JP2677278B2 - Magnetic iron oxide powder for magnetic recording and manufacturing method thereof - Google Patents

Magnetic iron oxide powder for magnetic recording and manufacturing method thereof

Info

Publication number
JP2677278B2
JP2677278B2 JP3224607A JP22460791A JP2677278B2 JP 2677278 B2 JP2677278 B2 JP 2677278B2 JP 3224607 A JP3224607 A JP 3224607A JP 22460791 A JP22460791 A JP 22460791A JP 2677278 B2 JP2677278 B2 JP 2677278B2
Authority
JP
Japan
Prior art keywords
iron oxide
magnetic
cobalt
powder
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3224607A
Other languages
Japanese (ja)
Other versions
JPH0547534A (en
Inventor
祐二 福本
和芳 松本
修一 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP3224607A priority Critical patent/JP2677278B2/en
Publication of JPH0547534A publication Critical patent/JPH0547534A/en
Application granted granted Critical
Publication of JP2677278B2 publication Critical patent/JP2677278B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録用磁性粉末及
びその製造法に関し、より詳細には、高密度記録が可能
なコバルト変成磁性酸化鉄粉の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic powder for magnetic recording and a method for producing the same, and more particularly to a method for producing a cobalt-modified magnetic iron oxide powder capable of high density recording.

【0002】[0002]

【従来の技術】磁気記録用磁性粉としては、形状異方性
により高保磁力を有する磁性酸化鉄粒子(γ酸化鉄粒
子、マグネタイト又は、中間状態にあるベルトライド化
合物などの針状磁性酸化鉄微粉末)が用いられており、
また高密度記録が可能な高保磁力の磁気記録用磁性粉と
してコバルト若しくはコバルトと他の元素で上記磁性酸
化鉄粒子を変成したコバルト変成磁性酸化鉄粒子が用い
られている。
2. Description of the Related Art Magnetic powders for magnetic recording are magnetic iron oxide particles (γ iron oxide particles, magnetite, or acicular magnetic iron oxide fine particles in an intermediate state, which have a high coercive force due to shape anisotropy. Powder) is used,
Further, cobalt-modified magnetic iron oxide particles obtained by modifying the above magnetic iron oxide particles with cobalt or cobalt and another element are used as magnetic powder for magnetic recording with high coercive force capable of high density recording.

【0003】このうち、後者のコバルト変成磁性酸化鉄
粒子の製造方法としては、これまでに種々の方法が提案
されてきているが、その中でも、有用な方法の一つとし
て、アルカリ溶液中に磁性酸化鉄粒子を分散させ、コバ
ルト塩若しくは、コバルト塩と第1鉄塩等の他の成分を
加え、コバルト変成磁性酸化鉄粒子とする方法がある。
Among these, various methods have been proposed so far as a method for producing the latter cobalt-modified magnetic iron oxide particles, and among them, as one of the useful methods, magnetic properties in an alkaline solution have been proposed. There is a method of dispersing iron oxide particles and adding a cobalt salt or other components such as a cobalt salt and a ferrous salt to obtain cobalt modified magnetic iron oxide particles.

【0004】また、Fe2+/Fe3+がモル比0.2以下
となる範囲で、上記コバルト変成雰囲気中で加熱する方
法(特公昭62−17364号)により、単なるコバル
トのみの変成よりも、さらに保磁力を上昇させる方法も
知られている。
Further, by the method (Japanese Patent Publication No. 62-17364) in which the Fe 2+ / Fe 3+ is in a molar ratio of 0.2 or less in the above-mentioned cobalt metamorphic atmosphere, it is more preferable than the simple metamorphism of cobalt alone. A method of further increasing the coercive force is also known.

