JPS61111508A - Manufacturing method for magnetic powder used in magnetic recording - Google Patents

Manufacturing method for magnetic powder used in magnetic recording

Info

Publication number
JPS61111508A
JPS61111508A JP59232427A JP23242784A JPS61111508A JP S61111508 A JPS61111508 A JP S61111508A JP 59232427 A JP59232427 A JP 59232427A JP 23242784 A JP23242784 A JP 23242784A JP S61111508 A JPS61111508 A JP S61111508A
Authority
JP
Japan
Prior art keywords
salt
cobalt
iron oxide
iron
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59232427A
Other languages
Japanese (ja)
Other versions
JPH0257321B2 (en
Inventor
Narifumi Kuroyama
黒山 成文
Kenichi Okazaki
健一 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP59232427A priority Critical patent/JPS61111508A/en
Publication of JPS61111508A publication Critical patent/JPS61111508A/en
Publication of JPH0257321B2 publication Critical patent/JPH0257321B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To provide a manufacturing method for magnetic iron oxide powder having its superior coercive force, conductivity, saturated magnetic characteristics and transfer characteristics and its narrow distribution of the coercive force by performing cobalt modification of gamma-iron oxide particles dispersed in alkali solution under the presence of alkali earth metal salt and next, introducing bivalent iron salt thereto, thereby to perform modification by use of bivalent iron. CONSTITUTION:gamma-iron oxide particles are dispersed in alkali solution and added with calcium salt, strontium salt or barium salt and cobalt salt to perform cobalt modification of the gamma-iron oxide particles. Next, they are added with bivalent iron salt to perform modification of bivalent iron and then they are filtered and dried. In this time, and amount of cobalt modification and an amount of bivalent iron modification are respectively 0.1-10% by weight as metal to the gamma-iron oxide and loadings of one kind among calcium salt, strontium salt or barium salt is 0.01-3% by weight as metal to the gamma-iron oxide. The OH density in alkali solution during reaction is 1.0-8.0mol/lcm<2> and the reaction is carried out in the range of temperature 50-104 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は磁気記録を目的に使用されるγ−酸化鉄磁性粉
末の製造法に関し、さらに詳しくはコバルト及び二価鉄
で表面処理をしたγ−酸化鉄粉末の製造法に関するもの
である。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing γ-iron oxide magnetic powder used for the purpose of magnetic recording, and more specifically relates to a method for producing γ-iron oxide magnetic powder that has been surface-treated with cobalt and divalent iron. -Relates to a method for producing iron oxide powder.

[従来技術] 従来、高密度磁気記録媒体としては針状二酸化クロム、
コバルト含有針状磁性酸化鉄が広く使用されている。し
かし針状二酸化クロムを用いたテープは従来の酸化鉄系
を用いたテープに比較してヘッド6摩耗が多く、くり返
し使用に対する特性の劣化を招く欠点を有している。ま
た製造コスト、公害などにも問題がある。一方コバルト
含有針状磁性酸化鉄には大きく分けて以下の二つのタイ
プがある。すなわちコバルトを粒子内に均一に分散させ
たいわゆるコバルトドープ磁性酸化鉄とコバルトを磁性
酸化鉄粒子表面にのみ沈着せしめたタイプどである。コ
バルトをドープしたタイプとコバルトを粒子表面にのみ
沈着させたタイプとでは同一コバルト含有率では一般的
に粒子の保磁力はコバルトをドープしたタイプの方が高
くなる。しかしながらコバルトをドープしたタイプでは
テープにしたときの減磁特性や経時変化に問題があり、
また転写特性も悪くなる欠点を有している。コバルトを
粒子表面にのみ沈もさせたタイプではこれら欠点が改善
され優れた磁性粒子を得ることができる。コバルトをγ
−酸化鉄粒子の表面にのみ沈着させた粒子では沈着コバ
ルト囲を増加さす程粒子の保磁力はほぼ直線的に増加す
る。テープにしたときの転写特性もコバルトの添加によ
りもとのγ−酸化鉄よりも2〜8dB良くなる。しかし
コバルト徂をあまり多くすると磁気特性の経時変化、加
圧および温度に対する安定性が悪くなる欠点がある。ま
た製造コストの面からもコバルト偵は少なくした方が望
ましい。
[Prior art] Conventionally, as high-density magnetic recording media, acicular chromium dioxide,
Cobalt-containing acicular magnetic iron oxides are widely used. However, tapes using acicular chromium dioxide have the disadvantage that the head 6 is more worn than conventional tapes using iron oxide, resulting in deterioration of characteristics with repeated use. There are also problems with manufacturing costs and pollution. On the other hand, cobalt-containing acicular magnetic iron oxides can be roughly divided into the following two types. That is, there is a so-called cobalt-doped magnetic iron oxide in which cobalt is uniformly dispersed within the particles, and a type in which cobalt is deposited only on the surface of the magnetic iron oxide particles. In general, the cobalt-doped type and the cobalt-doped type have a higher particle coercivity when the cobalt content is the same, and the cobalt-doped type has a higher particle coercive force than the cobalt-doped type. However, the cobalt-doped type has problems with demagnetization characteristics and changes over time when made into a tape.
It also has the disadvantage of poor transfer characteristics. In the type in which cobalt is precipitated only on the particle surface, these defects are improved and excellent magnetic particles can be obtained. γ cobalt
- For particles deposited only on the surface of iron oxide particles, the coercive force of the particles increases almost linearly as the area of deposited cobalt increases. The addition of cobalt also improves the transfer characteristics when made into a tape by 2 to 8 dB compared to the original γ-iron oxide. However, if the cobalt content is too large, the magnetic properties change over time and the stability against pressure and temperature deteriorates. Also, from the viewpoint of manufacturing costs, it is desirable to reduce the number of cobalt detectives.

