JPH0257321B2 - - Google Patents

Info

Publication number
JPH0257321B2
JPH0257321B2 JP59232427A JP23242784A JPH0257321B2 JP H0257321 B2 JPH0257321 B2 JP H0257321B2 JP 59232427 A JP59232427 A JP 59232427A JP 23242784 A JP23242784 A JP 23242784A JP H0257321 B2 JPH0257321 B2 JP H0257321B2
Authority
JP
Japan
Prior art keywords
cobalt
iron oxide
salt
iron
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59232427A
Other languages
Japanese (ja)
Other versions
JPS61111508A (en
Inventor
Narifumi Kuroyama
Kenichi Okazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP59232427A priority Critical patent/JPS61111508A/en
Publication of JPS61111508A publication Critical patent/JPS61111508A/en
Publication of JPH0257321B2 publication Critical patent/JPH0257321B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は磁気記録を目的に使用されるγ−酸化
鉄磁性粉末の製造法に関し、さらに詳しくはコバ
ルト及び二価鉄で表面処理をしたγ−酸化鉄粉末
の製造法に関するものである。 [従来技術] 従来、高密度磁気記録媒体としては針状二酸化
クロム、コバルト含有針状磁性酸化鉄が広く使用
されている。しかし針状二酸化クロムを用いたテ
ープは従来の酸化鉄系を用いたテープに比較して
ヘツドの摩耗が多く、くり返し使用に対する特性
の劣化を招く欠点を有している。また製造コス
ト、公害などにも問題がある。一方コバルト含有
針状磁性酸化鉄には大きく分けて以下の二つのタ
イプがある。すなわちコバルトを粒子内に均一に
分散させたいわゆるコバルトドープ磁性酸化鉄と
コバルトを磁性酸化鉄粒子表面にのみ沈着せしめ
たタイプとである。コバルトをドープしたタイプ
とコバルトを粒子表面にのみ沈着させたタイプと
では同一コバルト含有率では一般的に粒子の保磁
力はコバルトをドープしたタイプの方が高くな
る。しかしながらコバルトをドープしたタイプで
はテープにしたときの減磁特性や経時変化に問題
があり、また転写特性も悪くなる欠点を有してい
る。コバルトを粒子表面にのみ沈着させたタイプ
ではこれら欠点が改善され優れた磁性粒子を得る
ことができる。コバルトをγ−酸化鉄粒子の表面
にのみ沈着させた粒子では沈着コバルト量を増加
さす程粒子の保磁力はほぼ直線的に増加する。テ
ープにしたときの転写特性もコバルトの添加によ
りもとのγ−酸化鉄よりも2〜8dB良くなる。し
かしコバルト量をあまり多くすると磁気特性の経
時変化、加圧および温度に対する安定性が悪くな
る欠点がある。また製造コストの面からもコバル
ト量は少なくした方が望ましい。 また粉末磁性材料としては高保磁力のみならず
高飽和磁化、より低い電気抵抗をもつ材料が求め
られている。またVHS型VTR用テープではテー
プを黒くする必要があり、テープにしたときの黒
化度の高い磁性材料が求められ磁性材料を出来る
だけ黒くする必要がある。磁気テープ特にVTR
用テープは高速走行のため摩擦による帯電を起
し、そのために走行が不円滑になつたり、埃が付
着するためにドロツプアウトなどのトラブルを起
す。また放電ノイズの発生によるS/N比低下も
起る。これら静電気の発生によるトラブルは磁気
テープに導電性を持たせることにより解決でき
る。 粉末磁性材料に高飽和磁化、低電気抵抗をもた
せるのには粒子表面に二価鉄を加えることが有効
である。しかし二価鉄を添加するとテープの転写
効果は悪くなるという欠点がある。 磁性粉末の保磁力、飽和磁気特性を改良する方
法として酸化鉄粉末にコバルトを沈着させる際バ
リウム、ストロンチウムの塩水溶液を存在させて
行なう方法(特開昭57−198607)が提案されてお
り、またこの際さらに第1鉄塩水溶液を添加する
方法(特開昭57−181102)も提案されている。 これらの方法はいずれも酸化鉄粒子の分散液中
にコバルト塩水溶液、バリウム塩等の水溶液を加
え、さらに後者の場合第1鉄塩水溶液を加えた
後、最後にアルカリを加えて加熱反応させてコバ
ルト等による変成を行なうものである。 しかし、これらの方法では反応速度は速く、例
えば反応温度100℃で3〜4時間で反応は終了す
るが、最終的に得られたものの保磁力が本発明の
ものより低く、しかも磁性粉末の保磁力分布が広
い欠点を有している。その理由はコバルトがγ−
酸化鉄粒子表面に均一に沈着し難く、そのために
所要の保磁力を得るために本発明よりも多量のコ
バルトを必要とし、しかもコバルト沈着が均一で
ないために保磁力分布が広い欠点を有している。 [発明の目的] 本発明の目的は磁性酸化鉄粉末において、保磁
力、導電性、飽和磁気特性、転写特性にすぐれ、
かつ保磁力分布が狭い磁性酸化鉄粉末の製造法を
提供するにある。 [発明の構成] 本発明はγ−酸化鉄粒子のアルカリ水溶液中に
分散し、カルシウム塩、ストロンチウム塩、バリ
ウム塩の少なくとも1種とコバルト塩を添加し、
γ−酸化鉄のコバルト変成を行ない、次いで二価
鉄塩(第1鉄塩)を添加してさらに二価鉄変成を
行ない、その後別、乾燥することを特徴とす
る。 以下本発明を詳しく説明する。 本発明においてはアルカリ溶液中に分散したγ
−酸化鉄粒子を先ずアルカリ土類金属塩の存在下
でコバルト変成を行ない、次にこれに二価鉄塩を
添加して二価鉄による変成を行なう。この一連の
工程が本発明の要点であつて、これによつてγ−
酸化鉄磁性粉末は導電性、飽和磁気特性等がよく
なるばかりでなく、驚くべきことに保磁力が高ま
ることを発見した。アルカリ土類金属塩を添加し
ないで、コバルト変成、次いで二価鉄変成を行な
うと保磁力が低下し、本発明と全く逆の効果とな
る。これらの様子を図1に示す。 また変成反応工程において、アルカリ水溶液を
最後に加え、コバルトと二価鉄を同時に沈着(変
成)することは従来例に述べた通り、保磁力分布
が広くなるなどの欠点がある。 図1は6Nの苛性ソーダ水溶液にγ−酸化鉄粒
子(100g/)を分散し、図1に示す夫々のア
ルカリ土類金属の塩化物を金属の量で添加後の溶
液中0.5重量%、塩化コバルトをコバルトの量で
3.0重量%になるように添加し、100℃で処理して
コバルトの沈着(変成)を行ない、そのときの反
応時間と保磁力の関係を調べ、さらに5時間反応
させたものについて塩化第1鉄を鉄分として5重
量%になるように添加し、100℃、1時間加熱し
て二価鉄変成(沈着)を行ない、得られた粉末の
保磁力を測定した結果を示すものである。図では
白丸印がアルカリ土類金属塩を添加した場合、黒
丸印が無添加の場合で比較のため示したものであ
る。これらにおいてコバルト変成のための反応時
間が5時間(図の矢印)経過したところで塩化第
1鉄を添加し、加熱反応させて二価鉄による変成
を行なつた。この最後に得られたものについては
コバルト沈着量(変成量)は酸化鉄に対し約3
%、二価鉄の沈着量は酸化鉄に対し、約5%であ
つた。なお、この発明ではこのように表現した場
合、酸化鉄100部に対するコバルトの部数、酸化
鉄100部に対する二価鉄の部数を表わし、その割
合は特に断らない限り重量基準で示す。以下につ
いても同様である。 図からわかるように保磁力はアルカリ土類金属
塩の添加でわずかに上るが、その後に塩化第1鉄
を添加すると、その効果はアルカリ土類金属塩の
有無によつて全く逆の結果となる。即ちアルカリ
土類金属塩が存在しない場合は保磁力が低下する
のに反し、それが存在すると保磁力が急激に増加
することがわかる。 これによつて所望の保磁力を得るためのコバル
トの量をさらに少なくすることが可能である。 さらに本発明の方法によれば実施例に示すよう
に保磁力分布の非常に狭い磁性粉末が得られるこ
とも大きな特徴である。 本発明において上記のようなアルカリ土類金属
塩と二価鉄塩との添加効果についてはまだ十分解
明されていないが、アルカリ土類金属が触媒とし
て働き、γ−酸化鉄粒子表面にコバルトが均一に
沈着し、さらにその表面に二価鉄によりマグネタ
イト又はコバルトフエライト層が均一に形成され
るため保磁力が高まると考えられ、あるいはフエ
ライト磁石で知られるマグネトプランバイト構造
に類以した結晶配列層が形成されることも推定で
きる。また各粒子のコバルト及び二価鉄の沈着が
均一となるため保持力分布が狭くなると考えられ
る。 転写効果については一般に二価鉄の添加は転写
特性を悪くするが、本発明では、アルカリ土類金
属の添加によるコバルト沈着効果による転写改善
の方が優つているので、最終的な転写特性は改善
された値が得られる。 本発明においてアルカリ水溶液中に分散するγ
−酸化鉄粒子は通常使用されている粒子径0.2〜
0.8μm程度で、その分散量は80〜150g/が適
当である。 アルカリ濃度としてはOH基濃度で1〜8モ
ル/が適当である。アルカリ濃度は高い程反応
速度が早くなるが、アルカリのコストが上昇する
と同時に反応生成物を洗滌するのに多量の水、時
間を要する不利を伴なう。これらのことから好ま
しくはOH濃度で2〜8モル/である。 アルカリとしては苛性カリ、苛性ソーダ、水酸
化リチウムなどが使用できるが、工業的には苛性
