JPH059922B2 - - Google Patents

Info

Publication number
JPH059922B2
JPH059922B2 JP57133369A JP13336982A JPH059922B2 JP H059922 B2 JPH059922 B2 JP H059922B2 JP 57133369 A JP57133369 A JP 57133369A JP 13336982 A JP13336982 A JP 13336982A JP H059922 B2 JPH059922 B2 JP H059922B2
Authority
JP
Japan
Prior art keywords
magnetic
cobalt
iron oxide
powder
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57133369A
Other languages
Japanese (ja)
Other versions
JPS5923505A (en
Inventor
Kazuo Nakada
Seigo Maruo
Kyoshi Asano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP57133369A priority Critical patent/JPS5923505A/en
Publication of JPS5923505A publication Critical patent/JPS5923505A/en
Publication of JPH059922B2 publication Critical patent/JPH059922B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/712Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the surface treatment or coating of magnetic particles

Landscapes

  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は磁気記録媒体に係わり、詳しくは磁性
粉末の改良に関する。 磁気テープなどの磁気記録媒体は、通常ポリエ
ステルフイルムなどの基体上に、磁性粉末を結合
剤中に分散させた磁性塗料を塗布したものであ
る。この磁気記録媒体の製造に使用される磁性粉
末としては、γ−Fe2O3などの針状磁性酸化鉄ま
たは前記針状磁性酸化鉄にコバルト化合物を含有
させた微粉末が多く使用されている。特に前記コ
バルト含有磁性酸化鉄は、保磁力が高く、しかも
高周波域での感度が優れたものであり、近年磁気
記録媒体の高密度化にともなつてその利用が増大
している。しかして磁気記録媒体の製造において
これらの磁性粉末は、結合剤媒体との濡れが十分
でなかつたり、粒子相互で磁気凝集を起したりし
て結合剤樹脂中に均一に分散されにくく、磁気記
録媒体の磁気特性の低下が生じ易い。ことに近時
普及しつつあるポリウレタン樹脂を主成分とする
結合剤を使用する場合には、前記の傾向が著しく
その解決が一層望まれている。 本発明は、前記問題点を解決し得る磁性粉末を
含有する磁気記録媒体を提供せんとするものであ
つて、すなわち本発明は、磁性酸化鉄粉末の表面
にシリカ−アルミナ共沈殿物被着層を有する磁性
粉末を結合剤樹脂中に分散させた磁性層を基体上
に設けてなる磁気記録媒体である。 本発明において、使用する磁性酸化鉄粉末とし
ては、γ−Fe2O3、Fe3O4、ベルトライド化合物
(FeOx1.33<x<1.5)などの針状酸化鉄、また
は前記針状酸化鉄の粒子表面にコバルトまたは、
コバルトとその他の金属化合物とを被着させた
り、あるいは該酸化鉄の粒子内にコバルトまた
は、コバルトとその他の金属化合物とをドープさ
せたりしたものなどがある。 本発明において、磁性酸化鉄粉末の表面に被着
させるシリカ−アルミナ共沈殿物とは、アルミニ
ウムシリケートの含水物、あるいはアルミニウム
とケイ素の複合水和酸化物をいうものである。そ
れらは磁性酸化鉄粉末の表面に連続した被膜状で
被着されているものであつても、あるいは一部ま
たは全部が不連続な被膜状で被着されているもの
であつてもよい。なお、前記シリカ−アルミナ共
沈殿物のAl2O3:SiO2のモル比は種々の範囲のも
のであつてよいが、特に前記モル比が1:2〜
1:4の範囲のものであるのが望ましい。 前記シリカ−アルミナ共沈殿物の被着量は、磁
性酸化鉄粉末の重量基準に対して、SiO2として
0.05〜10%望ましくは0.1〜2%、かつAl2O3とし
て0.03〜9%望ましくは0.05〜1.7%である。被着
量が前記範囲より少なきにすぎると、所望の分散
性効果が得られず、角形比、配向性などの改善が
十分にもたらされなかつたりする。また被着量が
多きにすぎると前記特性の改善がかえつて期待で
きにくかつたり、さらには保磁力、飽和磁化量、
飽和磁束密度などの磁気特性が損なわれたりして
望ましくない。 本発明の磁気記録媒体は、シリカ−アルミナ共
沈殿物被着層を有する磁性粉末が結合剤樹脂中へ
良好に分散したものであり、角形比、配向性、電
磁変換特性などの磁気特性において優れたもので
ある。特にコバルト含有酸化鉄磁性粉末のように
結合剤樹脂中での均一分散が難しいような磁性粉
末を用いる場合にあつては、本発明のシリカ−ア
ルミナ共沈殿物の被着処理を行なうことによつ
て、後記実施例1〜3の記載からも明らかなとお
り、角形比、配向性、反転磁界分布などの磁気特
性が顕著に改善された磁気記録媒体を得ることが
できる。 本発明において、磁性粉末の製造に使用される
前記コバルト含有酸化鉄磁性粉末は、コバルトま
たはコバルトとその他の金属化合物を、γ−
Fe2O3などの針状磁性酸化鉄の基体粒子の表面に
被着させたり、あるいは該酸化鉄粒子内にドープ
させたりしたものである。前記その他金属化合物
としては、例えば第一鉄、マンガン、亜鉛、クロ
ム、ニツケルなどが挙げられるが、第一鉄化合物
をコバルト化合物に併せ被着する場合は一層有利
である。前記コバルトまたはコバルトおよびその
他の金属化合物を被着させる場合は、基体酸化鉄
粒子の全Fe量の重量基準に対し、コバルト単独
の場合は、通常Coとして0.5〜10%、また例えば
コバルト化合物と第一鉄化合物を組み合せて被着
する場合は、前者をCoとして0.5〜10%、後者を
Fe2+として1〜20%とするのが適当である。ま
た、コバルト化合物をドープさせる場合は、ゲー
サイトなどの針状水和酸化鉄の生成時にコバルト
化合物と共沈させたり、前記コバルト化合物の被
着処理物を約200℃以上で熱処理を施したりする
ことによつて行なうことができる。ドープ量とし
ては、酸化鉄粒子の全Fe量の重量基準に対して
Coとして0.5〜10%程度が適当である。 本発明において、磁性酸化鉄粉末の表面にシリ
カ−アルミナ共沈殿物を被着させるには種々の方
法によつて行なうことができる。例えば、磁性酸
化鉄粉末の水性スラリーを形成し、このスラリー
にケイ素とアルミニウムの水溶性化合物を並行に
添加したり、または任意の順序で添加したり、あ
るいは予め両者の水溶性化合物を混合して微細な
共沈殿物としたものを添加したりして行なうこと
ができる。 このスラリーはその後中和し、必要に応じ熟成
する。この場合の処理時の温度は、通常沸点以
下、望ましくは30〜70℃である。なお、処理時の
雰囲気は非酸化性あるいは酸化性を問わないが、
非酸化性雰囲気であるのがより望ましい。 前記ケイ素の水溶性化合物としては、例えばオ
ルトケイ酸やメタケイ酸のナトリウム、カリウ
ム、コバルトなどの塩類を、また前記アルミニウ
ムの水溶性化合物としては、例えばアルミン酸ナ