また粉末磁性材料としては高保磁力のみならず高飽和磁
化、より低い電気抵抗をもつ材料が求められている。ま
たVH8¥! V T R用テープではテープを黒くす
る必要があり、アープにしたときの黒化度の高い磁性材
料が求められ磁性材料を出来るだけ黒くする必要がある
。磁気テープ特にVTR用テープは高速走行のため摩擦
による帯電を起し、そのために走行が不円滑になったり
、埃が付1着するためにドロップアウトなどのトラブル
を起す。また放電ノイズの発生によるS/N比低下も起
る。これら静電気の発生によるトラブルは磁気テープに
導電性を持たせることにより解決できる。
Furthermore, as a powder magnetic material, there is a demand for a material that has not only high coercive force but also high saturation magnetization and lower electrical resistance. Also VH8¥! For VTR tapes, it is necessary to make the tape black, and a magnetic material with a high degree of blackening when used in an arc is required, and it is necessary to make the magnetic material as black as possible. Magnetic tapes, especially tapes for VTRs, run at high speeds and therefore become charged due to friction, making them run unsmoothly and causing problems such as dropouts due to the accumulation of dust. Furthermore, the S/N ratio also decreases due to the generation of discharge noise. These problems caused by the generation of static electricity can be solved by making the magnetic tape conductive.

粉末磁性材料に高飽和磁化、低電気抵抗をもたせるのに
は粒子表面に二価鉄を加えることが有効である。しかし
二価鉄を添加するとテープの転写効果は悪くなるという
欠点がある。
Adding divalent iron to the particle surface is effective in giving powdered magnetic materials high saturation magnetization and low electrical resistance. However, the addition of divalent iron has the disadvantage that the transfer effect of the tape deteriorates.

磁性粉末の保磁力、飽和磁気特性を改良する方法として
酸化鉄粉末にコバルトを沈着させる際バリウム、ストロ
ンチウムの塩水溶液を存在させて行なう方法(特開昭5
7−198607)が提案されており、またこの際さら
に第1鉄塩水溶液を添加づる方法(特開昭57−181
102)も提案されている。
A method for improving the coercive force and saturation magnetic properties of magnetic powder is to deposit cobalt onto iron oxide powder in the presence of an aqueous salt solution of barium or strontium (Japanese Patent Application Laid-Open No.
7-198607), and a method of adding an aqueous ferrous salt solution (Japanese Unexamined Patent Publication No. 57-181) has been proposed.
102) has also been proposed.

これらの方法はいずれも酸化鉄粒子の分散液中にコバル
ト塩水溶液、バリウム塩等の水溶液を加え、さらに後者
の場合第1鉄塩水溶液を加えた後、最後にアルカリを加
えて加熱反応させてコバルト等による変成を行なうもの
である。
In both of these methods, an aqueous solution of cobalt salt, barium salt, etc. is added to a dispersion of iron oxide particles, and in the latter case, an aqueous ferrous salt solution is added, and finally an alkali is added and a heating reaction is carried out. It undergoes metamorphosis using cobalt, etc.

しかし、これらの方法では反応速度は速く、例えば反応
温度100℃で3〜4時間で反応は終了するが、最終的
に得られたものの保磁力が本発明のものより低く、しか
も磁性粉末の保磁力分布が広い欠点を有している。その
理由はコバルトがγ−酸化鉄粒子表面に均一に沈着し難
く、そのために所要の保磁力を得るために本発明よりも
多量のコバルトを必要とし、しかもコバルト沈着が均一
でないために保磁力分布が広い欠点を有している。
However, in these methods, the reaction rate is fast, for example, the reaction is completed in 3 to 4 hours at a reaction temperature of 100°C, but the coercive force of the final product is lower than that of the present invention, and moreover, the coercive force of the magnetic powder is lower than that of the present invention. The drawback is that the magnetic force distribution is wide. The reason for this is that it is difficult for cobalt to uniformly deposit on the surface of the γ-iron oxide particles, and therefore a larger amount of cobalt is required than in the present invention to obtain the required coercive force, and the cobalt distribution is not uniform. has wide drawbacks.