ソーダが製造コスト上有利である。 本発明で使用されるカルシウム塩、ストロンチ
ウム塩、バリウム塩については水溶性の塩はすべ
て使用可能である。即ち、塩化物、臭化物、ヨウ
化物、酢酸塩、ギ酸塩、硝酸塩などが利用できる
が、製造コスト上等から工業的には塩化物が有利
である。その添加量はγ−酸化鉄に対し、アルカ
リ土類の金属分で0.01〜3%が適当である。 0.01%未満では効果が十分でなく、また3%を
越えると磁化に寄与しない成分量が増えるので好
ましくない。 次にコバルト塩については塩化コバルト、硝酸
コバルト、硫酸コバルトなど通常酸化鉄粒子のコ
バルト変成に用いられるものと同様のものを使用
することができる。そして本発明においてはコバ
ルトの変成量(沈着量)はかなり低くすることが
でき、例えばγ−酸化鉄に対し、0.1%でも効果
がある。その上限は10%程度が好ましい。上記塩
化コバルト等の添加量はコバルトの変成量がこれ
らの範囲に入るように定める。添加量は殆んどそ
のまま変成量となる。 アルカリ土類金属塩とコバルト塩は固体あるい
はその水溶液で添加される。これらの添加順序は
特に制限はない。 上記混合溶液は加熱撹拌して反応させる。その
温度は50゜〜沸点までが適当である。温度が高い
程反応速度が早いが、沸点以上にするためには反
応系を加圧する必要があり、工業的には不利であ
る。沸点は溶液中に溶解している塩の濃度によつ
て異なるが、上記した濃度範囲においては沸点は
ほぼ104℃が上限となる。従つて、加熱温度は50
〜104℃の範囲で選ぶのが適当である。 加熱による反応は撹拌して行なうのが望まし
く、そのために反応系の雰囲気は酸化性だと二価
鉄やコバルトが酸化されるので、非酸化性とする
ことが好ましい。反応時間は4時間以上が適当で
好ましくは4〜8時間である。 上記の処理により、コバルト塩は水酸化コバル
トとなつて、γ−酸化鉄の粒子表面に沈着する。
このようにしてγ−酸化鉄粒子のコバルト変成が
行なわれる。この際アルカリ土類金属塩は大部分
粒子表面に沈着する。 コバルト変成が終了したならば次にその液に二
価鉄塩を添加する。二価鉄塩としては硫酸第1
鉄、塩化第1鉄などが用いられる。この第1鉄塩
添加溶液を前記コバルト変成と同様の温度、時
間、雰囲気下で処理して二価鉄による変成を行な
う。二価鉄の変成量はγ−酸化鉄に対して金属鉄
として0.1〜10%が適当である。従つて二価鉄塩
の添加量はその変成量がこの範囲に入るように定
める。通常添加量はそのまま変成量となる。 このようにしてコバルト及び二価鉄により変成
したγ−酸化鉄粒子の沈澱物を溶液から別し、
水洗をくり返し、最後にこれを乾燥して製品とす
る。製品中にはアルカリ土類金属は残存しても本
発明の範囲内では磁気特性には害はない。 [本発明の効果] 本発明によれば導電性、飽和磁気特性、転写特
性にすぐれ、保磁力の高い酸化鉄磁性粉末が得ら
れる。しかも、通常は二価鉄の変成では保磁力は
高まらないのに対し、本発明方法によれば著しく
これを高めることが可能となつた。そのためにコ
バルト変成量を少なくすることができ、従つてコ
バルト増加による安定性の問題等の欠点が解消さ
れる。 以下実施例により本発明を具体的に説明する。 実施例 1 6Nのカセイソーダ水溶液4中にγ−酸化鉄
(長軸の平均0.4μ、長軸/短軸=8/1、保磁力
HC=390エルステツド、飽和磁化(σS
73.4emu/g)400gを分散し、窒素気流中で加
熱撹拌しながらCaCl2・6H2O11g(γ−酸化鉄
に対しCaとして0.5%)を100mlの蒸留水に溶解し
た水溶液を加え、加熱撹拌を続ける。反応液が80
℃になつたところでC0SO4・7H2O57.2g(γ−
酸化鉄に対しC0として3%)を300mlの蒸留水に
溶解した水溶液を加え、反応温度を100℃に上げ
5時間撹拌を続ける。5時間後さらにFeSO4
7H2O97.5g(γ−酸化鉄に対しFeとして5%)
を500mlの蒸留水に溶解した水溶液を加え、100℃
でさらに1時間反応を行なつた。反応終了後
別、水洗を十分行ない、100℃で乾燥した。得ら
れた磁性粉末の特性を表1に示す。 表中HCは保磁力、σSは磁化の強さである。転
写特性は下記のバインダー組成でサンドミルを使
用して磁性塗料を作り、過し20μのポリエチレ
ンテレフタレートフイルム上に乾燥厚10μとなる
ように塗布し、2500ガウスの磁場で配向し乾燥さ
せたフイルムを1/4インチにスリツトしてJIS C
−5542の測定法で測定した。 バインダー組成 磁性粉 100部 塩化ビニル酢酸ビニル共重合体(VAGH)
25部 ロジン 3部 シリコーン油 1部 レシチン 0.2部 トルエン 150部 MIBK 150部 保磁力分布はΔB/Bmで表わす。ここでΔBは
磁気履歴曲線の1500O¨eにおける磁化上昇曲線上
における磁束密度の値と磁化下降曲線上における
磁束密度の値の差であり、Bmは飽和磁束密度で
ある。 転写特性はその数値が大きい程よく、また
ΔB/Bmはその数値が小さい程分布が狭く優れ
ていることを示す。 実施例 2 実施例1の塩化カルシウムのかわりにSrCl2
6H2O6.1g(γ−酸化鉄に対し、Srとして0.5%)
を100mlの蒸留水に溶解した水溶液を加えるほか
は全く実施例1と同様の反応を行なつた。得られ
たγ−酸化鉄粉末の磁気特性を表1に示す。 実施例 3 実施例1の塩化カルシウムのかわりにBaCl2
2H2O3.56g(γ−酸化鉄に対しBaとして0.5%)
を使用した。他は実施例1と全く同じである。得
られたγ−酸化鉄粉末は磁性特性を表1に示す。 比較例 1 塩化カルシウムを使用しない以外は全く実施例
1と同様に反応を行なつた。得られた結果の特性
を表1に示す。 比較例 2 硫酸コバルト(CoSO4・7H2O)57.2gと硫酸
第一鉄(FeSO4・7H2O)97.5g(γ−酸化鉄に
対し、Co、Feとして夫々3%、5%)を蒸留水
3に溶解し、その溶液に実施例1に使用したの
と同じγ−酸化鉄400gを加え加熱撹拌を続ける。
反応液が80℃になつたところでカセイソーダ960
gを蒸留水1に溶解した水溶液を加える。希釈
熱で反応液は100℃に上昇した。反応液を100℃に
保ちながら4時間撹拌を続けた。反応終了後
別、水洗を十分行ない100℃で乾燥した。得られ
たγ−酸化鉄磁性粉末の特性を表1に示す。 比較例 3 比較例2において塩化ストロンチウム6.1g
(γ−酸化鉄に対し0.5%)をカセイソーダと共に
加えた外は同様にしてγ−酸化鉄磁性粉末を得
た。その特性を表1に示す。
[Industrial Application Field] The present invention relates to a method for producing γ-iron oxide magnetic powder used for magnetic recording purposes, and more specifically, a method for producing γ-iron oxide powder surface-treated with cobalt and divalent iron. It is related to. [Prior Art] Conventionally, acicular chromium dioxide and cobalt-containing acicular magnetic iron oxide have been widely used as high-density magnetic recording media. However, tapes using acicular chromium dioxide have the disadvantage that the head wears out more than conventional tapes using iron oxide, resulting in deterioration of characteristics with repeated use. There are also problems with manufacturing costs and pollution. On the other hand, cobalt-containing acicular magnetic iron oxides can be roughly divided into the following two types. Specifically, there are two types: a so-called cobalt-doped magnetic iron oxide type in which cobalt is uniformly dispersed within the particles, and a type in which cobalt is deposited only on the surface of the magnetic iron oxide particles. In general, the cobalt-doped type and the cobalt-doped type have a higher particle coercivity when the cobalt content is the same, and the cobalt-doped type has a higher particle coercive force than the cobalt-doped type. However, the cobalt-doped type has problems with demagnetization characteristics and changes over time when made into a tape, and also has the drawback of poor transfer characteristics. In the