【0005】[0005]

【発明が解決しようとする課題】しかし乍ら、上記方法
では、Fe2+/Fe3+の量比に制約もあり、磁気記録媒
体としての広範な高性能化及び高保磁力化に対応できな
い。本発明の目的は、上記従来技術の欠点を解消し、磁
性酸化鉄粒子に対し、Fe2+/Fe3+モル比の制約をな
くして、高保磁力を得ると共に、磁気記録媒体としての
広範な高性能化を実現し得る磁気記録用磁性酸化鉄粉を
得る方法を提供することにある。
However, in the above method, the amount ratio of Fe 2+ / Fe 3+ is also limited, so that it cannot be applied to a wide range of high performance and high coercive force as a magnetic recording medium. The object of the present invention is to solve the above-mentioned drawbacks of the prior art, to eliminate the restriction of the Fe 2+ / Fe 3+ molar ratio with respect to magnetic iron oxide particles, to obtain a high coercive force, and to have a wide range as a magnetic recording medium. It is an object of the present invention to provide a method for obtaining magnetic iron oxide powder for magnetic recording, which can realize high performance.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明者らが、研究した結果、コバルト変成酸化鉄
磁性粉末の表面にカルシウム、マグネシウム及びケイ素
化合物を共存させた磁気記録用磁性酸化鉄粉、およびコ
バルト変性酸化鉄磁性粉末の表面をカルシウムイオンと
マグネシウムイオンとケイ素化合物が共存した溶液中で
同時に処理して、コバルトを含有する酸化鉄層の上にカ
ルシウムイオンとマグネシウムイオンとケイ素化合物を
共存含有させることにより、その後乾燥して得られる磁
性酸化鉄粒子の保磁力が、それらイオン単独あるいはそ
の他の元素を含有させた場合よりもさらに高くなり、磁
気記録媒体としての広範な高性能化を実現し得ることを
見い出し、本発明をなすに至ったものである。
[Means for Solving the Problems] To achieve the above object, as a result of research conducted by the present inventors, a magnetic oxide for magnetic recording in which calcium, magnesium and silicon compounds coexist on the surface of cobalt-modified iron oxide magnetic powder. The surfaces of iron powder and cobalt-modified iron oxide magnetic powder are simultaneously treated in a solution in which calcium ions, magnesium ions, and silicon compounds coexist, and calcium ions, magnesium ions, and silicon compounds are formed on the iron oxide layer containing cobalt. The coercive force of the magnetic iron oxide particles obtained by subsequent drying is further increased as compared with the case where the ions alone or other elements are contained, and a wide range of high performance as a magnetic recording medium is achieved. The present invention has been accomplished by finding that the above can be realized.

【0007】以下に本発明をさらに詳細に説明する。本
発明においては、コバルト変成酸化鉄磁性粉末を得るま
での工程は従来と同様であり、まず酸化鉄磁性粉末を得
る。この際γ−Fe23 (Fe2+/Fe3+=0)から
Fe34 (Fe2+/Fe3+=0.5)まで組成を連続
的に変えることができる。
Hereinafter, the present invention will be described in more detail. In the present invention, the steps until obtaining the cobalt-modified iron oxide magnetic powder are the same as in the conventional case, and first, the iron oxide magnetic powder is obtained. At this time, the composition can be continuously changed from γ-Fe 2 O 3 (Fe 2+ / Fe 3+ = 0) to Fe 3 O 4 (Fe 2+ / Fe 3+ = 0.5).