[発明の目的] 本発明の目的は磁性酸化鉄粉末において、保磁力、導電
性、飽和磁気特性、転写特性にすぐれ、かつ保磁力分布
が狭い磁性酸化鉄粉末の製造法を提供するにある。
[Object of the Invention] An object of the present invention is to provide a method for producing magnetic iron oxide powder that has excellent coercive force, conductivity, saturation magnetic properties, and transfer properties, and has a narrow coercive force distribution.

[発明の構成] 本発明はγ−酸化鉄粒子のアルカリ水溶液中に分散し、
カルシウム塩、ストロンチウム塩、バリウム塩の少なく
とも1種とコバルト塩を添加し、γ−酸化鉄のコバルト
変成を行ない、次いで二価成 鉄塩(第1鉄塩)を添加してさらに二価鉄変粧を行ない
、その後炉別、乾燥することを特徴とする。
[Structure of the invention] The present invention comprises dispersing γ-iron oxide particles in an alkaline aqueous solution,
At least one of calcium salt, strontium salt, and barium salt and cobalt salt are added to perform cobalt modification of γ-iron oxide, and then divalent iron salt (ferrous salt) is added to further transform divalent iron. It is characterized by applying makeup and then oven-drying.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明においてはアルカリ溶液中に分散したγ−酸化鉄
粒子を先ずアルカリ土類金属塩の存在下でコバルト変成
を行ない、次にこれに二1111i鉄j8を添加して二
価鉄による変成を行なう。この一連の工程が本発明の要
点であって、これによってγ−酸化鉄磁性粉末は導電性
、飽和磁気特性等がよくなるばかりでなく、驚くべきこ
とに保磁力が高まることを発見した。アルカリ土類金属
塩を添加しないで、コバルト変成、次いで二価鉄変成を
行なうど保磁力が低下し、本発明と全く逆の効果となる
。これらの様子を図1に示す。
In the present invention, γ-iron oxide particles dispersed in an alkaline solution are first subjected to cobalt metamorphosis in the presence of an alkaline earth metal salt, and then 21111i iron j8 is added to carry out metamorphosis with divalent iron. . This series of steps is the key point of the present invention, and it has been discovered that by doing so, the γ-iron oxide magnetic powder not only improves conductivity and saturation magnetic properties, but also surprisingly increases coercive force. If cobalt metamorphosis and then divalent iron metamorphosis are performed without adding an alkaline earth metal salt, the coercive force will decrease, resulting in an effect completely opposite to that of the present invention. These conditions are shown in Figure 1.

また変成反応工程において、アルカリ水溶液を最後に加
え、コバルトと二価鉄を同時に沈着(変成)することは
従来例に)小べた通り、保磁力分布が広くなるなどの欠
点がある。
Furthermore, in the metamorphism reaction process, adding an alkaline aqueous solution at the end to simultaneously deposit (transform) cobalt and divalent iron has drawbacks such as a wide distribution of coercive force, as previously mentioned.

図1は6Nの苛性ソーダ水溶液にγ−酸化鉄粒子(10
0gzりを分散し、図1に示す夫々のアルカリ土類金属
の塩化物を金属のmで添加後の溶液中0.5重量%、塩
化コバルトをコバルトの聞で3.0重ら)%になるよう
に添加し、100℃で処理してコバルトの沈着(変成)
を行ない、そのときの反応時間と保磁力の関係を調べ、
さらに5時間反応させたものについて塩化第1鉄を鉄分
として5重品%になるように添加し、100℃、1時間
加熱して二価鉄変成(沈着)を行ない、得られた粉末の
保磁力を測定した結果を示すものである。
Figure 1 shows γ-iron oxide particles (10
Disperse 0gz and add each alkaline earth metal chloride shown in Figure 1 to 0.5% by weight in the solution after adding m of the metal, and add cobalt chloride to 3.0% by weight between cobalt. Deposition of cobalt (transformation) by processing at 100℃
and investigate the relationship between reaction time and coercive force.
Further, ferrous chloride was added to the reacted product for 5 hours to make the iron content 5%, and heated at 100°C for 1 hour to perform divalent iron transformation (deposition), and the resulting powder was preserved. This shows the results of measuring magnetic force.

図では白丸印がアルカリ土類金属塩を添加した場合、黒
丸印が無添加の場合で比較のため示したものである。こ
れらにおいてコバルト変成のための反応時間が5時間(
図の矢印)経過したところで塩化第1鉄を添加し、加熱
反応させて二価鉄による変成を行なった。この最後に得
られたものについてはコバルト沈着m(変成酊)は酸化
鉄に対し約3%、二価鉄の沈着量は酸化鉄に対し、約5
%府 トの含有量、酸化鉄と二価鉄のZjに対する二洒鉄の含
有量を表わし、その割合は特に断らない限り重量基準で
示す。以下についても同様である。
In the figure, white circles indicate the case where an alkaline earth metal salt is added, and black circles indicate the case where no addition is made, for comparison. In these cases, the reaction time for cobalt transformation is 5 hours (
After the time (arrow in the figure) had elapsed, ferrous chloride was added, and a heating reaction was carried out to perform metamorphosis with divalent iron. For this last one, the cobalt deposition (m) is approximately 3% relative to iron oxide, and the amount of divalent iron deposited is approximately 5% relative to iron oxide.
It represents the content of ferrous iron relative to Zj of iron oxide and divalent iron, and the ratio is expressed on a weight basis unless otherwise specified. The same applies to the following.