type in which cobalt is deposited only on the particle surface, these drawbacks are improved and excellent magnetic particles can be obtained. In the case of particles in which cobalt is deposited only on the surface of the γ-iron oxide particles, the coercive force of the particles increases almost linearly as the amount of deposited cobalt increases. The addition of cobalt also improves the transfer characteristics when made into tape by 2 to 8 dB compared to the original γ-iron oxide. However, if the amount of cobalt is too large, there are disadvantages in that the magnetic properties change over time and stability against pressure and temperature deteriorates. Also, from the viewpoint of manufacturing costs, it is desirable to reduce the amount of cobalt. Furthermore, as a powder magnetic material, there is a demand for a material that has not only high coercive force but also high saturation magnetization and lower electrical resistance. In addition, VHS-type VTR tapes must be made black, and a magnetic material that has a high degree of blackening when made into a tape is required, and it is necessary to make the magnetic material as black as possible. Magnetic tape especially VTR
As tapes run at high speeds, they become charged due to friction, which makes them run unsmoothly and causes problems such as dropouts due to the accumulation of dust. Furthermore, the S/N ratio also decreases due to the generation of discharge noise. These problems caused by the generation of static electricity can be solved by making the magnetic tape conductive. Adding divalent iron to the particle surface is effective in giving powdered magnetic materials high saturation magnetization and low electrical resistance. However, the addition of divalent iron has the disadvantage that the transfer effect of the tape deteriorates. As a method for improving the coercive force and saturation magnetic properties of magnetic powder, a method has been proposed in which cobalt is deposited on iron oxide powder in the presence of an aqueous salt solution of barium or strontium (Japanese Patent Laid-Open No. 198607, 1982). At this time, a method of further adding an aqueous ferrous salt solution (Japanese Patent Application Laid-Open No. 181102/1983) has also been proposed. In both of these methods, an aqueous solution of cobalt salt, barium salt, etc. is added to a dispersion of iron oxide particles, and in the latter case, an aqueous ferrous salt solution is added, and finally an alkali is added and a heating reaction is carried out. It undergoes metamorphosis using cobalt, etc. However, in these methods, the reaction rate is fast, for example, the reaction is completed in 3 to 4 hours at a reaction temperature of 100°C, but the coercive force of the final product is lower than that of the present invention, and moreover, the coercive force of the magnetic powder is lower than that of the present invention. The drawback is that the magnetic force distribution is wide. The reason is that cobalt is γ−
It is difficult to deposit uniformly on the surface of iron oxide particles, so a larger amount of cobalt is required than in the present invention to obtain the required coercive force, and furthermore, cobalt is not uniformly deposited, resulting in a wide distribution of cobalt. There is. [Object of the invention] The object of the present invention is to provide a magnetic iron oxide powder that has excellent coercive force, conductivity, saturation magnetic properties, and transfer properties,
Another object of the present invention is to provide a method for producing magnetic iron oxide powder having a narrow coercive force distribution. [Structure of the Invention] The present invention comprises dispersing γ-iron oxide particles in an alkaline aqueous solution, adding at least one of a calcium salt, a strontium salt, and a barium salt and a cobalt salt,
It is characterized by carrying out cobalt modification of γ-iron oxide, then adding divalent iron salt (ferrous salt) to further carry out divalent iron modification, and then separating and drying. The present invention will be explained in detail below. In the present invention, γ is dispersed in an alkaline solution.