【0008】続いて、周知の方法に従って酸化鉄磁性粉
末をアルカリ性水溶液中においてコバルト変成処理す
る。このコバルト変成処理により得られたコバルト変成
酸化鉄磁性粉末を水に可溶な3種の塩(カルシウムイオ
ンとマグネシウムイオンとケイ素化合物)を同時共存さ
せた溶液中に浸漬し、スラリー化して、3種の塩(カル
シウム、マグネシウム及びケイ素化合物)を同時にコバ
ルト変成処理をした粉末上に被着する。カルシウム、マ
グネシウム及びケイ素化合物の存在量としては、全体に
対して、夫々Ca,Mg,Si換算で0.05〜1.0
重量%の範囲であることが好ましい。これらの含有量が
0.05重量%より少なくなると保磁力を高める効果が
小さくなる。一方、1.0重量%よりも多く含有して
も、それ以上の効果は得られず、却って、添加物は水酸
化物もしくは酸化物として粒子表面に付着し、飽和磁化
の値を低下させたり、更に磁性酸化物をテープ化する際
の分散性を低下させる等の悪影響を与えるので好ましく
ない。
Subsequently, the iron oxide magnetic powder is subjected to cobalt conversion treatment in an alkaline aqueous solution according to a well-known method. The cobalt-modified iron oxide magnetic powder obtained by this cobalt modification treatment is dipped in a solution in which three kinds of water-soluble salts (calcium ion, magnesium ion and silicon compound) coexist, and is slurried to form 3 The seed salts (calcium, magnesium and silicon compounds) are simultaneously deposited on the cobalt-modified powder. The amount of calcium, magnesium and silicon compounds present is 0.05 to 1.0 in terms of Ca, Mg and Si, respectively, based on the total amount.
Preferably it is in the range of weight%. If the content of these is less than 0.05% by weight, the effect of increasing the coercive force becomes small. On the other hand, even if the content is more than 1.0% by weight, no further effect is obtained, and on the contrary, the additive adheres to the particle surface as a hydroxide or an oxide to lower the saturation magnetization value. In addition, the magnetic oxide is not preferable because it has adverse effects such as a decrease in dispersibility when formed into a tape.

【0009】共存態様としては、カルシウムイオンとマ
グネシウムイオンとケイ素化合物を、コバルト変成処理
後得られるアルカリ性スラリー中に添加する態様、ある
いは、洗浄水に共存させる態様のいずれでも良い。コバ
ルト変成処理後得られるスラリーに可溶塩を添加する場
合は、コバルト変成処理後のどの時点に添加しても良
い。コバルト変成処理後得られるアルカリ性スラリー中
に3種の塩を添加し処理した後、スラリーを純水によっ
て洗浄する場合も、コバルト変成処理後のスラリーを3
種の塩を同時共存させた洗浄水で洗浄して処理する場合
のどちらも、Ca,Mg,Siの溶解を防止するために
スラリーのpHが8以上で洗浄を終了することが好まし
い。また、Ca,Mg,Siを上記の量含有させるため
これらカルシウムイオンとマグネシウムイオンとケイ素
化合物の溶液中における添加量は単独元素イオン概算
で、コバルト処理酸化磁性粉に対し、0.1〜2.0重
量%が好ましい。
The coexistence mode may be either a mode in which calcium ions, magnesium ions and a silicon compound are added to the alkaline slurry obtained after the cobalt modification treatment, or a mode in which they are coexistent in the washing water. When the soluble salt is added to the slurry obtained after the cobalt conversion treatment, it may be added at any time after the cobalt conversion treatment. Even when three kinds of salts are added to the alkaline slurry obtained after the cobalt conversion treatment and the slurry is washed with pure water, the slurry after the cobalt conversion treatment is treated with 3 times.
In both cases where the treatment is carried out by washing with the washing water in which the seed salts are coexisted at the same time, it is preferable to finish the washing when the pH of the slurry is 8 or more in order to prevent dissolution of Ca, Mg and Si. Further, since Ca, Mg, and Si are contained in the above amounts, the addition amount of these calcium ion, magnesium ion, and silicon compound in the solution is a rough estimate of a single element ion. 0% by weight is preferred.