トリウムまたはカリウム、硫酸アルミニウム、塩
化アルミニウムなどをそれぞれ使用することがで
きる。 なお、本発明において、針状磁性酸化鉄にコバ
ルトまたはコバルトおよびその他の金属化合物を
被着したコバルト含有磁性酸化鉄粉末に対してシ
リカ−アルミナ共沈殿物を被着処理する場合に
は、その被着処理の前または(および)後で熱処
理を行なうことによつて本発明の効果を一層望ま
しいものとすることができる場合がある。この熱
処理は種々の方法によつて行なうことができる。
例えば、コバルトまたはコバルトおよびその他金
属化合物を被着したスラリーを瀘過、洗浄して得
られた湿ケーキを60〜250℃で水蒸気の存在下で
加熱処理した後、シリカ−アルミナ共沈殿物を被
着処理したり、あるいは、コバルトまたはコバル
トおよびその他の金属化合物の被着物に、シリカ
−アルミナ共沈殿物を被着し、得られた湿ケーキ
を同様に加熱処理したりすることができる。以下
に実施例及び比較例を挙げて本発明を更に説明す
る。 実施例 1 針状γ−Fe2O3〔保磁力(Hc);405Oe、比表面
績;31m2/g、軸比(L/W);10/1〕100gを
1モル/のNaOH水溶液中に分散させて100
g/のスラリーとし液中にN2ガスを吹き込み
ながら1モル/の硫酸コバルト水溶液59mlと1
モル/の硫酸第一鉄水溶液125mlとを加え、室
温(30℃)で5時間撹拌した。次いでこのスラリ
ーを瀘過、水洗し得られたコバルト含有磁性酸化
鉄の湿ケーキ230gを水に分散させて100g/の
スラリーとし、N2ガスを吹き込みながら、この
スラリーを45℃に加熱し、撹拌下にアルミン酸ナ
トリウム水溶液(Al2O3/Na2Oモル比0.75、
Al2O3として50g/)3.6mlを添加し、引き続い
てオルトケイ酸ナトリウム水溶液(SiO2/Na2O
モル比0.5、SiO2として50g/)を6.4ml添加し
た(酸化鉄の重量基準に対して、SiO2として0.32
%かつAl2O3として0.18%)。次いでスラリーに希
薄硫酸を添加してPH7.5にまで中和し引き続いて
30分間撹拌して熟成した。 このようにしてシリカ−アルミナ共沈殿物を被
着処理したスラリーは瀘過洗浄し、得られた湿ケ
ーキを別容器に入れた水と共にオートクレーブ中
に入れて、N2置換、密閉した後130℃で6時間水
蒸気の存在下で加熱処理した。次いで60℃で8時
間乾燥して本発明の磁性粉末(A)を得た。 実施例 2 実施例1において、オルトケイ酸ナトリウム水
溶液とアルミン酸ナトリウム水溶液の添加量を酸
化鉄の重量基準に対して、前者をSiO2として0.64
%、後者をAl2O3として0.36%になるように変え
たこと以外は実施例1の場合と同様に処理して、
本発明の磁性粉末(B)を得た。 実施例 3 実施例1において、コバルト含有酸化鉄の湿ケ
ーキに対して、水蒸気加熱処理を行なつた後に、
シリカ−アルミナ共沈殿物の被着を行なつたこと
以外は実施例1の場合と同様に処理して、本発明
の磁性粉末(C)を得た。 実施例 4 実施例1において使用する磁性酸化鉄粉末とし
て、保磁力(Hc);341、比表面積;31m2/gお
よび軸比(L/W);10:1であるγ−Fe2O3
末を使用したこと以外は、実施例1の場合と同様
に処理し、本発明の磁性粉末(D)を得た。 比較例 1 実施例1において、オルトケイ酸ナトリウム水
溶液及びアルミン酸ナトリウム水溶液の添加を行
なわないこと以外は実施例1の場合と同様に処理
して、磁性粉末(E)を得た。 比較例 2 実施例1において、オルトケイ酸ナトリウム水
溶液の添加を行なわないこと以外は実施例1の場
合と同様に処理して、磁性粉末(F)を得た。 比較例 3 実施例1において、アルミン酸ナトリウム水溶
液の添加を行なわないこと以外は実施例1の場合
と同様に処理して、磁性粉末(G)を得た。 比較例 4 実施例4において、オルトケイ酸ナトリウム水
溶液及びアルミン酸ナトリウム水溶液の添加を行
なわないこと以外は実施例4の場合と同様に処理
して、磁性粉末(H)を得た。 前記実施例1〜4及び比較例1〜4で得られた
磁性粉末(A)〜(H)について、通常の方法で保磁力
(Hc)、飽和磁化量(δs)を測定したのち下記の
配合割合に従つて磁性塗料を調製し、この塗料を
通常の方法によりポリエステルフイルム上に塗布
し、配向した後乾燥して約6μの磁性塗膜を有す
る磁気テープを作成した。 磁性粉 24重量部 ポリウレタン樹脂 5 〃 塩ビ−酢ビ共重合体 1.2 〃 分散剤 0.5 〃 混合溶剤 トルエン/MEK 69.3 〃 得られたそれぞれの磁気テープについて通常の
方法により保磁力(Hc)、角形比(Br/Bm)、
配向性(OR)、反転磁界分布(SFD)を測定し
た結果を第1表に示す。なお、角形比、配向性お
よび反転磁界分布は分散性の指標となり、前二者
は高い値を示すほど、また後者は低い値を示すほ
ど分散性が良好である。
The present invention relates to magnetic recording media, and more particularly to improvements in magnetic powder. Magnetic recording media such as magnetic tapes are usually made by coating a substrate such as a polyester film with a magnetic paint in which magnetic powder is dispersed in a binder. As the magnetic powder used to manufacture this magnetic recording medium, acicular magnetic iron oxide such as γ-Fe 2 O 3 or fine powder of the acicular magnetic iron oxide containing a cobalt compound is often used. . In particular, the cobalt-containing magnetic iron oxide has a high coercive force and excellent sensitivity in a high frequency range, and its use has increased in recent years as the density of magnetic recording media has increased. However, in the manufacture of magnetic recording media, these magnetic powders do not wet enough with the binder medium or cause magnetic aggregation between particles, making it difficult to disperse them uniformly in the binder resin. Deterioration of the magnetic properties of the medium is likely to occur. In particular, when using a binder whose main component is polyurethane resin, which has recently become popular, the above-mentioned tendency is remarkable, and a solution to the problem is even more desired. The present