powder for magnetic recording
JPS61295236A (en) Production of particular magnet plumbite-type ferrite
JPH05326237A (en) Composite ferrite magnetic powder and production thereof
JPH0661031A (en) Composite ferrite magnetic powder and manufacture thereof
JPH0669018A (en) Manufacture of compound ferrite magnetic powder
JPH02133323A (en) Production of magnetic powder of magnetoplumbite type ferrite
JPH06104576B2 (en) Barium ferrite magnetic powder and method for producing the same
JPH0661030A (en) Composite ferrite magnetic powder and manufacture thereof