図かられかるように保磁力はアルカリ土類金属塩の添加
でわずかに上るが、その後に塩化第1鉄を添加すると、
その効果はアルカリ土類金B塩の有無によって全く逆の
結果となる。即ちアルカリ土類金属塩が存在しない場合
は保磁力が低下するのに反し、それが存在すると保磁力
が急徴に増加することがわかる。
As can be seen from the figure, the coercive force increases slightly with the addition of alkaline earth metal salts, but when ferrous chloride is added afterwards,
The effect is completely opposite depending on the presence or absence of alkaline earth gold B salt. That is, it can be seen that in the absence of an alkaline earth metal salt, the coercive force decreases, whereas in the presence of an alkaline earth metal salt, the coercive force increases rapidly.

これによって所望の保磁力を得るためのコバルトのnl
をさらに少なくすることが可能である。
Cobalt nl to obtain the desired coercive force.
It is possible to reduce it even further.

さらに本発明の方法によれば実施例に示すように保磁力
分布の非常に狭い磁性粉末が得られることも大きな特徴
である。
Another major feature of the method of the present invention is that magnetic powder with a very narrow coercive force distribution can be obtained as shown in the Examples.

本発明において上記のようなアルカリ土類金属塩と二価
鉄塩どの添加効果についてはまだ十分解明されていない
が、アルカリ土類金属が触媒として動き、γ−酸化鉄粒
子表面にコバルトが均一に沈着し、さらにその表面に二
価鉄によりマグネタイト又はコバルトフェライト層が均
一に形成されるため保磁力が高まると考えられ、あるい
はフェライト磁石で知られるマグネトブランバイト構造
に類似した結晶配列層が形成されることも推定できる。
In the present invention, the effects of addition of alkaline earth metal salts and divalent iron salts as described above have not yet been fully elucidated, but the alkaline earth metal acts as a catalyst, and cobalt is uniformly distributed on the surface of the γ-iron oxide particles. It is thought that the coercive force increases because a magnetite or cobalt ferrite layer is uniformly formed on the surface by divalent iron, or a crystal alignment layer similar to the magnetoblanbite structure known from ferrite magnets is formed. It can also be estimated that

また各粒子のコバルト及び二価鉄の沈着が均一どなるた
め保磁力分布が狭くなると考えられる。
It is also thought that cobalt and divalent iron are deposited uniformly in each particle, resulting in a narrow coercive force distribution.

転写効果については一般に一価鉄の添加は転写特性を悪
くするが、本発明では、アルカリ土類金属の添加による
コバルト沈着効果による転写改善の方が優っているので
、最終的な転写特性は改善された値が得られる。
Regarding the transfer effect, the addition of monovalent iron generally worsens the transfer characteristics, but in the present invention, the transfer improvement due to the cobalt deposition effect due to the addition of alkaline earth metal is superior, so the final transfer characteristics are improved. The value is obtained.

本発明においてアルカリ水溶液中に分散するγ−酸化鉄
粒子は通常使用されている粒子径0.2〜O0g 剖÷μm程度で、その分散量は80〜150g/lが適
当である。
In the present invention, the γ-iron oxide particles dispersed in the alkaline aqueous solution have a particle size of the commonly used particle size of about 0.2 to 00 g/μm, and the appropriate amount of dispersion is 80 to 150 g/l.

アルカリ濃度としてはOH基濃度で1〜8モル/1が適
当である。アルカリ濃度は高い程反応速度は早くなるが
、アルカリのコストが上昇すると同時に反応生成物を洗
滌するのに多分の水、時間を要する不利を伴なう。これ
らのことから好ましくはOHIIEI度で2〜8モル/
1である。
The appropriate alkali concentration is 1 to 8 mol/1 in terms of OH group concentration. The higher the alkali concentration, the faster the reaction rate, but this has the disadvantage of increasing the cost of the alkali and requiring a large amount of water and time to wash the reaction product. For these reasons, preferably 2 to 8 mol/OHIIEI degree
It is 1.

アルカリとしては苛性カリ、苛性ソーダ、水酸化リチウ
ムなどが使用できるが、工業的には苛性ソーダがSJ造
ココスト上右利ある。
As the alkali, caustic potash, caustic soda, lithium hydroxide, etc. can be used, but industrially, caustic soda is advantageous in terms of cost for SJ production.

本発明で使用されるカルシウム塩、ストロンチウム塩、
バリウム塩については水溶性の塩はすべて使用可能であ
る。即ち、塩化物、臭化物、ヨウ化物、酢酸塩、ギMJ
:A、硝酸塩などが利用できるが、製造コスト上等から
工業的には塩化物が右利である。その添加量はγ−酸化
鉄に対し、アルカリ土類金属分で0.01〜3%が適当
である。
Calcium salts, strontium salts used in the present invention,
As for the barium salt, any water-soluble salt can be used. i.e. chloride, bromide, iodide, acetate, GI
:A, nitrates and the like can be used, but chlorides are preferred industrially due to manufacturing costs. The appropriate amount of the alkaline earth metal to be added is 0.01 to 3% based on γ-iron oxide.