【0010】ここで、共存させるカルシウムイオンとマ
グネシウムイオンとしては、塩化物、硫酸塩、硝酸塩な
ど水に可溶な如何なる化合物でも良い。また、ケイ素化
合物としては、オルトケイ酸、メタケイ酸、オルトケイ
酸ナトリウム、メタケイ酸ナトリウム、メタケイ酸カリ
ウム、メタケイ酸カルシウム、オルトケイ酸カルシウ
ム、メタケイ酸バリウム、オルトケイ酸カルシウム、メ
タケイ酸バリウム、オルトケイ酸コバルトなどのケイ酸
塩、一酸化ケイ素、二酸化ケイ素、コロイダルシリカ、
水ガラスなどが挙げられる。
Here, as the calcium ion and the magnesium ion to be coexisted, any compounds soluble in water such as chloride, sulfate and nitrate may be used. Further, as the silicon compound, orthosilicic acid, metasilicic acid, sodium orthosilicate, sodium metasilicate, potassium metasilicate, calcium metasilicate, orthosilicate calcium, barium metasilicate, calcium orthosilicate, barium metasilicate, cobalt orthosilicate, etc. Silicate, silicon monoxide, silicon dioxide, colloidal silica,
Water glass etc. are mentioned.

【0011】[0011]

【作用】本発明におけるカルシウムイオンとマグネシウ
ムイオンとケイ素化合物の同時添加の作用は、必ずしも
明らかではないが、カルシウムイオンとマグネシウムイ
オンとケイ素化合物の共存による表面磁気異方性のため
と考えられる。
The effect of simultaneous addition of calcium ion, magnesium ion and silicon compound in the present invention is not clear, but it is considered to be due to surface magnetic anisotropy due to coexistence of calcium ion, magnesium ion and silicon compound.

【0012】本発明者の元素分析の結果によれば、上記
添加元素3種が共存した場合にのみ、コバルト変成磁性
粒子の保磁力が最大となる。また、テープ化した場合、
磁性化合物の組成、量などについて広い範囲について高
性能化を実現できる。
According to the results of the elemental analysis conducted by the present inventor, the coercive force of the cobalt metamorphic magnetic particles becomes maximum only when the above-mentioned three additional elements coexist. Also, when taped,
It is possible to achieve high performance in a wide range of the composition and amount of the magnetic compound.

【0013】[0013]

【実施例】以下に本発明の実施例を示す。 実施例1 常法により製造したγ酸化鉄粉末(保磁力:350O
e,飽和磁化:74emu/g )400gを2.4リット
ルの2.5N苛性ソーダ水溶液に加え、充分に分散させ
た後、この分散液の温度を100℃まで昇温して塩化コ
バルト溶液を加え、7時間反応させ、その後、塩化第1
鉄溶液を添加して1時間反応させて、γ酸化鉄粒子表面
にCo(2)及びFe(2)を被着させた。被着量は、
γ酸化鉄に対してコバルト原子として2.5重量%、鉄
原子として5.0重量%である。コバルト変成処理終了
後、アルカリ性スラリーに、γ酸化鉄に対しカルシウ
ム、マグネシウム、ケイ素として各々0.5重量%を同
時に含む水溶液を50ml添加した。ここでカルシウム
は塩化カルシウムとして、マグネシウムは塩化マグネシ
ウムとして、珪素化合物はメタケイ酸ソーダとして、ス
ラリー中に添加した。スラリーを純水で希釈し、デカン
テーション後、この上澄みを捨て、更に同様な操作を繰
り返し、スラリーのpH値が9.0以下になるまで水洗
した。次いでこれを濾過し、60℃で12時間乾燥て磁
性酸化鉄粉を得た。
Examples of the present invention will be described below. Example 1 γ-iron oxide powder manufactured by a conventional method (coercive force: 350 O
e, saturation magnetization: 74 emu / g) 400 g was added to 2.4 liters of 2.5N caustic soda aqueous solution and sufficiently dispersed, then the temperature of this dispersion was raised to 100 ° C. and a cobalt chloride solution was added, Allow to react for 7 hours, then chloride first
An iron solution was added and reacted for 1 hour to deposit Co (2) and Fe (2) on the surfaces of the γ iron oxide particles. Deposition amount is
Cobalt atoms are 2.5% by weight and iron atoms are 5.0% by weight with respect to γ-iron oxide. After the completion of the cobalt conversion treatment, 50 ml of an aqueous solution containing 0.5% by weight each of calcium, magnesium and silicon with respect to γ-iron oxide was added to the alkaline slurry. Here, calcium was added to the slurry as calcium chloride, magnesium as magnesium chloride, and the silicon compound as sodium metasilicate. The slurry was diluted with pure water, decanted, the supernatant was discarded, and the same operation was repeated, and the slurry was washed with water until the pH value was 9.0 or less. Then, this was filtered and dried at 60 ° C. for 12 hours to obtain a magnetic iron oxide powder.