- Iron oxide particles are first subjected to cobalt modification in the presence of an alkaline earth metal salt, and then a divalent iron salt is added thereto to perform modification with divalent iron. This series of steps is the key point of the present invention, and through this, γ-
It has been surprisingly discovered that iron oxide magnetic powder not only has improved conductivity and saturation magnetic properties, but also has an increased coercive force. If cobalt metamorphosis and then divalent iron metamorphosis are performed without adding an alkaline earth metal salt, the coercive force will decrease, which will have an effect completely opposite to that of the present invention. These conditions are shown in Figure 1. Furthermore, in the metamorphism reaction step, adding an alkaline aqueous solution at the end to simultaneously deposit (transform) cobalt and divalent iron has drawbacks such as a wide distribution of coercive force, as described in the conventional example. Figure 1 shows that γ-iron oxide particles (100g/) are dispersed in a 6N aqueous solution of caustic soda, and the chloride of each alkaline earth metal shown in Figure 1 is added to the solution in amounts of 0.5% by weight and cobalt chloride. in the amount of cobalt
Ferrous chloride was added at a concentration of 3.0% by weight and treated at 100°C to deposit (transform) cobalt.The relationship between the reaction time and coercive force at that time was investigated, and after a further 5 hours of reaction, ferrous chloride The graph shows the results of measuring the coercive force of the powder obtained by adding 5% by weight of iron and heating at 100° C. for 1 hour to transform (deposit) divalent iron. In the figure, white circles indicate the case where an alkaline earth metal salt is added, and black circles indicate the case where no addition is made, for comparison. When the reaction time for cobalt modification had elapsed for 5 hours (arrow in the figure), ferrous chloride was added, and a heating reaction was carried out to perform modification with divalent iron. For this last one, the cobalt deposition amount (transformed amount) is about 3% compared to iron oxide.
%, and the amount of divalent iron deposited was approximately 5% relative to iron oxide. In this invention, when expressed in this way, the number of parts of cobalt per 100 parts of iron oxide and the number of parts of divalent iron per 100 parts of iron oxide are expressed, and the ratios are expressed on a weight basis unless otherwise specified. The same applies to the following. As can be seen from the figure, the coercive force increases slightly with the addition of alkaline earth metal salts, but when ferrous chloride is subsequently added, the effect is completely opposite depending on the presence or absence of alkaline earth metal salts. . That is, it can be seen that in the absence of alkaline earth metal salt, the coercive force decreases, whereas in the presence of alkaline earth metal salt, the coercive force increases rapidly. This makes it possible to further reduce the amount of cobalt required to obtain the desired coercive force. Another major feature of the method of the present invention is that magnetic powder with a very narrow coercive force distribution can be obtained as shown in the Examples. In the present invention, the effects of adding alkaline earth metal salts and divalent iron salts as described above have not yet been fully elucidated, but the alkaline earth metals act as catalysts, and cobalt is uniformly distributed on the surface of the γ-iron oxide particles. It is thought that the coercive force increases because a magnetite or cobalt ferrite layer is uniformly formed on the surface by divalent iron, or a crystal alignment layer similar to the magnetoplumbite structure known from ferrite magnets is formed. It is also possible to assume that it is formed. Furthermore, it is thought that cobalt and divalent iron are deposited uniformly on each particle, so that the coercive force distribution becomes narrower. Regarding the transfer effect, the addition of divalent iron generally worsens the transfer characteristics, but in the present invention, the transfer improvement due to the cobalt deposition effect by the addition of alkaline earth metal is superior, so the final transfer characteristics are improved. The value is obtained. In the present invention, γ dispersed in an alkaline aqueous solution