invention aims to provide a magnetic recording medium containing a magnetic powder capable of solving the above-described problems. A magnetic recording medium is provided with a magnetic layer on a substrate, in which magnetic powder having the following properties is dispersed in a binder resin. In the present invention, the magnetic iron oxide powder used includes acicular iron oxides such as γ-Fe 2 O 3 , Fe 3 O 4 , and bertolide compounds (FeOx1.33<x<1.5), or the above-mentioned acicular iron oxides. Cobalt or
Examples include those in which cobalt and other metal compounds are deposited, or the iron oxide particles are doped with cobalt or cobalt and other metal compounds. In the present invention, the silica-alumina coprecipitate deposited on the surface of magnetic iron oxide powder refers to a hydrated aluminum silicate or a composite hydrated oxide of aluminum and silicon. They may be applied in the form of a continuous film on the surface of the magnetic iron oxide powder, or they may be applied in part or in whole in the form of a discontinuous film. Note that the molar ratio of Al 2 O 3 :SiO 2 in the silica-alumina co-precipitate may be in various ranges, but especially when the molar ratio is 1:2 to 1:2.
A ratio of 1:4 is desirable. The amount of the silica-alumina co-precipitate deposited is calculated as SiO 2 based on the weight of the magnetic iron oxide powder.
The content is 0.05 to 10%, preferably 0.1 to 2%, and 0.03 to 9 %, preferably 0.05 to 1.7% as Al2O3 . If the amount of the coating is less than the above range, the desired dispersibility effect may not be obtained, and improvements in squareness ratio, orientation, etc. may not be sufficiently achieved. In addition, if the amount of deposition is too large, it may be difficult to expect improvement in the above characteristics, and furthermore, coercive force, saturation magnetization,
This is undesirable because magnetic properties such as saturation magnetic flux density may be impaired. The magnetic recording medium of the present invention is one in which magnetic powder having a silica-alumina coprecipitate layer is well dispersed in a binder resin, and has excellent magnetic properties such as squareness ratio, orientation, and electromagnetic conversion properties. It is something that In particular, when using magnetic powders such as cobalt-containing iron oxide magnetic powders that are difficult to uniformly disperse in a binder resin, the silica-alumina co-precipitate coating treatment of the present invention can be used. As is clear from the description of Examples 1 to 3 below, it is possible to obtain a magnetic recording medium in which magnetic properties such as squareness ratio, orientation, and reversal magnetic field distribution are significantly improved. In the present invention, the cobalt-containing iron oxide magnetic powder used in the production of magnetic powder contains cobalt or cobalt and other metal compounds in γ-
It is applied to the surface of acicular magnetic iron oxide base particles such as Fe 2 O 3 or doped into the iron oxide particles. Examples of the other metal compounds include ferrous, manganese, zinc, chromium, and nickel, but it is more advantageous to deposit a ferrous compound together with a cobalt compound. When depositing the above-mentioned cobalt or cobalt and other metal compounds, when cobalt alone is used, it is usually 0.5 to 10% as Co, based on the weight of the total Fe amount of the base iron oxide particles, and for example, when cobalt is used alone, it is usually 0.5 to 10% as Co. When depositing monoferrous compounds in combination, the former is 0.5 to 10% Co and the latter is 0.5 to 10% Co.