【0014】実施例2 実施例1において、γ酸化鉄粉末に代えてマグネタイト
粉末を用い、実施例1の場合と同様にして、磁性酸化鉄
粉を得た。
Example 2 A magnetic iron oxide powder was obtained in the same manner as in Example 1 except that magnetite powder was used in place of γ iron oxide powder in Example 1.

【0015】実施例3 実施例1において、γ酸化鉄粉末に代えて、ベルトライ
ド磁性酸化鉄粉末(Fe2+/Fe3+=0.2)を用い、
実施例1の場合と同様にして磁性酸化鉄粉を得た。
Example 3 Bertride magnetic iron oxide powder (Fe 2+ / Fe 3+ = 0.2) was used in place of the γ iron oxide powder in Example 1,
Magnetic iron oxide powder was obtained in the same manner as in Example 1.

【0016】実施例4 実施例1において塩化第一鉄の添加を省略してγ酸化鉄
にCo(2)が付着した酸化鉄粒子を得、その後実施例
1と同様に処理して磁性酸化鉄粉を得た。
Example 4 Iron oxide particles in which Co (2) was attached to γ-iron oxide were obtained by omitting the addition of ferrous chloride in Example 1, and then treated in the same manner as in Example 1 to obtain magnetic iron oxide. Got the powder.

【0017】比較例1 実施例1において、カルシウムとして0.5重量%のみ
を含む水溶液を用いて、実施例1の場合と同様にして、
磁性酸化鉄粉を得た。
Comparative Example 1 In the same manner as in Example 1, except that an aqueous solution containing only 0.5% by weight of calcium was used in Example 1,
A magnetic iron oxide powder was obtained.

【0018】比較例2 実施例1において、マグネシウムとして0.5重量%の
みを含む水溶液を用いて、実施例1の場合と同様にし
て、磁性酸化鉄粉を得た。
Comparative Example 2 A magnetic iron oxide powder was obtained in the same manner as in Example 1, except that an aqueous solution containing only 0.5% by weight of magnesium was used in Example 1.

【0019】比較例3 実施例1において、ケイ素として、0.5重量%のみを
含む水溶液を用いて、実施例1の場合と同様にして、磁
性酸化鉄粉を得た。
Comparative Example 3 A magnetic iron oxide powder was obtained in the same manner as in Example 1 except that an aqueous solution containing only 0.5% by weight of silicon was used in Example 1.

【0020】比較例4 実施例1において、カルシウムとケイ素を各々0.5重
量%を含む水溶液を用いて、実施例1の場合と同様にし
て、磁性酸化鉄粉を得た。
Comparative Example 4 A magnetic iron oxide powder was obtained in the same manner as in Example 1, except that an aqueous solution containing 0.5% by weight of each of calcium and silicon was used.

【0021】比較例5 実施例1において、マグネシウムとケイ素を各々0.5
重量%を含む水溶液を用いて実施例1の場合と同様にし
て、磁性酸化鉄粉を得た。
Comparative Example 5 In Example 1, magnesium and silicon were added to 0.5
Magnetic iron oxide powder was obtained in the same manner as in Example 1 using an aqueous solution containing wt%.

【0022】比較例6 実施例1において、カルシウムとマグネシウムを各々
0.5重量%を含む水溶液を用いて、実施例1の場合と
同様にして磁性酸化鉄粉を得た。
Comparative Example 6 A magnetic iron oxide powder was obtained in the same manner as in Example 1 except that an aqueous solution containing 0.5% by weight of each of calcium and magnesium was used.