-Iron oxide particles are usually used in particle sizes of 0.2~
The diameter is about 0.8 μm, and the appropriate amount of dispersion is 80 to 150 g/. A suitable alkali concentration is 1 to 8 mol/OH group concentration. The higher the alkali concentration, the faster the reaction rate, but this has the disadvantage of increasing the cost of the alkali and requiring a large amount of water and time to wash the reaction product. For these reasons, the OH concentration is preferably 2 to 8 mol/. As the alkali, caustic potash, caustic soda, lithium hydroxide, etc. can be used, but caustic soda is industrially advantageous in terms of manufacturing cost. Regarding the calcium salt, strontium salt, and barium salt used in the present invention, all water-soluble salts can be used. That is, chloride, bromide, iodide, acetate, formate, nitrate, etc. can be used, but chloride is industrially advantageous from the viewpoint of manufacturing cost. The appropriate amount of addition is 0.01 to 3% of alkaline earth metal based on γ-iron oxide. If it is less than 0.01%, the effect will not be sufficient, and if it exceeds 3%, the amount of components that do not contribute to magnetization will increase, which is not preferable. Next, as for the cobalt salt, the same salts as those normally used for cobalt modification of iron oxide particles, such as cobalt chloride, cobalt nitrate, and cobalt sulfate, can be used. In the present invention, the amount of cobalt metamorphosed (deposited) can be made considerably low; for example, even 0.1% is effective for γ-iron oxide. The upper limit is preferably about 10%. The amount of cobalt chloride, etc. added is determined so that the amount of cobalt transformation falls within these ranges. The amount added remains almost the same as the metamorphic amount. The alkaline earth metal salt and cobalt salt are added as solids or their aqueous solutions. There is no particular restriction on the order of addition of these. The above mixed solution is heated and stirred to react. The appropriate temperature is 50° to the boiling point. The higher the temperature, the faster the reaction rate, but it is necessary to pressurize the reaction system to raise the temperature above the boiling point, which is industrially disadvantageous. The boiling point varies depending on the concentration of salt dissolved in the solution, but within the above concentration range, the upper limit of the boiling point is approximately 104°C. Therefore, the heating temperature is 50
It is appropriate to choose a temperature within the range of ~104°C. The reaction by heating is preferably carried out with stirring; therefore, if the atmosphere in the reaction system is oxidizing, divalent iron and cobalt will be oxidized, so it is preferably non-oxidizing. The reaction time is suitably 4 hours or more, preferably 4 to 8 hours. Through the above treatment, the cobalt salt turns into cobalt hydroxide and is deposited on the surface of the γ-iron oxide particles.
In this way, cobalt transformation of the γ-iron oxide particles is carried out. At this time, most of the alkaline earth metal salts are deposited on the particle surfaces. Once the cobalt transformation has been completed, divalent iron salt is then added to the solution. As a divalent iron salt, sulfuric acid is the first
Iron, ferrous chloride, etc. are used. This ferrous salt-added solution is treated at the same temperature, time, and atmosphere as the above-mentioned cobalt modification to perform modification with divalent iron. The suitable metamorphic amount of divalent iron is 0.1 to 10% as metallic iron relative to γ-iron oxide. Therefore, the amount of divalent iron salt added is determined so that the amount of metamorphosis falls within this range. The normal addition amount becomes the metamorphic amount. In this way, the precipitate of γ-iron oxide particles modified by cobalt and divalent iron is separated from the solution,