An appropriate content of Fe 2+ is 1 to 20%. In addition, when doping with a cobalt compound, co-precipitation with the cobalt compound is performed during the generation of acicular hydrated iron oxide such as goethite, or heat treatment is performed on the cobalt compound-adhered product at a temperature of about 200°C or higher. This can be done by The doping amount is based on the weight of the total amount of Fe in the iron oxide particles.
Approximately 0.5 to 10% of Co is appropriate. In the present invention, various methods can be used to deposit the silica-alumina coprecipitate on the surface of the magnetic iron oxide powder. For example, an aqueous slurry of magnetic iron oxide powder may be formed, and to this slurry water-soluble compounds of silicon and aluminum may be added in parallel or in any order, or both water-soluble compounds may be mixed in advance. This can be done by adding a fine coprecipitate. This slurry is then neutralized and aged if necessary. The temperature during treatment in this case is usually below the boiling point, preferably 30 to 70°C. Note that the atmosphere during treatment does not matter whether it is non-oxidizing or oxidizing;
A non-oxidizing atmosphere is more desirable. The water-soluble compounds of silicon include, for example, salts of orthosilicic acid and metasilicic acid such as sodium, potassium, and cobalt, and the water-soluble compounds of aluminum include, for example, sodium or potassium aluminate, aluminum sulfate, and aluminum chloride. Each can be used. In the present invention, when applying a silica-alumina coprecipitate to a cobalt-containing magnetic iron oxide powder obtained by coating cobalt or cobalt and other metal compounds on acicular magnetic iron oxide, the coating The effects of the present invention may be made more desirable by performing heat treatment before and/or after the deposition treatment. This heat treatment can be performed by various methods.
For example, a wet cake obtained by filtering and washing a slurry coated with cobalt or cobalt and other metal compounds is heat-treated at 60 to 250°C in the presence of steam, and then coated with a silica-alumina co-precipitate. Alternatively, a silica-alumina co-precipitate can be deposited on a deposit of cobalt or cobalt and other metal compounds, and the resulting wet cake can be similarly heat-treated. The present invention will be further explained below by giving Examples and Comparative Examples. Example 1 100 g of acicular γ-Fe 2 O 3 [coercive force (Hc): 405 Oe, specific surface performance: 31 m 2 /g, axial ratio (L/W): 10/1] in 1 mol/NaOH aqueous solution 100
While blowing N2 gas into the slurry, add 59 ml of a 1 mol/g cobalt sulfate aqueous solution and 1
125 ml of an aqueous solution of ferrous sulfate (mole/mole) was added thereto, and the mixture was stirred at room temperature (30°C) for 5 hours. Next, this slurry was filtered and washed with water, and 230 g of the resulting cobalt-containing magnetic iron oxide wet cake was dispersed in water to make a 100 g slurry. While blowing N 2 gas, this slurry was heated to 45°C and stirred. Below is a sodium aluminate aqueous solution (Al 2 O 3 /Na 2 O molar ratio 0.75,