【0023】比較例7〜12 比較例1〜6における添加物量を、比較例7〜12では
2.0重量%に代えて、実施例1の場合と同様にして、
磁性酸化鉄粉を得た。
Comparative Examples 7 to 12 The amounts of additives in Comparative Examples 1 to 6 were changed to 2.0% by weight in Comparative Examples 7 to 12 in the same manner as in Example 1,
A magnetic iron oxide powder was obtained.

【0024】比較例13、14 比較例1、2において、γ酸化鉄粉末に代えて、マグネ
タイト及びベルトライド(Fe2+/Fe3+=0.2)と
した。
Comparative Examples 13 and 14 In Comparative Examples 1 and 2, magnetite and bertride (Fe 2+ / Fe 3+ = 0.2) were used instead of the γ iron oxide powder.

【0025】比較例15 実施例1において、無添加の、純水溶液を用いて、実施
例1の場合と同様にして磁性酸化鉄粉を得た。
Comparative Example 15 A magnetic iron oxide powder was obtained in the same manner as in Example 1, except that the pure aqueous solution containing no additive was used.

【0026】比較例16 実施例1において、カルシウム(CaCl2 )の代わり
にストロンチウム(SrCl2 )を用いて、実施例1の
場合と同様にして磁性酸化鉄粉を得た。
Comparative Example 16 A magnetic iron oxide powder was obtained in the same manner as in Example 1 except that strontium (SrCl 2 ) was used in place of calcium (CaCl 2 ) in Example 1.

【0027】以上の各実施例及び比較例のそれぞれにお
いて得られた磁性酸化鉄粉について、洗浄乾燥直後の磁
気特性及びテープ磁気特性を調べた。その結果を表1〜
5に示した。
With respect to the magnetic iron oxide powder obtained in each of the above Examples and Comparative Examples, the magnetic characteristics and the tape magnetic characteristics immediately after washing and drying were examined. Table 1 shows the results.
5 shows.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【表4】 [Table 4]

【0032】[0032]

【表5】 [Table 5]

【0033】表1〜5より明らかなとおり、実施例のカ
ルシウムイオンとマグネシウムイオンとケイ素化合物の
3種を同時共存させた場合が、保磁力が最大となり、テ
ープ磁気特性も向上することがわかる。
As is clear from Tables 1 to 5, it is found that the coercive force is maximized and the magnetic properties of the tape are improved when the calcium ion, the magnesium ion and the silicon compound of the Examples are coexistent.

【0034】[0034]