The product is washed repeatedly and finally dried. Even if alkaline earth metals remain in the product, there is no harm to the magnetic properties within the scope of the present invention. [Effects of the Present Invention] According to the present invention, iron oxide magnetic powder having excellent conductivity, saturation magnetic properties, transfer properties, and high coercive force can be obtained. Moreover, while the coercive force is not normally increased by metamorphosis of divalent iron, the method of the present invention makes it possible to significantly increase the coercive force. Therefore, the amount of cobalt metamorphosis can be reduced, and drawbacks such as stability problems due to an increase in cobalt are therefore eliminated. The present invention will be specifically explained below using Examples. Example 1 γ-iron oxide (long axis average 0.4μ, long axis/short axis = 8/1, coercive force) in 6N caustic soda aqueous solution 4
HC = 390 oersted, saturation magnetization (σ S =
73.4emu/g) was dispersed, and while heating and stirring in a nitrogen stream, an aqueous solution of 11g of CaCl 2 6H 2 O (0.5% as Ca relative to γ-iron oxide) dissolved in 100ml of distilled water was added, and the mixture was heated and stirred. Continue. Reaction solution is 80
When the temperature reaches ℃, 57.2 g of C 0 SO 4・7H 2 O (γ-
Add an aqueous solution of 300 ml of distilled water containing 3% C 0 based on iron oxide, raise the reaction temperature to 100°C, and continue stirring for 5 hours. After 5 hours, FeSO4
7H 2 O97.5g (5% as Fe based on γ-iron oxide)
Add an aqueous solution of 500ml of distilled water and heat to 100℃.
The reaction was continued for an additional hour. After the reaction was completed, it was thoroughly washed with water and dried at 100°C. Table 1 shows the properties of the obtained magnetic powder. In the table, HC is coercive force and σ S is magnetization strength. The transfer characteristics were determined by making a magnetic paint using a sand mill with the following binder composition, applying it to a dry thickness of 10μ on a 20μ polyethylene terephthalate film, orienting it in a 2500 Gauss magnetic field, and drying the film. Slit to /4 inch and JIS C
-5542 measurement method. Binder composition Magnetic powder 100 parts Vinyl chloride vinyl acetate copolymer (VAGH)
25 parts rosin 3 parts silicone oil 1 part lecithin 0.2 parts toluene 150 parts MIBK 150 parts Coercive force distribution is expressed as ΔB/Bm. Here, ΔB is the difference between the magnetic flux density value on the magnetization rising curve and the magnetic flux density value on the magnetization falling curve at 1500 O¨e of the magnetic hysteresis curve, and Bm is the saturation magnetic flux density. The larger the value of ΔB/Bm, the better the transfer characteristics, and the smaller the value of ΔB/Bm, the narrower the distribution and the better. Example 2 SrCl 2 − instead of calcium chloride in Example 1
6H 2 O6.1g (0.5% as Sr based on γ-iron oxide)
The reaction was carried out in the same manner as in Example 1, except that an aqueous solution of 100 ml of distilled water was added. Table 1 shows the magnetic properties of the obtained γ-iron oxide powder. Example 3 BaCl 2 was used instead of calcium chloride in Example 1.
2H 2 O3.56g (0.5% as Ba based on γ-iron oxide)
It was used. The rest is exactly the same as in Example 1. The magnetic properties of the obtained γ-iron oxide powder are shown in Table 1. Comparative Example 1 The reaction was carried out in the same manner as in Example 1 except that calcium chloride was not used. Table 1 shows the characteristics of the obtained results. Comparative Example 2 57.2 g of cobalt sulfate (CoSO 4 7H 2 O) and 97.5 g of ferrous sulfate (FeSO 4 7H 2 O) (3% and 5% as Co and Fe, respectively, based on γ-iron oxide) Dissolve in distilled water 3, add 400 g of γ-iron oxide, the same as that used in Example 1, and continue heating and stirring.
When the reaction solution reaches 80℃, add caustic soda 960.
Add an aqueous solution of 1 g dissolved in 1 part distilled water. The temperature of the reaction solution rose to 100°C due to the heat of dilution. Stirring was continued for 4 hours while maintaining the reaction solution at 100°C. After the reaction was completed, it was thoroughly washed with water and dried at 100°C. Table 1 shows the properties of the obtained γ-iron oxide magnetic powder. Comparative Example 3 Strontium chloride 6.1g in Comparative Example 2
A γ-iron oxide magnetic powder was obtained in the same manner except that γ-iron oxide (0.5% based on γ-iron oxide) was added together with caustic soda. Its characteristics are shown in Table 1.