3.6 ml of 50 g/as Al 2 O 3 was added, followed by an aqueous sodium orthosilicate solution (SiO 2 /Na 2 O
6.4 ml of molar ratio 0.5, 50 g/SiO 2 ) was added (0.32 g/SiO 2 based on the weight of iron oxide).
% and 0.18% as Al2O3 ). Next, dilute sulfuric acid was added to the slurry to neutralize it to pH 7.5, and then
Aged by stirring for 30 minutes. The slurry coated with the silica-alumina coprecipitate in this way was filtered and washed, and the resulting wet cake was placed in an autoclave with water in a separate container, replaced with N2 , sealed, and then heated at 130°C. The mixture was heat-treated in the presence of steam for 6 hours. The powder was then dried at 60°C for 8 hours to obtain the magnetic powder (A) of the present invention. Example 2 In Example 1, the added amounts of the sodium orthosilicate aqueous solution and the sodium aluminate aqueous solution were 0.64 with the former being SiO 2 based on the weight of iron oxide.
%, except that the latter was changed to 0.36% as Al 2 O 3 ,
Magnetic powder (B) of the present invention was obtained. Example 3 In Example 1, after the wet cake of cobalt-containing iron oxide was subjected to steam heat treatment,
A magnetic powder (C) of the present invention was obtained in the same manner as in Example 1 except that a silica-alumina co-precipitate was deposited. Example 4 The magnetic iron oxide powder used in Example 1 was γ-Fe 2 O 3 having a coercive force (Hc) of 341, a specific surface area of 31 m 2 /g, and an axial ratio (L/W) of 10:1. The magnetic powder (D) of the present invention was obtained in the same manner as in Example 1 except that the powder was used. Comparative Example 1 A magnetic powder (E) was obtained in the same manner as in Example 1 except that the sodium orthosilicate aqueous solution and the sodium aluminate aqueous solution were not added. Comparative Example 2 Magnetic powder (F) was obtained in the same manner as in Example 1 except that the aqueous sodium orthosilicate solution was not added. Comparative Example 3 Magnetic powder (G) was obtained in the same manner as in Example 1 except that the aqueous sodium aluminate solution was not added. Comparative Example 4 Magnetic powder (H) was obtained in the same manner as in Example 4 except that the sodium orthosilicate aqueous solution and the sodium aluminate aqueous solution were not added. The coercive force (Hc) and saturation magnetization (δs) of the magnetic powders (A) to (H) obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were measured in the usual manner, and the following formulations were prepared. A magnetic paint was prepared according to the proportions, and this paint was applied onto a polyester film by a conventional method, oriented, and then dried to produce a magnetic tape having a magnetic coating film of about 6 μm. Magnetic powder 24 parts by weight Polyurethane resin 5 PVC-vinyl acetate copolymer 1.2 Dispersant 0.5 Mixed solvent Toluene/MEK 69.3 Coercive force (Hc) and squareness ratio ( Br/Bm),
Table 1 shows the results of measuring orientation (OR) and switching field distribution (SFD). Note that the squareness ratio, orientation, and reversal magnetic field distribution are indicators of dispersibility, and the higher the value of the former two, and the lower the value of the latter, the better the dispersibility.