【発明の効果】以上、詳述したように、本発明によれ
ば、酸化鉄磁性粉末の表面にコバルトを含む酸化鉄層を
形成してなるコバルト含有酸化鉄粉をカルシウムイオン
とマグネシウムイオンとケイ素化合物を同時共存処理す
る場合のみ、高い保磁力を有し、かつ、テープ磁気特性
の優れた磁気記録用磁性酸化鉄粉を得ることが可能とな
る。
As described above in detail, according to the present invention, the cobalt-containing iron oxide powder obtained by forming the iron oxide layer containing cobalt on the surface of the iron oxide magnetic powder is used as calcium ion, magnesium ion and silicon. Only when the compounds are subjected to simultaneous coexistence treatment, it is possible to obtain a magnetic iron oxide powder for magnetic recording having a high coercive force and excellent tape magnetic characteristics.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−176229(JP,A) 特開 平4−30504(JP,A) 特開 平1−219025(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-1-176229 (JP, A) JP-A-4-30504 (JP, A) JP-A-1-219025 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 コバルト変成酸化鉄磁性粉末の表面にカ
ルシウム、マグネシウム及びケイ素化合物を、Ca,M
g,Si換算で0.05〜1.0重量%、共存させたこ
とを特徴とする磁気記録用磁性酸化鉄粉。
1. A calcium-, magnesium-, and silicon-containing compound Ca, M on the surface of the cobalt-modified iron oxide magnetic powder.
A magnetic iron oxide powder for magnetic recording, characterized in that 0.05 to 1.0% by weight in terms of g and Si coexist.
【請求項2】 コバルト変成酸化鉄磁性粉末に対して
0.01〜2.0重量%のカルシウムとマグネシウムイ
オンとケイ素化合物が共存した溶液中と前記コバルト変
成酸化鉄磁性粉末を接触させることによって、コバルト
変成酸化鉄磁性粉末の表面にカルシウムイオンとマグネ
シウムイオンとケイ素化合物を、Ca,Mg,Si換算
0.05〜1.0重量%、共存させ、その後前記コバ
ルト変成酸化鉄磁性粉末を乾燥することを特徴とする磁
気記録用磁性酸化鉄粉末の製造法。
2. For cobalt-modified iron oxide magnetic powder
0.01-2.0% by weight of calcium and magnesium
In the solution in which Co-on and silicon compound coexist,
By bringing the formed iron oxide magnetic powder into contact, calcium ions, magnesium ions, and a silicon compound coexist on the surface of the cobalt-modified iron oxide magnetic powder in an amount of 0.05 to 1.0% by weight in terms of Ca, Mg, and Si. Thereafter, the cobalt-modified iron oxide magnetic powder is dried to produce a magnetic iron oxide powder for magnetic recording.
JP3224607A 1991-08-10 1991-08-10 Magnetic iron oxide powder for magnetic recording and manufacturing method thereof Expired - Lifetime JP2677278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3224607A JP2677278B2 (en) 1991-08-10 1991-08-10 Magnetic iron oxide powder for magnetic recording and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3224607A JP2677278B2 (en) 1991-08-10 1991-08-10 Magnetic iron oxide powder for magnetic recording and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0547534A JPH0547534A (en) 1993-02-26
JP2677278B2 true JP2677278B2 (en) 1997-11-17

Family

ID=16816381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3224607A Expired - Lifetime JP2677278B2 (en) 1991-08-10 1991-08-10 Magnetic iron oxide powder for magnetic recording and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2677278B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150675A (en) 2004-11-26 2006-06-15 Fujitsu Ltd Mold assembly

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755830B2 (en) * 1987-12-29 1995-06-14 戸田工業株式会社 Magnetic particle powder and method for producing the same
JP2906075B2 (en) * 1990-05-28 1999-06-14 戸田工業株式会社 Manufacturing method of magnetic particle powder for magnetic recording

Also Published As

Publication number Publication date
JPH0547534A (en) 1993-02-26

Similar Documents

Publication Publication Date Title
US4309459A (en) Process for producing SiO2 coated iron oxide powder for use in the preparation of acicular magnetic iron or iron oxide powder
JPH0722224A (en) Ferromagnetic metal powder
JP2677278B2 (en) Magnetic iron oxide powder for magnetic recording and manufacturing method thereof
JPH059922B2 (en)
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JPH0121089B2 (en)
EP0371384B1 (en) Process for producing magnetic iron oxide particles for magnetic recording
JP3129823B2 (en) Method for producing ferromagnetic iron oxide powder for magnetic recording
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
JP2700828B2 (en) Method for producing α-iron oxyhydroxide
JP2933397B2 (en) Method for producing ferromagnetic iron oxide powder for magnetic recording
JPS59155106A (en) Manufacture of magnetic metal powder
JP3011221B2 (en) Method for producing acicular goethite particle powder
JP2678480B2 (en) Metal magnetic powder
JPS63140005A (en) Production of fine ferromagnetic metal particle powder
JP4336786B2 (en) Method for producing ferromagnetic metal powder
JP3253768B2 (en) Method for producing cobalt-containing magnetic iron oxide having hemimorphite coating
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JP2958369B2 (en) Method for producing composite ferrite magnetic powder
JPH0348243B2 (en)
JP3141907B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JPH01184801A (en) Manufacture of magnetic iron oxide powder for magnetic recording
JPH07223822A (en) Acicular alpha-ferric oxide and production thereof
JPH05214413A (en) Production of magnetic powder for high-density recording medium
JPS6244842B2 (en)