【表】 添加量はγ−酸化鉄に対する重量%
実施例4はCaCl〓6HOとCoCl〓6HOの混合
溶液で添加
[Table] Addition amount is weight% based on γ-iron oxide
In Example 4, a mixed solution of CaCl 2 〓6H 2 O and CoCl 2 〓6H 2 O was added.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアルカリ土類金属塩と第1鉄塩の添加
効果を示す図である。図の縦軸は生成物の保磁力
Hcを、横軸は反応時間を示す。
FIG. 1 is a diagram showing the effects of addition of alkaline earth metal salts and ferrous salts. The vertical axis of the figure is the coercive force of the product
The horizontal axis shows Hc and the reaction time.

Claims (1)

【特許請求の範囲】 1 γ−酸化鉄粒子をアルカリ水溶液中に分散
し、カルシウム塩、ストロンチウム塩又はバリウ
ム塩の少なくとも1種とコバルト塩を添加し、γ
−酸化鉄粒子のコバルト変成を行ない、次いで二
価鉄塩を添加して二価鉄変成を行ない、その後、
別、乾燥することを特徴とする磁気記録用磁性
粉末の製造法。 2 コバルト変成量がγ−酸化鉄に対して金属コ
バルトとして0.1〜10重量%である特許請求の範
囲第1項に記載の磁気記録用磁性粉末の製造法。 3 カルシウム塩、ストロンチウム塩又はバリウ
ム塩の少なくとも1種の添加量がγ−酸化鉄に対
してカルシウム、ストロンチウム又はバリウム金
属として0.01〜3重量%である特許請求の範囲第
1項に記載の磁気記録用磁性粉末の製造法。 4 二価鉄変成量がγ−酸化鉄に対して金属鉄と
して0.1〜10重量%である特許請求の範囲第1項
に記載の磁気記録用磁性粉末の製造法。 5 特許請求の範囲第1項の反応においてアルカ
リ水溶液中のOH濃度が1.0〜8.0mol/で、反応
温度が50〜104℃である磁気記録用磁性粉末の製
造法。
[Claims] 1. γ-iron oxide particles are dispersed in an alkaline aqueous solution, at least one of calcium salt, strontium salt, or barium salt and a cobalt salt are added,
- carrying out cobalt transformation of iron oxide particles, then adding divalent iron salt to carry out divalent iron transformation, and then
Separately, a method for producing magnetic powder for magnetic recording, characterized by drying. 2. The method for producing magnetic powder for magnetic recording according to claim 1, wherein the amount of cobalt metamorphosis is 0.1 to 10% by weight as metallic cobalt based on γ-iron oxide. 3. The magnetic recording according to claim 1, wherein the amount of at least one of calcium salt, strontium salt, or barium salt added is 0.01 to 3% by weight as calcium, strontium, or barium metal relative to γ-iron oxide. Manufacturing method of magnetic powder for use. 4. The method for producing magnetic powder for magnetic recording according to claim 1, wherein the amount of metamorphosed divalent iron is 0.1 to 10% by weight as metallic iron relative to γ-iron oxide. 5. A method for producing magnetic powder for magnetic recording in which the OH concentration in the alkaline aqueous solution is 1.0 to 8.0 mol/ and the reaction temperature is 50 to 104°C in the reaction according to claim 1.
JP59232427A 1984-11-06 1984-11-06 Manufacturing method for magnetic powder used in magnetic recording Granted JPS61111508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59232427A JPS61111508A (en) 1984-11-06 1984-11-06 Manufacturing method for magnetic powder used in magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59232427A JPS61111508A (en) 1984-11-06 1984-11-06 Manufacturing method for magnetic powder used in magnetic recording