0.01%未満では効果が十分でなく、また3%を越え
ると磁化に寄与しない成分量が増えるので好ましくない
If it is less than 0.01%, the effect will not be sufficient, and if it exceeds 3%, the amount of components that do not contribute to magnetization will increase, which is not preferable.

次にコバルト塩については塩化コバルト、硝酸コバルト
、MMコバルトなど通常酸化鉄粒子のコバルト変成に用
いられるものと同様のものを使用することができる。そ
して本発明においてはコバルトの変成量(沈着量)はか
なり低くすることができ、例えばγ−酸化鉄に対し、0
.1%で、も効果がある。その上限は10%程度が好ま
しい。上記塩化コバルト等の添加量はコバルトの変成量
が゛これらの範囲に入るように定める。添加量は殆んど
そのまま変成Φとなる。
Next, as for the cobalt salt, the same salts as those normally used for cobalt modification of iron oxide particles, such as cobalt chloride, cobalt nitrate, and MM cobalt, can be used. In addition, in the present invention, the amount of cobalt metamorphosis (deposition amount) can be considerably reduced, for example, 0 for γ-iron oxide.
.. Even 1% is effective. The upper limit is preferably about 10%. The amount of cobalt chloride, etc. added is determined so that the amount of cobalt transformation falls within these ranges. The amount added remains almost the same as metamorphic Φ.

アルカリ土類金属塩とコバルト塩は固体あるいはその水
溶液で添加される。これらの添加順序は特に制限はない
The alkaline earth metal salt and cobalt salt are added as solids or their aqueous solutions. There is no particular restriction on the order of addition of these.

上記混合溶液は加熱撹拌して反応させる。その温度は5
0°〜沸点までが適当である。温度が高い程反応速度が
早いが、沸点以上にするためには反応系を加圧する必要
があり、工業的には不利である。沸点は溶液中に溶解し
ている塩の濃度によって異なるが、上記した濃度範囲に
おいては沸点はほぼ104℃が上限となる。従って、加
熱温度は50〜104℃の範囲で選ぶのが適当である。
The above mixed solution is heated and stirred to react. Its temperature is 5
A temperature of 0° to the boiling point is suitable. The higher the temperature, the faster the reaction rate, but it is necessary to pressurize the reaction system to raise the temperature above the boiling point, which is industrially disadvantageous. Although the boiling point varies depending on the concentration of salt dissolved in the solution, the upper limit of the boiling point is approximately 104° C. within the above concentration range. Therefore, it is appropriate to select the heating temperature within the range of 50 to 104°C.

加熱による反応は撹拌して行なうのが望ましく、そのた
めに反応系の雰囲気は酸化性だと二価鉄やコバルトが酸
化されるので、非酸化性とすることが好ましい。反応時
間は4時間以上が適当で好ましくは4〜8時間である。
The reaction by heating is preferably carried out with stirring; therefore, if the atmosphere in the reaction system is oxidizing, divalent iron and cobalt will be oxidized, so it is preferably non-oxidizing. The reaction time is suitably 4 hours or more, preferably 4 to 8 hours.

上記の処理により、コバルト塩は水酸化コバルトとなっ
て、γ−酸化鉄の粒子表面に沈着づる。
Through the above treatment, the cobalt salt turns into cobalt hydroxide, which is deposited on the surface of the γ-iron oxide particles.

このようにしてγ−酸化鉄粒子のコバルト変成が行なわ
れる。この際アルカリ土類金属塩は大部分粒子表面に沈
着する。
In this way, cobalt transformation of the γ-iron oxide particles is carried out. At this time, most of the alkaline earth metal salts are deposited on the particle surfaces.

コバルト変成が終了したならば次にその液に二価鉄塩を
添加する。二価鉄塩としては硫酸第1鉄、塩化第1鉄な
どが用いられる。この第1鉄塩添加溶液を前記コバルト
変成と同様の温度、時間、雰囲気下で処理して二価鉄に
よる変成を行なう。二価鉄の変成n1はγ−酸化鉄に対
して金属鉄として01〜10%が適当である。従って二
価鉄塩の添加量はその変成量がこの範囲に入るように定
める。
Once the cobalt transformation has been completed, divalent iron salt is then added to the solution. As the divalent iron salt, ferrous sulfate, ferrous chloride, etc. are used. This ferrous salt-added solution is treated at the same temperature, time, and atmosphere as the above-mentioned cobalt modification to perform modification with divalent iron. The metamorphic n1 of divalent iron is suitably 01 to 10% as metallic iron relative to γ-iron oxide. Therefore, the amount of divalent iron salt added is determined so that the amount of metamorphosis falls within this range.

通常添加量はそのまま変成量となる。The normal addition amount becomes the metamorphic amount.