【表】 第1表の結果から明らかなように、本発明の磁
気記録媒体は、それぞれの比較例に対して、いづ
れも角形比、配向性、反転磁界分布などの磁気特
性が顕著に改善されたものであることがわかる。
また、実施例3のように、コバルト含有磁性酸化
鉄にシリカ−アルミナ共沈殿物を被着処理する際
に、それに先立つてコバルト含有磁性酸化鉄に熱
処理を行なうことによつて、角形比、配向性、反
転磁界分布のみならず保磁力の改善も図り得るこ
とがわかる。
[Table] As is clear from the results in Table 1, the magnetic recording medium of the present invention has significantly improved magnetic properties such as squareness ratio, orientation, and reversal magnetic field distribution compared to each comparative example. It can be seen that it is something that
In addition, as in Example 3, when applying the silica-alumina co-precipitate to the cobalt-containing magnetic iron oxide, the squareness ratio and orientation can be improved by heat-treating the cobalt-containing magnetic iron oxide prior to that. It can be seen that it is possible to improve not only the magnetic properties and switching field distribution but also the coercive force.

Claims (1)

【特許請求の範囲】[Claims] 1 磁性酸化鉄粉末の表面にシリカ−アルミナ共
沈殿物被着層を有する磁性粉末を結合剤樹脂中に
分散させた磁性層を基体上に設けてなる磁気記録
媒体。
1. A magnetic recording medium provided on a substrate with a magnetic layer in which magnetic powder having a silica-alumina coprecipitate layer on the surface of magnetic iron oxide powder is dispersed in a binder resin.
JP57133369A 1982-07-30 1982-07-30 Magnetic powder Granted JPS5923505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57133369A JPS5923505A (en) 1982-07-30 1982-07-30 Magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57133369A JPS5923505A (en) 1982-07-30 1982-07-30 Magnetic powder