Publications (2)

Publication Number Publication Date
JPS61111508A JPS61111508A (en) 1986-05-29
JPH0257321B2 true JPH0257321B2 (en) 1990-12-04

Family

ID=16939095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59232427A Granted JPS61111508A (en) 1984-11-06 1984-11-06 Manufacturing method for magnetic powder used in magnetic recording

Country Status (1)

Country Link
JP (1) JPS61111508A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638223A (en) * 1986-06-27 1988-01-14 Showa Denko Kk Production of ferromagnetic powder for magnetic recording
US4851258A (en) * 1987-01-21 1989-07-25 Showa Denko Kabushiki Kaisha Method for preparing magnetic particles for magnetic-recording media

Also Published As

Publication number Publication date
JPS61111508A (en) 1986-05-29

Similar Documents

Publication Publication Date Title
US4287233A (en) Manufacture of acicular cobalt-containing magnetic iron oxide
US4296149A (en) Manufacture of acicular cobalt-containing magnetic iron oxide
US4873010A (en) Spindle-like magnetic iron oxide particles and process for producing the same
US3897354A (en) Cobalt-containing acicular ferrimagnetic iron oxide of improved remanence stability
US3977985A (en) Magnetic recording medium comprising cobalt or cobalt alloy coated particles of spicular magnetite
WO1995002242A1 (en) Doped magnetic iron oxide particles and method of preparing the same
US4594267A (en) Process for producing cobalt-containing magnetic iron oxide powder
US4010310A (en) Magnetic powder
JPS6242337B2 (en)
US4457955A (en) Process for producing magnetizable particles
JPS6149251B2 (en)
JPH0257321B2 (en)
JPH059922B2 (en)
US4851258A (en) Method for preparing magnetic particles for magnetic-recording media
US4650597A (en) Preparation of finely divided isotropic cobalt-containing ferrite powder
JP2001081506A (en) Precursor for producing magnetic powder and ferromagneric metal powder obtained from the same
US4495164A (en) Process for producing acicular magnetite or acicular maghemite
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JPS6334609B2 (en)
JPS6242858B2 (en)
JPH11251122A (en) Precursor for manufacturing magnetic powder and ferromagnetic metal power obtained from the same
JPS59169937A (en) Production of magnetic powder
JP3482177B2 (en) Cobalt-containing magnetic iron oxide powder and magnetic recording medium using the same
JP2897794B2 (en) Method for producing cobalt-coated magnetic iron oxide particles
JPS6149252B2 (en)