このようにしてコバルト及び二価鉄により変成したγ−
酸化鉄粒子の沈澱物を溶液から炉別し、水洗をくり返し
、最後にこれを乾燥して製品とする。製品中にはアルカ
リ土類金属は残存しても本発明の範囲内では磁気特性に
番よ害はない。
γ- metamorphosed by cobalt and divalent iron in this way
The precipitated iron oxide particles are separated from the solution in a furnace, washed repeatedly with water, and finally dried to form a product. Even if alkaline earth metals remain in the product, there is no harm to the magnetic properties within the scope of the present invention.

し本発明の効果] 本発明によれば導電性、飽和磁気特性、転写特性にすぐ
れ、保磁力の高い酸化鉄磁性粉末が得られる。しかも、
通常は二価鉄の変成では保磁力は高まらないのに対し、
本発明方法によれば著しくこれを高めることが可能とな
った。そのためにコバルト変成…を少なくすることがで
き、従ってコバルト憎加による安定性の問題等の欠点が
解消される。
Effects of the present invention] According to the present invention, iron oxide magnetic powder having excellent conductivity, saturation magnetic properties, transfer properties, and high coercive force can be obtained. Moreover,
Normally, the coercive force does not increase due to metamorphosis of divalent iron, but
According to the method of the present invention, it has become possible to significantly increase this. Therefore, cobalt metamorphosis can be reduced, and drawbacks such as stability problems caused by cobalt addition can therefore be eliminated.

以下実施例により本発明を具体的に説明する。The present invention will be specifically explained below using Examples.

(長軸の平均0,4μ、長f* /短軸=8/1 、保
磁力HC=390エルステッド、飽和磁化(σ、=73
.4emu /g) 400gを分散し、窒素気流中で
加熱撹拌しながらCaCJlz ・61−hollg(
γ−酸化鉄に対しCaとして0.5%)を100dの蒸
留水に溶解した水溶液を加え、加熱撹拌を続ける。反応
液が80℃になったところで00SO4・7H2057
,7g(γ−酸化鉄に対しCOとして3%)を300m
の蒸留水に溶解した水溶液を加え、反応温度を100℃
に上げ5時間撹拌を続ける。5時間後ざらにFe SO
4・7 H2097,5g(γ−酸化鉄に対しFcとし
て5%)を500−の蒸留水に溶解した水溶液を加え、
100℃でさらに1時間反応を行なった。反応終了後炉
別、水洗を十分行ない、100℃で乾燥した。得られた
磁性粉末の特性を表1に示す。
(Average of major axis 0.4 μ, major f * / minor axis = 8/1, coercive force HC = 390 Oe, saturation magnetization (σ, = 73
.. 4emu/g) was dispersed and heated and stirred in a nitrogen stream while dispersing CaCJlz ・61-hollg(
An aqueous solution of 0.5% Ca (based on γ-iron oxide) dissolved in 100 d of distilled water was added, and heating and stirring were continued. When the reaction solution reached 80℃, 00SO4・7H2057
, 7g (3% as CO to γ-iron oxide) at 300m
Add the aqueous solution dissolved in distilled water and adjust the reaction temperature to 100℃.
Continue stirring for 5 hours. 5 hours later Zarani Fe SO
4.7 Add an aqueous solution of H2097.5g (5% as Fc to γ-iron oxide) dissolved in 500-g distilled water,
The reaction was further carried out at 100°C for 1 hour. After the reaction was completed, the mixture was separated from the furnace, thoroughly washed with water, and dried at 100°C. Table 1 shows the properties of the obtained magnetic powder.

使用して磁性塗料を作り、シ戸遇し20μのポリエチレ
ンテレフタレートフィルム上に乾燥厚10μとなるよう
に塗布し、2500ガウスの磁場で配向し乾燥させたフ
ィルムを1/4インチにスリットしてJIS  C−5
542の測定法で測定した。
A magnetic paint is made using the magnetic paint, which is then applied onto a 20μ polyethylene terephthalate film to a dry thickness of 10μ, oriented in a 2500 Gauss magnetic field, dried, and the film is slit into 1/4 inch pieces to meet JIS standards. C-5
It was measured using the measurement method of No. 542.

バインダー組成 ta竹粉         100部 塩化ビニル酢酸ビニル 共重合体(V A G H)    25部ロジン  
          3部 シリコーン油         1部 レシチン           0゜2部トルエン  
       150g5MIBK         
150部 曲線上における磁束密度の値と磁化下降曲線上にJ)け
る磁束密度の値の差であり、3mは飽和磁束密度である
Binder composition ta Bamboo powder 100 parts Vinyl chloride vinyl acetate copolymer (VAGH) 25 parts Rosin
3 parts silicone oil 1 part lecithin 0° 2 parts toluene
150g5MIBK
It is the difference between the value of the magnetic flux density on the 150 part curve and the value of the magnetic flux density on the magnetization decline curve, and 3m is the saturation magnetic flux density.