Publications (2)

Publication Number Publication Date
JPS5923505A JPS5923505A (en) 1984-02-07
JPH059922B2 true JPH059922B2 (en) 1993-02-08

Family

ID=15103111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57133369A Granted JPS5923505A (en) 1982-07-30 1982-07-30 Magnetic powder

Country Status (1)

Country Link
JP (1) JPS5923505A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755828B2 (en) * 1987-08-28 1995-06-14 戸田工業株式会社 Magnetic particle powder and method for producing the same
JPH0676218B2 (en) * 1988-02-10 1994-09-28 石原産業株式会社 Method for producing cobalt-containing ferromagnetic iron oxide
JPH0755831B2 (en) * 1988-05-25 1995-06-14 戸田工業株式会社 Magnetic particle powder and method for producing the same
JPH0755832B2 (en) * 1988-09-19 1995-06-14 石原産業株式会社 Method for producing cobalt-containing ferromagnetic iron oxide powder
JP2684232B2 (en) * 1990-08-13 1997-12-03 富士写真フイルム株式会社 Silver halide photographic material
JP2670901B2 (en) * 1990-11-27 1997-10-29 富士写真フイルム株式会社 Magnetic materials with improved transparency
JP3398404B2 (en) * 1992-11-11 2003-04-21 戸田工業株式会社 Manufacturing method of magnetic particle powder for magnetic recording
JP3476291B2 (en) 1995-11-22 2003-12-10 富士写真フイルム株式会社 Foil stamping method and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137696A (en) * 1978-04-12 1979-10-25 Bayer Ag Iron oxide grain for recording magnetism and its preparation
JPS5729523A (en) * 1980-07-26 1982-02-17 Sumitomo Metal Ind Ltd Preventing method for pickup in hearth roll type heat treatment furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137696A (en) * 1978-04-12 1979-10-25 Bayer Ag Iron oxide grain for recording magnetism and its preparation
JPS5729523A (en) * 1980-07-26 1982-02-17 Sumitomo Metal Ind Ltd Preventing method for pickup in hearth roll type heat treatment furnace

Also Published As

Publication number Publication date
JPS5923505A (en) 1984-02-07

Similar Documents

Publication Publication Date Title
EP0346123B1 (en) Plate-like composite ferrite particles for magnetic recording and process for producing the same
JP2784794B2 (en) Magnetic iron oxide particle powder
JPH059922B2 (en)
JPS6242337B2 (en)
JP3640577B2 (en) Precursor for magnetic powder production and ferromagnetic metal powder obtained therefrom
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JPH0420241B2 (en)
JPS6122604A (en) Magnetic metal powder and manufacture thereof
JPH0755832B2 (en) Method for producing cobalt-containing ferromagnetic iron oxide powder
JP2946375B2 (en) Method for producing composite ferrite magnetic powder
JP2933397B2 (en) Method for producing ferromagnetic iron oxide powder for magnetic recording
JPS6118323B2 (en)
JPH05214413A (en) Production of magnetic powder for high-density recording medium
JP2958370B2 (en) Method for producing composite ferrite magnetic powder
JP2946374B2 (en) Method for producing composite ferrite magnetic powder
JP2970699B2 (en) Method for producing acicular magnetic iron oxide particles
JPS63140005A (en) Production of fine ferromagnetic metal particle powder
JP2678480B2 (en) Metal magnetic powder
JPS5853681B2 (en) Metal magnetic powder and its processing method
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JPH0425687B2 (en)
JPH0257321B2 (en)
JP2958369B2 (en) Method for producing composite ferrite magnetic powder
JPH0230625A (en) Cobalt-containing ferromagnetic iron oxide powder and production thereof
JPH0684625A (en) Production of magnetic metal powder