転写特性はその数値が大きい稈よく、またΔB/Biは
その数値が小さい程分布が狭く優れていることを示す。
The higher the value of ΔB/Bi, the better the transfer characteristics, and the smaller the value of ΔB/Bi, the narrower the distribution.

実施例2 実施例1の塩化カルシウムのかわりに3rCJ12−6
H206,1g(γ−酸化鉄に対し、Srとして0.5
%)を100dの蒸留水に溶解した水溶液を加えるほか
は全〈実施例1と同様の反応を行なった。得られたγ−
酸化鉄粉末の磁気特性を表1に示す。
Example 2 3rCJ12-6 instead of calcium chloride in Example 1
H206,1g (0.5 as Sr for γ-iron oxide
%) in 100 d of distilled water was added, but the reaction was carried out in the same manner as in Example 1. The obtained γ−
Table 1 shows the magnetic properties of iron oxide powder.

実施例3 実施例1の塩化カルシウムのかわりに(3aC1z・2
H203,513’J (7−R電鉄に対し3aとして
0.5%)を使用した。他は実施例1と全く同じである
。得られたγ〜酸化鉄粉末は磁性特性を表1に示す。
Example 3 Instead of calcium chloride in Example 1, (3aC1z・2
H203,513'J (0.5% as 3a for 7-R electric railway) was used. The rest is exactly the same as in Example 1. The magnetic properties of the obtained γ-iron oxide powder are shown in Table 1.

比較例1 塩化カルシウムを使用しない以外は全〈実施例1と同様
に反応を行なった。脣られた結果の特性を表1に示す。
Comparative Example 1 The reaction was carried out in the same manner as in Example 1 except that calcium chloride was not used. Table 1 shows the characteristics of the results.

比゛較例2 硫酸コバルト(Co 304  ・7 H20) 57
.2gと硫酸第一鉄(Fe 804 ・7H20)97
.5g(γ−酸化鉄に対し、COl[:eとして夫々3
%、5%)を蒸留水341に溶解し、その溶液に実施例
1に使用したのと同じγ−酸電鉄400gを加え加熱撹
拌を続ける。反応液が80℃になったところでカセイソ
ーダ960gを蒸留水11に溶解した水溶液を加える。
Comparative Example 2 Cobalt sulfate (Co 304 ・7 H20) 57
.. 2g and ferrous sulfate (Fe 804 ・7H20) 97
.. 5 g (for γ-iron oxide, 3 as COI[:e, respectively)
%, 5%) in distilled water 341, 400 g of the same γ-acid electric iron as used in Example 1 was added to the solution, and heating and stirring were continued. When the temperature of the reaction solution reaches 80° C., an aqueous solution of 960 g of caustic soda dissolved in 11 distilled water is added.

希釈熱で反応液は100℃に上昇した。反応液を100
℃に保ちながら4時間撹拌を続けた。反応終了後が別、
水洗を十分行ない100℃で乾燥した。得られたγ−酸
化鉄磁性粉末の特性を表1に示す。
The temperature of the reaction solution rose to 100°C due to the heat of dilution. 100% reaction solution
Stirring was continued for 4 hours while maintaining the temperature at °C. After the reaction is finished, it is different.
It was thoroughly washed with water and dried at 100°C. Table 1 shows the properties of the obtained γ-iron oxide magnetic powder.

比較例3 比較例2において塩化ストロンチウム6.1g(γ−酸
化鉄に対しく1.5%)をカセイソーダと共に加えた外
は同様にしてγ−酸化鉄磁性粉末を得た。その特性を表
1に示す。
Comparative Example 3 A γ-iron oxide magnetic powder was obtained in the same manner as in Comparative Example 2, except that 6.1 g of strontium chloride (1.5% based on γ-iron oxide) was added together with caustic soda. Its characteristics are shown in Table 1.

(以下余白)(Margin below)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアルカリ土類金属塩と第1鉄塩の添加効果を示
す図である。図の縦軸は生成物の保磁力Hcを、横軸は
反応時間を示す。 代  理  人   弁理士  菊  地  精  −
第1図 1乏/2時間(hと)
FIG. 1 is a diagram showing the effects of addition of alkaline earth metal salts and ferrous salts. The vertical axis of the figure shows the coercive force Hc of the product, and the horizontal axis shows the reaction time. Agent Patent Attorney Sei Kikuchi −
Figure 1 1/2 hours (h)

Claims (5)

【特許請求の範囲】[Claims] (1)γ−酸化鉄粒子をアルカリ水溶液中に分散し、カ
ルシウム塩、ストロンチウム塩又はバリウム塩の少なく
とも1種とコバルト塩を添加し、γ−酸化鉄粒子のコバ
ルト変成を行ない、次いで二価鉄塩を添加して二価鉄変
成を行ない、その後、ろ別、乾燥することを特徴とする
磁気記録用磁性粉末の製造法。
(1) γ-iron oxide particles are dispersed in an alkaline aqueous solution, at least one of calcium salt, strontium salt, or barium salt and cobalt salt are added to convert the γ-iron oxide particles into cobalt, and then divalent iron is added. A method for producing magnetic powder for magnetic recording, which comprises adding salt to perform bivalent iron transformation, followed by filtering and drying.
(2)コバルト変成量がγ−酸化鉄に対して金属コバル
トとして0.1〜10重量%である特許請求の範囲第1
項に記載の磁気記録用磁性粉末の製造法。
(2) Claim 1 in which the amount of cobalt modification is 0.1 to 10% by weight as metallic cobalt based on γ-iron oxide.
A method for producing magnetic powder for magnetic recording as described in Section 1.
(3)カルシウム塩、ストロンチウム塩又はバリウム塩
の少なくとも1種の添加量がγ−酸化鉄に対してカルシ
ウム、ストロンチウム又はバリウム金属として0.01
〜3重量%である特許請求の範囲第1項に記載の磁気記
録用磁性粉末の製造法。
(3) The amount of at least one of calcium salt, strontium salt, or barium salt added is 0.01 as calcium, strontium, or barium metal relative to γ-iron oxide.
3% by weight of the magnetic powder for magnetic recording according to claim 1.
(4)二価鉄変成量がγ−酸化鉄に対して金属鉄として
0.1〜10重量%である特許請求の範囲第1項に記載
の磁気記録用磁性粉末の製造法。
(4) The method for producing magnetic powder for magnetic recording according to claim 1, wherein the amount of metamorphosed divalent iron is 0.1 to 10% by weight as metallic iron relative to γ-iron oxide.
(5)特許請求の範囲第1項の反応においてアルカリ水
溶液中のOH濃度が1.0〜8.0mol/lで、反応
温度が50〜104℃である磁気記録用磁性粉末の製造
法。
(5) A method for producing magnetic powder for magnetic recording in which the OH concentration in the alkaline aqueous solution is 1.0 to 8.0 mol/l and the reaction temperature is 50 to 104°C in the reaction according to claim 1.
JP59232427A 1984-11-06 1984-11-06 Manufacturing method for magnetic powder used in magnetic recording Granted JPS61111508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59232427A JPS61111508A (en) 1984-11-06 1984-11-06 Manufacturing method for magnetic powder used in magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59232427A JPS61111508A (en) 1984-11-06 1984-11-06 Manufacturing method for magnetic powder used in magnetic recording

Publications (2)

Publication Number Publication Date
JPS61111508A true JPS61111508A (en) 1986-05-29
JPH0257321B2 JPH0257321B2 (en) 1990-12-04

Family

ID=16939095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59232427A Granted JPS61111508A (en) 1984-11-06 1984-11-06 Manufacturing method for magnetic powder used in magnetic recording

Country Status (1)

Country Link
JP (1) JPS61111508A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638223A (en) * 1986-06-27 1988-01-14 Showa Denko Kk Production of ferromagnetic powder for magnetic recording
US4851258A (en) * 1987-01-21 1989-07-25 Showa Denko Kabushiki Kaisha Method for preparing magnetic particles for magnetic-recording media

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638223A (en) * 1986-06-27 1988-01-14 Showa Denko Kk Production of ferromagnetic powder for magnetic recording
JPH0351660B2 (en) * 1986-06-27 1991-08-07 Showa Denko Kk
US4851258A (en) * 1987-01-21 1989-07-25 Showa Denko Kabushiki Kaisha Method for preparing magnetic particles for magnetic-recording media

Also Published As

Publication number Publication date
JPH0257321B2 (en) 1990-12-04

Similar Documents

Publication Publication Date Title
JPH0145202B2 (en)
US4594267A (en) Process for producing cobalt-containing magnetic iron oxide powder
JPS6149251B2 (en)
JPS61111508A (en) Manufacturing method for magnetic powder used in magnetic recording
JPS5923505A (en) Magnetic powder
JPS6114642B2 (en)
US4851258A (en) Method for preparing magnetic particles for magnetic-recording media
JP2001081506A (en) Precursor for producing magnetic powder and ferromagneric metal powder obtained from the same
JP2659957B2 (en) Magnetic powder, manufacturing method thereof, and magnetic recording medium using the magnetic powder
JPH0755832B2 (en) Method for producing cobalt-containing ferromagnetic iron oxide powder
JPS6242858B2 (en)
JPS59169937A (en) Production of magnetic powder
JP3482177B2 (en) Cobalt-containing magnetic iron oxide powder and magnetic recording medium using the same
JPS6334609B2 (en)
JP2897794B2 (en) Method for producing cobalt-coated magnetic iron oxide particles
JPH1025115A (en) Iron oxide-base magnetic powder and magnetic recording medium using the same
JP3428197B2 (en) Acicular magnetic iron oxide particles and method for producing the same
JPS6132259B2 (en)
JPS6149252B2 (en)
JPS6136684B2 (en)
EP0583621A1 (en) Process for producing acicular gamma iron (III) oxyhydroxide particles
JPS5931961B2 (en) Manufacturing method of ferromagnetic powder
JPH0561206B2 (en)
JPS6187302A (en) Manufacture of magnetic recording medium
JPS6364920A (en) Production of magnetic powder for magnetic recording